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ABSTRACT

Competition and cooperation are powerful metaphors that
have informed improvements in multi-population algorithms
such as the Cooperative Coevolutionary Genetic Algorithm,
Cooperative Particle Swarm Optimization, and Factored Evo-
lutionary Algorithms (FEA). However, we suggest a different
perspective can give a finer grained understanding of how
multi-population algorithms come together to avoid problems
like hitchhiking and pseudo-minima. In this paper, we apply
the concepts of information sharing and conflict resolution
through Pareto improvements to analyze the distributed ver-
sion of FEA (DFEA). As a result, we find the original DFEA
failed to implement FEA with complete fidelity. We then
revise DFEA and examine the differences between it and
FEA and the new implications for relaxing consensus in the
distributed algorithm.
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1 INTRODUCTION

Competition and cooperation are among the big themes in
many biologically inspired optimization algorithms. This is
especially true for the Genetic Algorithm (GA) but often
just as true for similar algorithms such as Particle Swarm
Optimization (PSO). Algorithm improvements have often
come from varying the degrees of cooperation and compe-
tition. For example, Potter and de Jong [9] developed the
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Cooperative Coevolutionary Genetic Algorithm (CCGA) to
combat hitchhiking in the GA by using multiple populations
or “subspecies” that cooperated by focusing on separate parts
of an optimization problem. This line of research also in-
cludes Strasser et al.’s Factored Evolutionary Algorithms
(FEA), which re-introduced some competition back at the
multi-population level [10]. FEA was extended further by
creating a distributed version, called DFEA, that does not
rely on a global context [1].

While the trade off between competition and cooperation
has been a major theme of this research, Butcher et al. [2]
started to investigate these algorithms from a different per-
spective. Instead of viewing these algorithms on a continuum
of cooperation and competition, we started to look at infor-
mation sharing both within and between populations and
how conflicting information was resolved. We believe this per-
spective can be generalized and applied to better understand
the relationship between FEA and DFEA. Our analysis will
show that DFEA, as originally designed, introduces different
communication semantics than those in FEA. We start by
analyzing FEA in terms of information sharing, applying this
analysis to the original DFEA and comparing the results,
and then developing a new version of DFEA that faithfully
replicates the communication semantics of FEA.

For example, in FEA, there is a central context that acts
like a blackboard architecture to which the populations com-
municate potentially better values and from which better
values are communicated to the populations. When multiple
better values are received, this creates a conflict. This con-
flict is resolved, variable by variable, in a Pareto improving
fashion. Thus the context so constructed does not exhibit the
hitchhiking problem, which often plagues single population
algorithms. This perspective led Butcher et al. to develop
the Pareto Improving PSO (PI-PSO), a single population
дbest-like PSO that does not exhibit hitchhiking.

In this paper we re-evaluate DFEA in terms of information
sharing and conflict resolution. We demonstrate that the
distributed version differs from the undistributed version in
important ways. We use this information to improve DFEA
and show how it will converge to the same answer as FEA
given the same random seed. This perspective also has impli-
cations for relaxing consensus in DFEA, which we explore in
the final section. We begin with some background.

2 BACKGROUND

One of the main problems biologically inspired optimization
algorithms face is the curse of dimensionality. Although not
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Table 1: Hitchhiking in PSO

pbestj x f(x)

1 [1.53, 1.84, 5.29, 0.59] 34.06
2 (дbestnew) [0.42, 2.01, 4.76, 1.84] 30.26
3 [3.23, 0.72, 4.68, 0.47] 33.07
4 [2.83, 3.83, 2.71, 1.27] 31.64
дbestold [2.39, 1.24, 5.71, 0.34] 39.97

unique to these algorithms or optimization problems in gen-
eral, as the search spaces of problems grow larger, so do
candidate solutions for those problems. As a result, in al-
gorithms like GA and PSO, we start to see a phenomenon
called hitchhiking. Hitchhiking occurs when the current best
solution in the population is replaced by a successor solution
that increases overall fitness but includes some individual
variable values that are inferior to those they replaced. In
Particle Swarm Optimization, this has been called“Two Steps
Forward, One Step Back” [12].

Table 1 shows an example of hitchhiking in PSO during
the update to the global best while optimizing the Sphere
function. Although Individual 2 has the best overall fitness
and will replace the existing global best, if we look at individ-
ual variables, only x1 and x3 are actual improvements over
дbestold (blue). x2 and x4 are actually inferior values and are
thus hitchhikers (red).

At least one strand of research aimed at mitigating hitch-
hiking has focused on the continuum between competition
and cooperation by increasing cooperation through multi-
population algorithms. For example, Potter and de Jong [9]
developed the Cooperative Coevolutionary Genetic Algorithm
(CCGA) to combat hitchhiking in the Genetic Algorithm
(GA) by using cooperating “subspecies” to focus on separate
parts of the problem. Van den Bergh and Engelbrecht [13]
first applied a CCGA-like version of PSO to training neural
networks and later generalized their algorithm, producing
several versions including the Cooperative PSO (CPSO) and
the Hybrid CPSO [14].

Strasser et al. [10] developed a more generalmeta-algorithm,
Factored Evolutionary Algorithms (FEA), that continued the
cooperative aspects of CCGA but permitted factors—variable
partitions—to overlap and re-introduced a measure of compe-
tition at the multi-population level. Table 2 shows an example
of FEA, without overlapping populations, using PSO as the
underlying optimizer. In this case, a context C representing
the composite solution is updated with information from the
individual swarms. Conflicts between C and the swarms are
resolved by inspecting variables one by one. As each variable
is evaluated, the value that represents a Pareto improvement
is the one that is accepted for inclusion in Cnew (blue). This
process is what prevents hitchhiking.

Assigning pieces of the problem to individual, cooperat-
ing populations did not unequivocally increase performance
of these algorithms, however. It was found that the CCGA
does not work as well with problems with high epistasis—
variables whose values are highly correlated. Similarly, Van

Table 2: FEA-PSO Determination of Cnew

дbest x f(x)
C [2.39, 1.24, 5.71, 0.34] 39.97
s1 [1.53, ––––, ––––, ––––] 36.59
s2 [––––, 2.01, ––––, ––––] 42.47
s3 [––––, ––––, 4.68, ––––] 29.27
s4 [––––, ––––, ––––, 1.27] 41.47

Cnew [1.53, 1.24, 4.68, 0.34] 25.90

den Bergh and Engelbrecht discovered in their research on
CPSO that the partitioning of the variables mattered be-
cause they were often highly correlated. They labeled this
phenomenon pseudo-minima. It was for this reason that they
introduced the Hybrid CPSO [14].

In contrast, Strasser et al. found overlapping factors in
FEA were able to solve both hitchhiking and avoid pseudo-
minima, if the factors overlapped appropriately. And this
result applied to all of the evolutionary algorithms they used
as optimizers [11].

3 INFORMATION SHARING AND
CONFLICT RESOLUTION

FEA is a meta-algorithm composed of three steps: optimize,
compete, and share. The optimize step consists of applying an
algorithm such a GA, PSO, Hill Climbing, etc., to a subset of
the problem. This subset is called a factor, Xi which generally
includes only some values in X. The problem to be optimized
is f (X). Because Xi ⊂ X, we have X \ Xi = Ri missing values
needed to evaluate f (Xi ). These are supplied by the context,
Ci , which can be thought of as a blackboard architecture as
in [3] or, more generally, by Engelmore [6]. This is one form
of information sharing.

In the Compete Step, the information flows from the
swarms to the context. At minimum, at least one swarm
will have been optimizing some variable x j and this new,
potentially better, value will need to be evaluated against the
existing value in the context, c j . This is where the conflict res-
olution comes in. If we have an existing context, [c1, c2, c3, c4]
and a new x2, we will evaluate both f ([c1, c2, c3, c4]) and
f ([c1,x2, c3, c4]) and either keep c2 or select x2 depending
on which gives the better fitness. More generally, there may
be many swarms optimizing x j , the set of which we will des-
ignate Oj , and there will be |Oj | + 1 conflicting possibilities
for x j , including c j .

The order of variable resolution can be arbitrarily set but
this does not mean that every order will end up with the
same result. Using Xi to denote either ci or xi , we might
evaluate X1,X3,X4,X2 and this will end up with a different
result than X1,X2,X3,X4 for C. Throughout the following
discussion, We will use the order X1,X2,X3,X4 where vi =
xi or ci but the results do not depend on this order. It just
makes the bookkeeping and exposition clearer. Algorithm 1
shows the pseudocode for the FEA Compete Step using PSO
as the optimizer.
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Algorithm 1 FEA-PSO Compete

Input: Function f (x), swarms S, optimizers O, context C
Output: New global context C

1: for j = 1 to d do
2: f itness ← f (C)
3: value ← C.c j
4: for j in Oj do
5: candidate ← S[j].pдbest
6: C .c j ← candidate .x j
7: if f (C) is better than f itness then
8: value ← candidate .x j
9: f itness ← f (C)

10: end if
11: end for
12: C .c j ← value
13: end for
14: return C

3.1 Reconciliation

In Butcher et al. [2], they were concerned with comparing
PSO and PI-PSO and how differences in information sharing
and conflict resolution solved the problem of hitchhiking. In
this paper we are concerned with how differences in the FEA
and DFEA algorithms give rise to differences in information
flows. Thus, we need a notation that is more abstract than
the value-based notation of Tables 1 and 2. For this we will
use a few symbols. First, we use the term reconciliation to
cover both the sharing of new values of x j from optimizers of
x j , O j and the resolution of the conflicting values. A variable,
vj , that has not be reconciled yet will be denoted by

⊙
.

For a variable that has been reconciled we will use
⊕

. Note
that this says nothing about whether c j was kept or one of

xkj ,∀k = 1 . . . |O j | replaced it.

As an example consider a d = 4 problem. After the opti-
mize step, the context appears as [

⊙⊙⊙⊙
]. When X1 is

reconciled, the context becomes [
⊕⊙⊙⊙

]. The impor-
tant thing to note here is that X1, whether it is c1 or x1, is
determined in the context of the other variables, X2, X3, X4.
If we continue with X2, we have [

⊕⊕⊙⊙
], followed by

[
⊕⊕⊕⊙

], and finally followed by the reconciliation of
X4, [

⊕⊕⊕⊕
]. Keeping this pattern of reconciliation in

mind, we now apply this same analysis to the original DFEA.

3.2 Reconciliation in the Original DFEA

In most respects, DFEA is the same as FEA. The main dif-
ference is that instead of a single context, C, each swarm has
its own context, Ck . The challenges become keeping these
separate blackboards synchronized and determining the im-
plications when they are not synchronized. The implications
of losing synchronization—relaxing consensus—were explored
in Butcher et al. [1] and we will investigate them later in this
paper. For now, we will maintain full consensus.

The first challenge arises because there are multiple con-
texts and possibly many optimizers of x j , so some Ck must
be designated as having the c j . This challenge is solved by

Algorithm 2 DFEA-PSO Compete

Input: Function f (x), arbitrator look up a(x), swarms S,
optimizers O, contexts C
Output: global contexts C
1: for j = 1 to d do
2: C← C[a(x j )]
3: f itness ← f (C)
4: value ← C.c j
5: for k in Oj do
6: candidate ← S[k].pдbest
7: C.c j ← candidate .x j
8: if f (C) is better than f itness then
9: value ← candidate .x j

10: f itness ← f (C)
11: end if
12: end for
13: C.c j ← value
14: for j in O[i] do
15: C[j].ci ← ci
16: end for
17: end for
18: return C

Table 3: Evolution of Context(s) in FEA and DFEA

ti FEA Ci DFEA-PSO
1 [

⊕⊙⊙⊙
] 1 [

⊕⊙⊙⊙
]

2 [
⊕⊕⊙⊙

] 2 [
⊙⊕⊙⊙

]
3 [

⊕⊕⊕⊙
] 3 [

⊙⊙⊕⊙
]

4 [
⊕⊕⊕⊕

] 4 [
⊙⊙⊙⊕

]

designating one of the swarms optimizing x j to be the arbiter
of x j , which we denote a(x j ). During the DFEA Compete
Step, all optimizers of x j communicate their values of x j to
the arbiter and the arbiter compares those values (including
its own) with c j found in its context. A simplified version
of this DFEA Compete Step, utilizing PSO, is presented in
Algorithm 2.

The DFEA Compete Step presented represents the rec-
onciliation of all the contexts, Ck ⊂ C and we can analyze
the operation of the algorithm with the notation we have
developed. We assume that the arbitrator for x j is Cj (C in
Line 2 of Algorithm 2), and as before we take the variables
in order, X1,X2,X3,X4. Once again, we start at the end of the
optimize step when all the contexts are identical.

In that case, when we reconcile X1, we will have C1 =
[
⊕⊙⊙⊙

], and when we reconcile X2, we will have C2 =
[
⊙⊕⊙⊙

]. Similarly, [
⊙⊙⊕⊙

] and [
⊙⊙⊙⊕

]
follow for X3 and X4.

We would now like to compare the state of the two algo-
rithms after their respective Compete Steps. To do this we
observe, that since our examples have used the same order of
reconciliation, we can line up the single FEA context at time
ti with the corresponding DFEA context Ci . This is shown
in Table 3.
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Aligned this way, the difference between the algorithms
becomes immediately apparent. For FEA, X2 is reconciled at
t2 in the presence of the reconciled value of X1 from t1 (

⊕
).

For DFEA, X2 is reconciled in C2 with the unreconciled value
of X1 (

⊙
). While it is possible that X2 will be the same value

in both cases, it is not guaranteed. Additionally, it seems
unlikely that every vj would reconcile exactly the same way
for both algorithms over all variables and iterations.

This analysis so far has been only for the Compete Steps.
Both FEA and DFEA have an additional step, the Share
Step, which has a greater importance for DFEA. In FEA,
the Share Step is mostly a bookkeeping step where the new
context is communicated back to the individual populations
and fitness values are re-evaluated. Additionally, a form of
elitism introduces the context as an actual individual in the
population. In DFEA, the Share Step includes this same
bookkeeping but also simulates the movement of informa-
tion in a network. We will now look at how this influences
information sharing.

Consider two swarms that are regarded to be neighbors.
Neighbors can be defined in a number of ways but Butcher et
al. define it in the context of the set of optimizers, O. If two
swarms, sj and sk are both members of some set of optimizers
Oi , then they are considered to be neighbors. During the
Share Step, those two swarms can compare how recent the
values of all variables in their contexts, Cj and Ck are. If Cj
has a newer value of ci than Ck , then Ck will take Cj ’s value.
If the reverse is true, Cj will take Ck ’s value of ci .

The neighbor relation sets up the possibility of swarms
being indirect neighbors as well. If sj and sk are both members
of Oi and sk and sm are both members of Oq then sj and
sm are indirect neighbors. Information will flow from one
to the other depending on the number of iterations of the
Share Step. The neighbor relation induces a topology on the
swarms through which information travels, and if the Share
Step iterates a sufficient number of times, information will
flow from C1 to Cd . As a result, all Ci will be identical. This
is called consensus.

Relative to FEA, however, this sharing takes place too late
to affect how reconciliation plays out in the DFEA Compete
Step. Consider reconciliation of c1 and c2. First c1 is reconciled
with the optimizers O1, and we have C1 = [

⊕⊙⊙⊙
].

Next, c2 is reconciled with optimizers O2, and we have C2 =
[
⊙⊕⊙⊙

]. During the Share Step, c1 from C1 will be
shared with C2, but c1 will not have been determined in the
context of C2. In fact, when c1 is changed to c ′1 in C2, C2 is
not re-evaluated at all. We thus have no way of knowing if
the change is Pareto improving or not. To signify this, we use
the

⊗
symbol: C2 = [

⊗⊕⊙⊙
]. With full consensus, C2

will eventually look like [
⊗⊕⊗⊗

]. Although each of the
values c1, c2, c3, and c4 will have been Pareto improvements
when they were evaluated during reconciliation, at no point
were they evaluated collectively. Even with full consensus, the
contexts in DFEA do not collectively preserve the information
semantics of the context in FEA.

Algorithm 3 DFEA-PSO Reconcile

Input: Function f (x), arbitrator look up a(x), swarms S,
optimizers O, global contexts C
Output: global contexts C
1: for j = 1 to d do
2: C← C[a(x j )]
3: f itness ← f (C)
4: value ← C.c j
5: for k in Oj do
6: candidate ← S[k].pдbest
7: C.c j ← candidate .x j
8: if f (C) is better than f itness then
9: value ← candidate .x j

10: f itness ← f (C)
11: end if
12: end for
13: C.c j ← value
14: for k = 1 to d do
15: C[k].c j ← C.c j
16: end for
17: end for
18: return C

3.3 Revising Reconciliation in DFEA

In order to fix this discrepancy, we suggest a change to
the DFEA algorithm. Based on Table 3 it would appear
that the sharing step and Compete Step need to happen
simultaneously. Additionally, if we wish the right-hand side
of the table to match the left-hand side of the table, in the
ideal case, we need to start by considering all swarms to be
neighbors of all other swarms. Later we will investigate what
relaxing consensus might mean in the revised algorithm. This
new reconcile step that combines both information sharing
and conflict resolution is described as Algorithm 3.

By adding a broadcast loop at 14 every time some ci is
reconciled, the reconciliation is communicated to all the other
contexts. For any c j to be reconciled, all ck ,∀k < j will be
their reconciled values, just as in the FEA Compete Step.
The revised DFEA relegates the Share Step to performing
similar bookkeeping functions as it does in the FEA.

Using our previous notation, when X1 is reconciled to
C1 = [

⊕⊙⊙⊙
], all the other contexts Cj will have X1

updated as well: C2 = [
⊕⊙⊙⊙

], C3 = [
⊕⊙⊙⊙

],
and C4 = [

⊕⊙⊙⊙
]. And when X2 is reconciled it will

be in the context of the reconciled value of X1 just as in the
FEA: C2 = [

⊕⊕⊙⊙
]. Table 4 shows the end result as

compared to FEA. Now all four DFEA contexts, Ci , are the
same as the FEA context at t4.

This section has demonstrated how looking at these algo-
rithms in terms of information flows and conflict resolution
(reconciliation) can reveal a deeper structure and more in-
teresting semantics than invoking cooperation versus compe-
tition. We examined how reconciliation works in FEA and
original DFEA and showed that the semantics of the two
were not identical as previously supposed. Using the same
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Table 4: Final Context(s) in FEA and Revised DFEA

ti FEA Ci DFEA-PSO
1 [

⊕⊙⊙⊙
] 1 [

⊕⊕⊕⊕
]

2 [
⊕⊕⊙⊙

] 2 [
⊕⊕⊕⊕

]
3 [

⊕⊕⊕⊙
] 3 [

⊕⊕⊕⊕
]

4 [
⊕⊕⊕⊕

] 4 [
⊕⊕⊕⊕

]

framework, we devised a revised DFEA that does preserve
the semantics of the FEA. Finally, we encountered something
new. In the original DFEA, a value c j that was a Pareto
improvement in Cj was communicated to Ck without any
evaluation (

⊗
). What impact this might have on the oper-

ation of the algorithm and what it means for performance
relative to the FEA is not entirely clear. For now, we refer
to these values as discordant because they are injected into
context without any conflict resolution.

4 EXPERIMENTS

Based on the previous discussion and analysis, our hypothesis
is that the revised DFEA and FEA will perform the same.
The revision that was made ensures that, other things being
equal, FEA and the revised DFEA will end up with the same
result. As for the original DFEA, it is difficult to say if the
discordant values influence the performance of the algorithm.
Because [1] showed that the original DFEA was sometimes
better and sometimes worse than FEA, we also hypothesize
that the results will be mixed. We will revisit this hypothesis
and the results later in the discussion of future work.

In order to test our hypothesis, we ran a large number of
experiments on standard benchmark functions from different
categories for FEA-PSO, revised DFEA-PSO, and old DFEA-
PSO. We include results for the single population дbest PSO
as a baseline. The following sections describe the design,
results and discussion of those experiments.

4.1 Design

We selected benchmark optimization problems from [7] and
[14] that were scalable to multiple dimensions. The problems
selected are shown in Table 5, arranged by categories in-
spired by [8]. All of the problems are minimization problems,
and with the exception of the Exponential and Eggholder
functions, they all have a minimizing solution and value
of f ([0]d ) = 0. The Exponential function has a minimum at

[−1]d , and the Eggholder function has a dimension-dependent
minimum and minimizing vector. None of the functions except
the Sphere function are separable in their current forms.

Experiments consisted of 50 runs of each algorithm on
each benchmark function with a dimension of 32. Because we
noticed that the results were not always normally distributed—
hardly a surprise for optimization problems—the confidence
intervals were 500 replications of the Bootstrap to estimate
95% confidence intervals [4]. Following [5], each algorithm
used the same number of candidate solutions. In this case we
chose 10 particles per dimension, that is d × 10 = 320.

Table 5: Benchmark Optimization Functions by Category

Category Benchmark Function

Bowl Exponential, Sargan, Sphere
Many Local Optima Ackley-1, Eggholder, Griewank,

Rastrigin, Salomon, Stretched-V
Plate Brown, Schwefel-2.23, Whitley,

Zakharov
Ridge Michalewicz, Schaffer-F6,

Schwefel-2.22
Valley Dixon-Price, Rosenbrock,

Schwefel-1.2

PSO and the PSO portion of FEA and the various DFEA
versions all used the same parameters: ω = 0.729 and ϕ1 =
ϕ2 = 1.49618. While PSO was run for 100 iterations, FEA
versions were run for 20 FEA/DFEA iterations separated
by 5 PSO iterations for a total of 100 PSO iterations. All
FEA/DFEA variants used the “Simple Centered” factor of
i, i + 1, which followed the functional form of most of the
benchmark functions—they are functions of adjacent x values—
and shown by Strasser et al. to perform well [10]. With d − 1
such factors, and d = 32, there were ⌊(320/31)⌋ = 10 particles
per swarm for the FEA/DFEA-PSO variants.

4.2 Results

The results are shown in Table 6. Independent of which al-
gorithm is best, what we are looking for, in general, is for
FEA-PSO and the new DFEA-PSO to have similar perfor-
mance. This appears to be true for Ackley, Brown, Expo-
nential, Salomon, Schaffer-F6, Schwefel-1.2, Schwefel-2.22,
Schwefel-2.23, Sphere, Stretched-V, and Zakharov. There
were 19 benchmark functions overall, so our experiments
show that the results were similar for FEA-PSO and the new
DFEA-PSO for 11 of them (58%).

There were six cases where the original or old DFEA-PSO
performed the same as the new DFEA-PSO, five where they
performed better than FEA-PSO: Dixon-Price, Eggholder,
Griewank, Michalewicz, Rosenbrock, and one where they were
worse then FEA-PSO: Rastrigrin. In three cases, FEA-PSO
was better than either version of DFEA-PSO (Rastrigrin,
Sargan, Whitley). In three cases, PSO was better than any
FEA variant: Salomon, Schwefel-1.2 and Zakharov.

4.3 Discussion

Given that FEA and the revised DFEA are demonstrably
equivalent, it is surprising that there are eight cases out of 19
where they did not have the same results. All FEA/DFEA
variants depend on PSO as the underlying optimizer. The
variants all have the same numbers of factors for each problem
and thus the same number of swarms. In the code tested,
they are all initialized the same way and at the same time.
Furthermore, the (D)FEA Compete/Share/Reconcile Steps
as presented do not have any stochastic elements which might
cause a purely random divergence.
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Table 6: Comparison of PSO, FEA-PSO and both variants of DFEA-PSO

PSO FEA-PSO New/Revised DFEA-PSO Old DFEA-PSO

Benchmark Mean Confidence Interval Mean Confidence Interval Mean Confidence Interval Mean Confidence Interval

ackley-1 1.84e+00 (1.77e+00, 1.90e+00) 2.81e-03 (5.23e-06, 7.00e-03) 2.78e-03 (3.82e-08, 6.99e-03) 2.83e-03 (1.39e-08, 6.98e-03)
brown 7.56e+00 (6.69e+00, 8.55e+00) 1.22e-25 (3.72e-26, 2.42e-25) 1.21e-25 (5.11e-26, 1.98e-25) 1.02e-23 (1.36e-24, 2.42e-23)
dixon-price 4.23e+01 (2.54e+01, 6.34e+01) 1.18e+02 (1.07e+02, 1.28e+02) 3.85e+01 (2.93e+01, 4.70e+01) 3.87e+01 (2.98e+01, 4.92e+01)
eggholder -1.68e+04 (-1.71e+04, -1.64e+04) -1.77e+04 (-1.79e+04, -1.74e+04) -2.10e+04 (-2.13e+04, -2.07e+04) -2.05e+04 (-2.07e+04, -2.02e+04)
exponential -9.99e-01 (-1.00e+00, -9.99e-01) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
griewank 4.96e-01 (4.47e-01, 5.45e-01) 9.49e-01 (8.99e-01, 9.91e-01) 1.49e-01 (6.92e-02, 2.23e-01) 1.35e-01 (7.51e-02, 2.02e-01)
michalewicz -8.65e+00 (-9.02e+00, -8.33e+00) -2.59e+01 (-2.63e+01, -2.56e+01) -3.06e+01 (-3.07e+01, -3.04e+01) -3.06e+01 (-3.07e+01, -3.04e+01)
rastrigin 1.03e+02 (9.59e+01, 1.11e+02) 2.60e-02 (1.97e-05, 6.59e-02) 7.28e-02 (1.36e-02, 1.51e-01) 1.01e-01 (3.98e-02, 1.99e-01)
rosenbrock 1.95e+02 (1.56e+02, 2.51e+02) 2.20e+02 (1.69e+02, 2.88e+02) 4.60e+01 (1.96e+01, 7.77e+01) 5.09e+01 (1.31e+01, 1.04e+02)
salomon 1.41e+00 (1.33e+00, 1.48e+00) 2.29e+00 (2.12e+00, 2.49e+00) 1.96e+00 (1.78e+00, 2.12e+00) 1.93e+00 (1.77e+00, 2.17e+00)
sargan 9.76e+00 (8.55e+00, 1.11e+01) 2.04e-12 (1.37e-12, 2.91e-12) 5.67e+02 (1.32e+02, 1.15e+03) 3.19e+03 (1.54e+03, 5.07e+03)
schaffer-f6 2.49e+00 (2.31e+00, 2.67e+00) 1.99e+00 (1.78e+00, 2.20e+00) 9.86e-01 (8.60e-01, 1.09e+00) 9.34e-01 (8.23e-01, 1.04e+00)
schwefel-1.2 7.96e+03 (7.19e+03, 8.84e+03) 6.59e+04 (5.72e+04, 7.60e+04) 6.53e+04 (4.59e+04, 8.85e+04) 6.88e+04 (5.55e+04, 8.44e+04)
schwefel-2.22 3.01e+02 (2.91e+02, 3.13e+02) 1.22e-12 (7.73e-13, 1.75e-12) 1.35e-12 (5.74e-13, 2.40e-12) 1.54e-12 (8.63e-13, 2.41e-12)
schwefel-2.23 2.44e-01 (1.18e-01, 4.15e-01) 8.65e-102 (7.25e-116, 2.31e-101) 5.07e-102 (2.39e-111, 1.67e-101) 1.39e-101 (8.93e-103, 3.02e-101)
sphere 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
stretched-v 1.20e+01 (1.14e+01, 1.28e+01) 4.37e+00 (3.78e+00, 5.02e+00) 4.24e+00 (3.91e+00, 4.54e+00) 3.58e+00 (3.31e+00, 3.86e+00)
whitley 9.82e+02 (9.67e+02, 9.99e+02) 3.51e+02 (2.97e+02, 3.91e+02) 5.35e+02 (4.84e+02, 5.80e+02) 5.62e+02 (5.20e+02, 6.02e+02)
zakharov 1.39e+02 (1.28e+02, 1.51e+02) 1.60e+03 (3.09e+02, 3.77e+03) 8.16e+02 (7.80e+02, 8.45e+02) 7.97e+02 (7.67e+02, 8.23e+02)

Because of this we decided to run a second set of experi-
ments on the same benchmark functions. This time each run,
i, of FEA-PSO, old DFEA-PSO and revised/new DFEA-PSO
used the same random seed, seedi . As we can see in these
results, shown in Table 7, the FEA-PSO and revised DFEA-
PSO had exactly the same results as we would expect. Thus
it appears that the random seed was the culprit in generating
the differences in performance.

In this second set of experiments, what is perhaps more
interesting is that for most of the problems, the differences in
the DFEA versions did not seem to matter. For 14 of the 19
benchmark problems, all three algorithms performed about
the same. For two benchmark problems, the old DFEA-PSO
performed better than the FEA-PSO/revised DFEA-PSO
(Rosenbrock, Stretched-V). For three of the benchmark prob-
lems, the FEA-PSO/revised DFEA-PSO performed better
than the old DFEA-PSO (Salomon, Sargan, Zakharov).

5 RELAXING CONSENSUS

Not only did Butcher et al. introduce the distributed version
of the FEA or DFEA, we also examined the implications of
relaxing consensus. With our revised DFEA, we now examine
the effects of relaxing consensus as well. In the previous work,
relaxed consensus was achieved in the DFEA Share Step when
newly reconciled values were not communicated throughout
the network of contexts induced by the neighbor relation. In
the revised DFEA, however, we have replaced the Compete
and Share Steps with a Reconcile Step. The reconcile step
replaces a network model using “hops” with a network model
using broadcasted messages. In order to introduce an effect
like relaxed consensus in the revised DFEA, we introduce the
idea of dropped messages.

Referring back to line 14 in Algorithm 3, we see that after
a new c j is reconciled by the arbiter of x j , it is broadcast
to all other swarms. By broadcasting c j , any ck ,∀k > j that
is subsequently reconciled has the benefit of this new infor-
mation. The main point of the previous discussion about

reconciliation in the original DFEA was that this did not
happen. In effect, the original DFEA never had full consensus
in the sense that FEA does.

Now we introduce the idea that the message containing
the new c j may be dropped. This is accomplished through
a success rate, r , which determines if a message is delivered
from some arbiter of x j to each of the remaining swarms. If
r = 0.8, there is a 20% probability that the message from
the arbiter of x1, for example, to x2 will go missing, in which
case when c2 is reconciled, C2 will not have the new value
of c1. This could happen for several iterations of the DFEA
reconcile step, depending on r . But this also means that for
any given iteration of the DFEA reconcile step, some arbiters
will get c1, and some will not with probability 1 − r .

5.1 Experiment

In order to test the effects of dropped messages and their
implications for relaxing consensus, we re-ran the benchmark
experiments from above. All the parameters are the same.
The only difference is that we simulated different success
rates of r = 1.0 (the baseline), 0.8, 0.6, and 0.4. The results
are presented in Table 8.

5.2 Discussion

Looking at the results, we can see how well the revised DFEA
did on the various benchmarks with different success—or
drop—rates. The first column in Table 8 is a baseline of 100%
success. Comparing the results for a 100% and 80% success
rate, we can see that the revised DFEA required a success
rate of 100% on 10 of 19 benchmarks. These benchmarks
were Ackley, Brown, Griewank, Rosenbrock, Schwefel-1.2,
Schwefel-2.22, Schwefel-2.23, Sphere, Whitley, and Zakharov.
Perhaps the most surprising appearance in this list is the
Sphere function. The Sphere function is fairly simple and
separable in its variables. One would think this would make
missed messages less important relative to some of the other
benchmark functions.
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Table 7: FEA-PSO, Old and New DFEA-PSO with Same Random Seeds

FEA-PSO New/Revised DFEA-PSO Old DFEA-PSO

Benchmark Mean Confidence Interval Mean Confidence Interval Mean Confidence Interval

ackley-1 3.37e-03 (5.38e-07, 8.96e-03) 3.37e-03 (5.38e-07, 8.96e-03) 2.01e-03 (5.46e-08, 5.95e-03)
brown 2.90e-21 (4.32e-25, 9.17e-21) 2.90e-21 (4.32e-25, 9.17e-21) 2.96e-21 (1.51e-24, 9.30e-21)
dixon-price 3.73e+01 (2.82e+01, 4.72e+01) 3.73e+01 (2.82e+01, 4.72e+01) 3.20e+01 (2.22e+01, 4.14e+01)
eggholder -2.12e+04 (-2.15e+04, -2.10e+04) -2.12e+04 (-2.15e+04, -2.10e+04) -2.07e+04 (-2.10e+04, -2.03e+04)
exponential -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00)
griewank 7.14e-02 (2.57e-02, 1.28e-01) 7.14e-02 (2.57e-02, 1.28e-01) 1.71e-01 (8.22e-02, 2.66e-01)
michalewicz -3.09e+01 (-3.10e+01, -3.08e+01) -3.09e+01 (-3.10e+01, -3.08e+01) -3.09e+01 (-3.10e+01, -3.08e+01)
rastrigin 2.28e-01 (1.12e-01, 3.40e-01) 2.28e-01 (1.12e-01, 3.40e-01) 2.28e-01 (1.12e-01, 3.40e-01)
rosenbrock 1.58e+01 (6.38e+00, 2.70e+01) 1.58e+01 (6.38e+00, 2.70e+01) 3.16e+00 (2.40e+00, 3.97e+00)
salomon 1.79e+00 (1.64e+00, 1.93e+00) 1.79e+00 (1.64e+00, 1.93e+00) 2.82e+00 (2.63e+00, 3.05e+00)
sargan 1.67e+03 (5.58e+02, 2.84e+03) 1.67e+03 (5.58e+02, 2.84e+03) 1.35e+05 (1.04e+05, 1.77e+05)
schaffer-f6 9.26e-01 (8.24e-01, 1.02e+00) 9.26e-01 (8.24e-01, 1.02e+00) 8.85e-01 (7.79e-01, 9.71e-01)
schwefel-1.2 8.80e+04 (5.37e+04, 1.24e+05) 8.80e+04 (5.37e+04, 1.24e+05) 1.39e+07 (7.09e+06, 2.02e+07)
schwefel-2.22 4.63e-12 (1.06e-12, 1.11e-11) 4.63e-12 (1.06e-12, 1.11e-11) 4.63e-12 (1.06e-12, 1.11e-11)
schwefel-2.23 2.27e-94 (6.55e-100, 6.92e-94) 2.27e-94 (6.55e-100, 6.92e-94) 1.12e-99 (3.06e-101, 3.28e-99)
sphere 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00) 0.00e+00 (0.00e+00, 0.00e+00)
stretched-v 4.23e+00 (3.91e+00, 4.53e+00) 4.23e+00 (3.91e+00, 4.53e+00) 2.83e+00 (2.54e+00, 3.14e+00)
whitley 5.46e+02 (5.05e+02, 5.87e+02) 5.46e+02 (5.05e+02, 5.87e+02) 6.68e+02 (5.82e+02, 7.55e+02)
zakharov 7.62e+02 (7.34e+02, 7.87e+02) 7.62e+02 (7.34e+02, 7.87e+02) 3.46e+11 (2.01e+11, 4.81e+11)

Conversely, the revised DFEA continued to do well on nine
of 19 benchmarks even with a success rate of 80% (drop rate
of 20%). The benchmarks were Dixon-Price, Eggholder, Expo-
nential, Michalewicz, Rastrigin, Salomon, Sargan, Schaffer-F6,
and Stretched-V. Strangely, on Michalewicz, although the
difference was not statistically significant, the lower success
rate of 80% actually led to an increase in performance.

On a few benchmarks, the revised DFEA did fairly well
even with a success rate of 60%, which is fairly low (a
drop rate of 40% per variable, per iteration). These bench-
marks were Eggholder, Exponential, Michalewicz, Rastrigrin,
and Salomon. On a single benchmark, Exponential, the re-
vised DFEA’s performance was statistically indistinguishable
whether the drop rate was 0%, 20%, 40% or 60%.

These results seem to suggest that some tolerance to noise
is acceptable for some problems but that full consensus is
best during the reconcile step.

6 CONCLUSIONS

In many biologically inspired algorithms such as the Genetic
Algorithm and Particle Swarm Optimization, problems with
hitchhiking are often tackled by introducing multiple popula-
tions and varying the degree of cooperation and competition.
This line of research extends from Potter and de Jong’s Co-
operative Coevolutionary Genetic Algorithm [9], through
Van den Bergh and Engelbrecht’s Cooperative PSO [13], and
Strasser et al.’s Factored Evolutionary Algorithm [10].

Following Butcher et al. [2], we focused instead on informa-
tion sharing and conflict resolution or, taken together, recon-
ciliation between the populations. Reconciliation relies on the
shared context as a blackboard architecture through which

the populations communicate and single variable Pareto im-
provement as the standard of conflict resolution. We applied
this framework to DFEA [1] and demonstrated that DFEA
does not preserve the information semantics of FEA as orig-
inally supposed. We then used the framework to develop
a revised DFEA where the FEA information semantics are
preserved.

In experiments we showed that, given the same initial con-
ditions and random seed, the FEA-PSO and revised DFEA-
PSO produce the exact same results as expected. However, the
strong performance of the original DFEA-PSO suggests that
there is more to conflict resolution than previously thought.
While is seems clear why a set of interdependent Pareto im-
provements would lead to the elimination of hitchhikers, it
is not equally clear why the concatenation of single value
Pareto improvements would also be effective. This would
appear to have research implications for the entire family of
FEA algorithms.

We also demonstrated the effects of relaxing consensus in
the revised DFEA. In these experiment we showed that some
tolerance for noise exists in the revised algorithm but that
full consensus during the reconcile step almost always leads
to better performance.

In future work we anticipate investigating the semantics
of reconciliation further and applying the new DFEA to
other problems. We also wish to investigate the possibility
of finding an optimal arbitration order. Additionally, the
current DFEA algorithm is defined at a very high level. We
would like to investigate concrete implementations of DFEA
that are distributed, parallel, and possibly asynchronous.
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Table 8: Relaxing Consensus by Success Rates

1.0 0.8 0.6 0.4

Benchmark Mean Confidence Interval Mean Confidence Interval Mean Confidence Interval Mean Confidence Interval

ackley-1 2.78e-03 (3.82e-08, 6.99e-03) 3.34e-02 (2.08e-02, 4.52e-02) 1.10e-01 (9.15e-02, 1.28e-01) 4.61e-01 (3.58e-01, 5.86e-01)
brown 1.21e-25 (5.11e-26, 1.98e-25) 3.53e-20 (3.02e-21, 8.93e-20) 7.02e-15 (9.67e-17, 2.31e-14) 1.05e+00 (1.09e-10, 3.29e+00)
dixon-price 3.85e+01 (2.93e+01, 4.70e+01) 1.62e+02 (2.81e+01, 3.57e+02) 1.05e+03 (5.62e+02, 1.54e+03) 1.78e+04 (9.39e+03, 2.88e+04)
eggholder -2.10e+04 (-2.13e+04, -2.07e+04) -2.05e+04 (-2.09e+04, -2.02e+04) -1.98e+04 (-2.03e+04, -1.94e+04) -1.71e+04 (-1.77e+04, -1.66e+04)
exponential -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00) -1.00e+00 (-1.00e+00, -1.00e+00) -9.98e-01 (-1.00e+00, -9.93e-01)
griewank 1.49e-01 (6.92e-02, 2.23e-01) 7.52e-01 (6.98e-01, 8.03e-01) 5.78e-01 (5.23e-01, 6.21e-01) 4.90e-01 (4.45e-01, 5.42e-01)
michalewicz -3.06e+01 (-3.07e+01, -3.04e+01) -3.08e+01 (-3.10e+01, -3.07e+01) -3.06e+01 (-3.08e+01, -3.04e+01) -2.85e+01 (-2.87e+01, -2.82e+01)
rastrigin 7.28e-02 (1.36e-02, 1.51e-01) 1.89e-01 (5.97e-02, 3.45e-01) 2.77e-01 (1.10e-01, 4.70e-01) 4.14e+00 (2.07e+00, 6.33e+00)
rosenbrock 4.60e+01 (1.96e+01, 7.77e+01) 1.14e+03 (2.70e+02, 2.29e+03) 4.67e+03 (2.83e+03, 6.75e+03) 1.04e+05 (6.43e+04, 1.44e+05)
salomon 1.96e+00 (1.78e+00, 2.12e+00) 1.74e+00 (1.69e+00, 1.79e+00) 1.90e+00 (1.85e+00, 1.96e+00) 2.44e+00 (2.37e+00, 2.52e+00)
sargan 5.67e+02 (1.32e+02, 1.15e+03) 2.80e+03 (9.57e+02, 4.94e+03) 8.00e+03 (4.44e+03, 1.22e+04) 1.23e+04 (9.67e+03, 1.50e+04)
schaffer-f6 9.86e-01 (8.60e-01, 1.09e+00) 9.52e-01 (8.56e-01, 1.06e+00) 1.38e+00 (1.27e+00, 1.48e+00) 2.32e+00 (2.09e+00, 2.56e+00)
schwefel-1.2 6.53e+04 (4.59e+04, 8.85e+04) 3.22e+05 (2.86e+05, 3.55e+05) 2.97e+05 (2.74e+05, 3.24e+05) 2.75e+05 (2.56e+05, 2.95e+05)
schwefel-2.22 1.35e-12 (5.74e-13, 2.40e-12) 2.94e-06 (9.51e-08, 7.99e-06) 5.25e+00 (1.90e+00, 9.10e+00) 5.72e+01 (4.40e+01, 7.15e+01)
schwefel-2.23 5.07e-102 (2.39e-111, 1.67e-101) 5.22e+06 (1.27e+06, 1.00e+07) 1.02e+09 (6.05e+08, 1.56e+09) 4.07e+09 (2.89e+09, 5.48e+09)
sphere 0.00e+00 (0.00e+00, 0.00e+00) 4.46e+01 (3.64e+01, 5.39e+01) 1.54e+02 (1.36e+02, 1.71e+02) 3.75e+02 (3.50e+02, 4.02e+02)
stretched-v 4.24e+00 (3.91e+00, 4.54e+00) 4.16e+00 (3.82e+00, 4.46e+00) 5.40e+00 (5.05e+00, 5.76e+00) 9.26e+00 (8.70e+00, 9.82e+00)
whitley 5.35e+02 (4.84e+02, 5.80e+02) 9.54e+02 (9.02e+02, 1.00e+03) 5.52e+03 (4.28e+03, 7.94e+03) 4.38e+05 (3.31e+05, 5.62e+05)
zakharov 8.16e+02 (7.80e+02, 8.45e+02) 4.66e+03 (1.29e+03, 1.35e+04) 1.19e+04 (1.47e+03, 2.48e+04) 5.14e+03 (9.58e+02, 9.91e+03)
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