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ABSTRACT
Optical sensing has the potential to be an important tool in the
automated monitoring of food quality. Specifically, hyperspectral
imaging has enjoyed success in a variety of tasks ranging from
plant species classification to ripeness evaluation in produce. Al-
though effective, hyperspectral imaging is prohibitively expensive
to deploy at scale in a retail setting. With this in mind, we develop
a method to assist in designing a low-cost multispectral imager
for produce monitoring by using a genetic algorithm (GA) that
simultaneously selects a subset of informative wavelengths and
identifies effective filter bandwidths for such an imager. Instead
of selecting the single fittest member of the final population as
our solution, we fit a multivariate Gaussian mixture model to the
histogram of the overall GA population, selecting the wavelengths
associated with the peaks of the distributions as our solution. By
evaluating the entire population, rather than a single solution, we
are also able to specify filter bandwidths by calculating the standard
deviations of the Gaussian distributions and computing the full-
width at half-maximum values. In our experiments, we find that
this novel histogram-based method for feature selection is effective
when compared to both the standard GA and partial least squares
discriminant analysis.
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1 INTRODUCTION
Every year in the United States, more than 43 billion pounds of
fruits and vegetables are thrown away before they ever make it
onto a plate [5]. This equates roughly to a 30 percent rate of loss for
post-harvest produce, amounting to nearly 50 billion dollars a year
in lost produce at the retail and consumer levels. These losses result
from a variety of factors, including mechanical injury, bruising,
sprout growth, rot, secondary infection, biological aging, and over-
ripening [5, 10, 13]. These concrete characteristics all inform the
more nebulous concept of overall produce quality.

This judgment of quality is innately subjective when the eval-
uation is carried out by a human; sensory preferences for color,
texture, smell, and taste vary from person to person. Because of
this variability, instrumental measurements are often preferred
to sensory judgments when it comes to monitoring food quality.
Methods such as mass spectrometry and high performance liquid
chromatography are used in food monitoring, but both require
sample destruction during analysis [11]. This means that only a
representative sample of the produce is tested, which can give in-
sights into the average quality of the produce being monitored, but
it fails to capture the produce-specific characteristics necessary to
perform tasks such as classification and sorting [1].

Several non-destructive techniques for food quality monitoring
exist. One such method is hyperspectral imaging. Hyperspectral
imaging combines the spatial information provided by conventional
imaging and the spectral information captured by spectroscopy [11].
One advantage of hyperspectral images is that they contain a vast
amount of information. The corresponding disadvantage of hyper-
spectral images is that they contain a vast amount of information.
That is to say, the wealth of data provided by this technology can
help lend valuable insight into a variety of problems; however,
due to the curse of dimensionality, many standard processing tech-
niques quickly become impractical. As a brief illustration, a single
1000 × 1000 pixel image taken by an imager with a 600 nm spectral
range and a 2 nm spectral resolution results in a 300 million point
data cube. Because of this, hyperspectral imaging has been a prime
candidate for dimensionality reduction techniques.

In this study, we examine the effects of feature selection on hy-
perspectral image classification. We capture hyperspectral images
of avocados and tomatoes and use the data to classify the produce
as "fresh" versus "old". For hyperspectral imaging, the feature space
from which a subset of features is selected comprises the set of
wavelengths at which reflectance is measured by the imager. By
selecting an informative subset of wavelengths, noise, redundant
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information, and the size of the data cube can all be reduced signif-
icantly. The feature selection process can also assist in the design
of cheaper multispectral imagers.

A large variety of feature selection techniques have been applied
to hyperspectral data. A hybrid feature subset selection algorithm
that combines weighted feature filtering and the Fuzzy Imperialist
Competitive algorithm [20] has successfully been used to reduce the
classification error of hydrothermal alteration minerals in hyper-
spectral datasets [25]. In another study, ground cover classification
of hyperspectral images is improved by selecting features using
simulated annealing to maximize a joint objective of feature rele-
vance and overall classification accuracy [19]. On the same datasets
used in [19], Feng et al. develop an unsupervised feature selec-
tion technique that improves classification error by optimizing the
maximum information and minimum redundancy criterion via the
clonal selection optimization algorithm (MIMR-CSA) [8].

While a large amount of active research investigates new ad-
vanced feature selection methods, in application, two of the most
commonly utilized feature selection techniques are partial least
squares discriminant analysis (PLS-DA) [3] and genetic algorithms
(GA) [29]. PLS-DA is adapted for feature selection by utilizing the
coefficients produced by the PLS-DA method in order to rank the
features by importance (i.e., from largest to smallest coefficient). The
top k features are then selected for use in the analysis. PLS-DA has
been used in application areas ranging from differentiating between
fresh and frozen-to-thawed meat [2], to predicting the chemical
composition of lamb [14], as well as many others [6, 24, 26, 30].
Likewise, in recent years, GAs have been widely used for feature
selection in hyperspectral data analysis [6, 9, 15, 33].

In each of the aforementioned studies, the goals of dimension-
ality reduction are largely limited to reducing noise, eliminating
redundant information, improving accuracy for a given prediction
task, and reducing the size of the problem to be analyzed. These
studies make the assumption that, in application, a hyperspectral
imager will be used to capture the full spectral response at each
pixel, then the selected wavelengths will be extracted and passed
through the given prediction algorithm. However, hyperspectral
imagers are prohibitively expensive for mass deployment in most
retail settings, often costing tens of thousands of dollars per imager.

In this study, we propose a new feature selection technique based
on the standard GA to assist in multispectral imager design. After
the GA has satisfied its stopping criteria, instead of selecting the
fittest member of the final population as the solution, we use a
histogram-based approach that analyzes the overall population, in
a method we call the Histogram Assisted Genetic Algorithm for
Reduction inDimensionality (HAGRID). Not only does this method
offer a new way of determining the solution for a GA, but it also
allows for the analysis of the distribution of selected features, which,
in the context of wavelength selection for a hyperspectral imager,
allows for the determination of filter bandwidths for a multispectral
imager.

The rest of the paper is organized as follows — section 2 gives
an overview of hyperspectral and multispectral imaging, section
3 covers the formulation of the GA used in this paper, section 4
provides details for the HAGRID method, section 5 discusses ex-
perimental setup and methods, section 6 provides the experimental
results, and section 7 ends with conclusions.

Figure 1: Sample spectral reflectance curve of a tomato.

2 HYPERSPECTRAL IMAGING
2.1 Overview
Hyperspectral imaging combines the two main components of con-
ventional imaging and spectroscopy by simultaneously capturing
spatial and spectral information [11]. The image produced by a hy-
perspectral imager can thus be thought of as a cube, consisting of
two spatial dimensions and one spectral dimension. When incident
light strikes an object, a percentage of that light is absorbed by the
object, and a percentage is reflected off the surface [1]. When the
percentages of light reflected at various wavelengths are measured,
a spectral reflectance curve (Fig. 1) is produced. It is this spectral
reflectance curve that defines the spectral dimension of a hyperspec-
tral image. Hyperspectral imagers usually measure reflectance over
a portion of the visible and near-infrared (NIR) spectrum, which
covers wavelengths of light ranging from 400–2500 nanometers
(nm).

Two main parameters inform the collection of spectral informa-
tion for a hyperspectral imager. An imager has a spectral range
and a spectral resolution. The spectral range dictates the range
of wavelengths of light over which the imager is able to measure
reflectance. The spectral resolution indicates the spacing between
these measurements. For example, if an imager has a spectral range
of 400-800 nm and a spectral resolution of 10 nm, the imager records
the reflectance of light at 400 nm, 410 nm, all the way up to 800
nm, for each pixel in the spatial plane. It is worth noting that each
reflectance measurement is centered around a wavelength deter-
mined by the spectral range and resolution, but the imager captures
some response in a band around the wavelength center. As such,
each individual reflectance measurement can be thought of as the
integral of a Gaussian curve centered at a given wavelength, with
spread proportional to the resolution of the imager.

2.2 Multispectral Imaging
Where hyperspectral imagers usually measure reflectance at hun-
dreds of wavelengths of light, a multispectral imager takes these
measurements at only a handful of wavelengths and therefore can
be a lot cheaper to purchase or manufacture. Multispectral im-
agers are also more flexible in terms of design and customization.
They consist of a number of bandpass filters that each record the
reflectance centered around a certain wavelength of light. Three
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Figure 2: Representation of the filter-wheel camera.

Figure 3: Representation of the multiple-bandpass filter.

main aspects of these filters can be customized – the number of
filters included in the imager, the wavelength at which each fil-
ter is centered, and the bandwidth of each filter (where a larger
bandwidth filter measures the reflectance over a larger range of
wavelengths surrounding the filter center).

There are two main designs for multispectral imagers and both
utilize bandpass filters. A bandpass filter allows for the transmission
of light in a discrete spectral band [28]. These filters are centered
at specific wavelengths of light and have fixed bandwidths. The
first type of multispectral imager is known as a filter-wheel camera
(Fig. 2). This type of camera consists of a rotating wheel of band-
pass filters that sequentially pass in front of the camera, allowing
specific ranges of the electromagnetic spectrum to pass through
to be measured by the camera [4]. The other main design utilizes
multiple-bandpass filters. Instead of sequentially passing several
filters in front of the camera, a multiple-bandpass filter comprises
a single checkerboard pattern of microfilters. Each microfilter con-
sists of a set configuration of bandpass filters and these microfilters
are tiled to create the larger multiple-bandpass filter (Fig. 3). The
amount of light transmitted through each bandpass filter in a given
microfilter is measured and combined into a single pixel value, and
these pixel values are combined across microfilters to create the
entire multispectral image [28].

There can be a large amount of redundant information and noise
present in a hyperspectral data cube. By intelligently selecting
bandpass filters for a multispectral imager, both the size of the
data and the noise present in the data can be reduced greatly while
still capturing the majority of the relevant information. Often, the
wavelength centers for these filters are known a priori based on
domain expert knowledge [16, 18]. Even so, algorithmic feature
selection tends to do well in selecting relevant wavelength centers.
Regardless of how the wavelengths are selected, the usual approach
in designing amultispectral imager is to incorporate bandpass filters
of standard width centered around these wavelengths (usually 10,
20, or 30 nm, though the bandwidths are customizable). While
a large volume of literature explores methods for selecting the
wavelength centers, very little work has been done in specifying
the bandwidths of the filters algorithmically. Our proposed method
seeks to accomplish both simultaneously.

2.3 Hyperspectral Produce Monitoring
Hyperspectral imaging has seen success in domains ranging from
pharmaceuticals, to astronomy, to agriculture [11], but one of the
most prominent application areas is produce quality monitoring. A
vast array of characteristics inform the concept of produce quality.
Hyperspectral imaging has been able to help automate quality as-
surance, succeeding where manual inspections fail, reducing the
processing time, and making the overall process cheaper for many
quality monitoring tasks. While a comprehensive review of the var-
ious applications of hyperspectral imaging in produce monitoring
is beyond the scope of this paper, the following studies offer a good
representation of the possibilities hyperspectral imaging offers.

In a 2006 study, Nicolai et al.were able to identify apple pit lesions
that were invisible to the naked eye by applying PLS-DA to hyper-
spectral images of apples harvested from trees known to display
bitter pit symptoms [21]. One interesting finding here is that the
lesions could be identified with as few as two latent variables in the
PLS model, indicating that a small portion of the electromagnetic
spectrum can be sufficient to improve performance significantly for
certain tasks. Serrant et al.were able to apply PLS-DA to hyperspec-
tral images of grapevine leaves to identify Peronospora infection
with a high degree of accuracy [27]. Polder et al. applied linear
discriminant analysis (LDA) to hyperspectral images of tomatoes
in order to assign the tomatoes to one of five ripeness stages [22].
The authors saw a significant improvement over the classification
performance using RGB images, dropping the error rate from 51%
to as low as 19% in some of their experiments. In a similar vein as
[22], in this study, we investigate the impacts of feature selection
on ripeness classification of avocados and tomatoes.

3 GENETIC ALGORITHM
In order to design a multispectral imager, (to borrow the phrase-
ology of Michael Mahoney [17]) we need a set of wavelengths,
not a set of eigenwavelengths. That is to say, we cannot design an
imager that captures data for transformed subsets of wavelengths;
an imager must measure reflectance at a subset of real wavelengths.
As such, we must consider only feature selection techniques, rather
than feature extraction techniques, when it comes to multispectral
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imager design. The genetic algorithm [12] is one such technique
that can be utilized effectively for feature selection [31].

The individuals in our GA population are represented as integer
arrays, where the integers represent a subset of indices correspond-
ing to the wavelengths to be selected. We utilize tournament selec-
tion, binonomial crossover, and generational replacement. For our
mutation operator, if a gene (i.e., single wavelength index) is cho-
sen for mutation, an integer is drawn randomly from the uniform
distribution over [−3, 3] and added to the index value. In this way,
the mutation is restricted to adjacent wavelengths.

We use two different fitness functions for our experiments. Both
use decision trees [23] to perform classification on the given datasets.
For each member of the population, a decision tree is built using the
subset of wavelengths represented by the individual. Ten-fold cross-
validation is then performed on the given classification task using
the decision tree, and the fitness score is the average classification
accuracy attained across the ten folds.

In the first fitness function (fitness1), the fitness is simply equal
to the classification accuracy obtained by the decision tree. In the
second fitness function (fitness2), we make two alterations. The
first is a dispersive force that adds a large penalty to solutions
that select wavelengths within 20 nm of each other to encourage
wavelength diversity. The second alteration aims to approximate
an imager with a larger spectral resolution of 30 nm. To accomplish
this, we bin the reflectance of wavelengths within 15 nm on either
side of the selected wavelength center before feeding the data into
the decision tree. The fitness is again equal to the classification
accuracy attained by the decision tree.

4 HISTOGRAM-BASED APPROACH
4.1 Overview
Our proposed method changes only the determination of the solu-
tion after the GA has satisfied its stopping criterion and is therefore
agnostic to the specific selection, crossover, mutation, and replace-
ment operations used in the formulation of the GA. Instead of
selecting the fittest individual from the final generation of the algo-
rithm, we use a histogram-based approach that analyzes the overall
population in order to determine the solution.

4.2 Population Clustering
Once the GA has terminated, we are left with a population of
heterogeneous individuals. To produce the solution using HAGRID,
instead of selecting the single fittest individual, we first produce a
histogram of all of the wavelengths selected across every member
of the population. Empirically, the distribution of the wavelengths
roughly appears to follow a mixture of Gaussian distributions (Fig.
4a). However, the number of components in the mixture present in
the histogram (i.e., the number of individual Gaussian distributions
that comprise the mixture model) does not necessarily equal the
number of wavelengths to be selected.

For example, suppose we set the number of wavelengths to be
selected to k = 5. The histogram of the entire population may
have five distinct peaks, or it may have several more than five. The
mismatch between these values is due to the existence of hetero-
geneous subpopulations that comprise the overall GA population

(Fig. 4a). In order to identify subpopulations in the overall popu-
lation, we use hierarchical agglomerative clustering (HAC) [7, 32]
to partition the population into similar groups using the centroid
linkage method. Once subpopulations have been identified, all but
the subpopulation with the highest average fitness are discarded. In
this way, we ensure the remaining population is homogeneous (in
that the wavelengths are drawn from the same multimodal Gauss-
ian distribution), and exclude the subpopulations with the worst
performance (Fig. 4b,c).

4.3 Fitting a Gaussian Mixture Model
Once the subpopulations have been identified and the subpopula-
tion with the highest average fitness has been isolated, a Gauss-
ian mixture model is fit to the histogram of the remaining sub-
population. As the name suggests, a Gaussian mixture model is
a model consisting of several constituent Gaussian distributions
that together comprise a multimodal Gaussian distribution. The
parameters of the individual distributions (i.e. distribution mean
and variance) are predicted using the Expectation-Maximization
(EM) algorithm [32]. We assume the distributions in the mixture
model each follow the univariate normal, given by:

f (x |µi ,σ
2
i ) =

1
√
2πσi

exp

{
−
(x − µi )

2

2σ 2
i

}
,

where µi and σ 2
i are the mean and variance of the ith distribution,

respectively. If there are k components in the mixture model, then
µi and σ 2

i must be estimated for i = 1, 2, ...,k [32].
To begin, all values of µi and σ 2

i are initialized randomly. Then
the algorithm iterates between the expectation step and the maxi-
mization step until convergence. This convergence is determined
by the difference between parameter estimates in subsequent itera-
tions falling below a threshold value. In the expectation step, the
posterior probability of each data point being generated by each of
the k distributions is calculated using the parameter estimates for
µi and σ 2

i . In the maximization step, these posterior probabilities
are used determine the maximum likelihood estimates of the pa-
rameters. After the estimates have converged, the parameters of
each of the k distributions are returned.

4.4 Selecting Features
After the parameters of the Gaussian mixture model have been
estimated, we can use those parameters to select the wavelength
centers and filter bandwidths for the multispectral imager.

In order to select the wavelength centers for the multispectral
imager, we select the estimated means from the output of the EM
algorithm. These means correspond to the peaks of the individual
Gaussian distributions that comprise the Gaussian mixture model.
Here, the assumption is made that more informative wavelengths
are selected a higher proportion of the time by members of the GA
population, and therefore occur more frequently in the histogram
of wavelengths.

We set the bandwidth of each filter based on the standard de-
viation (square root of the variance) of the Gaussian distribution
associated with the wavelength center for that filter. The bandwidth
of a filter is equal to the full-width at half-maximum (FWHM) of
the corresponding Gaussian distribution of the filter. We set this
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(a) (b) (c)

Figure 4: Subpopulation clustering to select five wavelengths: a) overlapping heterogeneous subpopulations in the overall
population of the GA; b) subpopulation clusters projected onto three dimensions using principal component analysis (the
subpopulation with the highest average fitness is circled in red); c) histogram of the single selected subpopulation.

value based on the definition of FWHM = 2σ
√
2 ln 2, where σ is

the standard deviation. Here, the rationale is that the mean wave-
length of a given Gaussian distribution is the most informative and
most frequently selected wavelength, but the adjacent wavelengths
are selected a relatively high proportion of the time as well, and
are likely informative themselves. By setting the bandwidth of the
filters based on the standard deviations of each Gaussian mixture
component, we hope to capture most of the information across the
most relevant wavelengths.

4.5 Transforming Data
Once the filter wavelength centers and bandwidths have been deter-
mined, we can transform the original hyperspectral data to mimic
data that has been captured by a multispectral imager. First, we
generate the Gaussian distributions determined by the predicted
means and standard deviations. Next, we multiply these Gaussians
by the original data to simulate the reflectance measurements taken
by a multispectral imager. Third, we integrate under each Gaussian
to produce a set of k discrete values, where k is the number of filters
included in the imager. In any camera, standard color, multispectral,
hyperspectral, or otherwise, even though the filters let in light over
a band of wavelengths, the total amount of light is recorded as a
single value for each filter, hence the integration step.

5 EXPERIMENTAL SETUP AND METHODS
5.1 Hyperspectral Imaging and Staging
For the collection of the hyperspectral images analyzed in this study,
we use the Resonon Pika L hyperspectral imager. This imager has a
spectral range of 387–1023 nm and a spectral resolution of roughly
2.1 nm, resulting in 300 spectral channels. The Pika L is a line-scan
imager, meaning a horizontal sweep is made across the object to be
imaged, and vertical slices of the image are successively combined
into a single data cube.

Images produced in this way are stored as Band Interleaved
by Line (BIL) files. All images are dark-corrected and calibrated
to Spectralon reference panels. Spectralon is a specially designed
reflective material that reflects nearly 100% of the incident light that
strikes it. Because of this, the ratio of light reflected off the object of
interest to the light reflected off the Spectralon panel approximates
the percentage of total light reflected off the object.

Figure 5: The hyperspectral imaging system and pro-
duce staging area. A) Lightboxes used for illumination. B)
Resonon Pika L hyperspectral imager. C) Rotational stage.
D) Non-reflective surface. E) Produce for imaging. F) Spec-
tralon calibration panel.

The Pika L imager is placed on a rotational stage to allow for the
sweep across the produce staging area. This staging area consists of
a flat surface on which the produce is placed as well as a backdrop
to block out external sources of light. Both the flat surface and
backdrop are covered in a non-reflective paper to better control the
source and direction of the illumination. The produce staging area
is illuminated by two Westcott softbox studio lights. The entire hy-
perspectral imaging system (including the imager, lights, rotational
stage, and produce staging area) can be viewed in Fig. 5.

5.2 Data
All data used in this study is captured using the Resonon Pika
L imager and the staging environment described in Section 5.1.
Images of avocados and tomatoes are taken once daily from the
time of initial purchase until manually judged to be past the point of
edibility (and then for several more days beyond that). At the time
of each image capture, each piece of produce in the image is labeled
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manually as either “fresh” or “old.” To create the dataset used in the
final experiments, 5 × 5 pixel patches are sampled repeatedly from
different regions on each piece of produce. The average spectral
response over these patches is then taken to smooth the spectral
reflectance curve of each sample. Due to hardware limitations, a
large amount of noise is present in the hyperspectral images past
1000 nm, so we exclude the last ten channels from all datasets,
resulting in each image containing 290 spectral channels. As a
result of the exclusion of these ten wavelengths and the smoothing
over the pixel patches, each data point is a one-dimensional array
consisting of 290 reflectance measurements over the spectral range
of 387–1001 nm. A description of the tomato and avocado datasets
can be found in Table 1.

For all experiments, there are two main phases. In the first phase,
feature selection is performed to select wavelengths and band-
widths. In the second phase, the performances of these feature
subsets on the two classification tasks (described in Section 5.3) are
analyzed. In order to better comment on the generalizability of the
feature selection methods and to disentangle the two phases, the
data for both avocados and tomatoes are split in half, with one half
of the data being used for feature selection, and the other half being
used for classification evaluation.

5.3 Experimental Design
In our experiments, we aim to demonstrate two main objectives.
First, we intend to show that our histogram-based feature selection
approach is at least as good as existing methods. Second, we intend
to demonstrate that filter bandwidth prediction is a viable use for
the new method. In our experiments, both of these objectives are
evaluated using the classification accuracy attained on the avocado
and tomato datasets. For both datasets, a subset of the wavelengths
are selected through various feature selection techniques, then the
spectral responses at those wavelengths are fed into a single-layer
feedforward neural network to perform the classification task of
“fresh" ”versus "old". The various wavelength selection techniques
and filter bandwidth settings are compared on the basis of classifica-
tion accuracy. All experiments are run using 5 × 2 cross-validation
and significance testing is performed using an unpaired t-test.

As stated in Section 1, two of the most commonly used feature
selection methods for produce monitoring applications are PLS-DA
and the standard GA. As such, we compare our HAGRID method
to both of these methods. Any feature selection method ought
to outperform more simplistic wavelength choices, such as RGB
and RGB+NIR, so for the sake of completeness, we include these
in the comparison experiments as well1. Finally, we perform the
classification task using all available wavelengths.

For each algorithm (including the two fitness function variants),
we run them three times to select three, five, and ten wavelengths.
As RGB, RGB+NIR, and all wavelengths each contain set numbers
of wavelengths, the number and values of wavelengths for these
three subsets are not varied over experiments. This results in 18
total subsets of wavelengths to be compared. GA methods using
the fitness2 fitness function are denoted with an asterisk (i.e. GA*

1The wavelengths for red, green, blue, and NIR light used in these experiments are
619 nm, 527 nm, 454 nm, and 857 nm, respectively.

and HAGRID*); the absence of an asterisk denotes fitness1 (i.e. GA
and HAGRID).

For the filter bandwidth experiments, we do not find any other
methods in the literature that specifically address the problem of
algorithmically determining filter bandwidths for a multispectral
imager. However, the bandwidths of RGB and NIR filters follow
known Gaussian distributions and have known wavelength centers.
In addition, standard filter bandwidths exist for custom wavelength-
centered filters. In order to offer some comparison, we consider
four alternatives to the HAGRID method. First, we compare known
standard RGB wavelength centers and filter bandwidths2. Second,
we compare known standard RGB+NIR wavelength centers and
filter bandwidths. Third, we select wavelength centers using the
standard GA and set the bandwidths to 20 nm, which is a standard
filter size, commonly available at the retail level. Fourth, we select
wavelength centers using HAGRID, and again set the bandwidths
to 20 nm.

For each of the GAmethods and fitness functions, we again select
three, five, and ten wavelength centers, while RGB and RGB+NIR re-
main constant across experiments, resulting in 20 total wavelength
center and filter bandwidth combinations. Once the wavelength
centers and filter bandwidths are determined, the data in the avo-
cado and tomato datasets are transformed, as described in Section
4.5. From there, the transformed data is fed into a feedforward
neural network to classify “fresh” versus “old.”

5.4 Parameter Settings
For our experiments, the population size for all GA variants is set to
1,000 and the algorithms are run for 300 generations. The population
size is set to a relatively large value to ensurewe have a large enough
number of individuals to produce a histogram that can be analyzed
meaningfully. The crossover rate, mutation rate, and tournament
size are tuned using a grid search. The mutation rate is varied
between 0.05–0.1, which is relatively high to encourage diversity
in the population. We also perform a basic grid search to tune
parameters for the feedforward neural networks. For all networks,
we use a single hidden layer, the Adam optimizer, rectified linear
units (ReLU), and a softmax classifier for the output layer. Between
different experiments, the learning rate varies between 0.0005 and
0.05, while the number of nodes in the hidden layer varies between
5 and 10.

6 RESULTS
6.1 Feature Selection
Results for the feature selection experiments are summarized in
Table 2. For both the avocado and tomato datasets, PLS-DA performs
the worst across the board. This is not surprising, as it does not take
into account variable interaction when performing feature selection.
The highest accuracy for the avocado dataset (86.776%) is obtained
by HAGRID* with five wavelengths (denoted HAGRID*/5). Further,
HAGRID*/5 performs significantly better than RGB, RGB+NIR, all
wavelengths, and the best PLS-DA result at the α = 0.05 level. It
is worth noting that for the avocado dataset, all GA and HAGRID
methods are able to classify the data at least as well as when utilizing
2The RGB wavelength centers and bandwidths are derived from the known Gaussian
fits for a standard Nikon camera.
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Dataset # “fresh” Samples per “fresh” # “old” Samples per “old” Total dataset size
Avocado 18 20 10 36 720
Tomato 25 20 23 22 1006

Table 1: Sample sizes for produce data sets showing number of each fruit and number of samples per fruit.

Avocado Tomato
Method # of Wavelengths Accuracy Standard Deviation Accuracy Standard Deviation
RGB 3 81.001% 1.31% 65.211% 1.46%

RGB+NIR 4 82.945% 2.80% 74.232% 3.93%
All 290 84.667% 1.27% 78.014% 2.24%

PLS-DA 3 80.165% 3.10% 63.06% 4.18%
PLS-DA 5 80.501% 3.01% 62.704% 1.40%
PLS-DA 10 80.555% 3.29% 62.465% 1.81%
GA 3 84.888% 2.70% 77.177% 1.38%
GA 5 82.388% 1.81% 75.943% 1.67%
GA 10 84.889% 2.55% 76.501% 1.19%

HAGRID 3 81.166% 2.74% 73.640% 1.75%
HAGRID 5 82.554% 1.76% 77.021% 2.51%
HAGRID 10 84.723% 1.88% 76.500% 1.53%
GA* 3 81.388% 1.22% 76.262% 2.78%
GA* 5 85.112% 2.12% 76.224% 1.52%
GA* 10 83.945% 2.72% 75.748% 1.97%

HAGRID* 3 81.944% 2.24% 75.666% 2.14%
HAGRID* 5 86.776% 2.10% 78.407% 2.17%
HAGRID* 10 84.000% 2.45% 79.005% 2.11%

Table 2: Classification accuracy usingRGB,RGB+NIR, all wavelengths, and feature selection. The best accuracy for each dataset
is shown in bold.

all wavelengths. For the tomato dataset, HAGRID*/10 yields the
highest accuracy (79.005%), which is significantly better than RGB,
RGB+NIR, the best PLS-DA solution, and the best standard GA
solution (GA/3).

Since HAGRID only changes the way in which the solution is
selected from the final population of the GA, one complete run of
the GA is used for the corresponding GA and HAGRID results. For
example, only one run of the GA is required to provide results for
GA*/3 and HAGRID*/3. In this scenario, the GA is run using fitness2,
the fittest member of the population is selected for GA*/3, and the
same population is used for the histogram approach of HAGRID*/3.
Because of this, the corresponding GA and HAGRID results can be
compared directly as to which is the better method.

For the avocado dataset, HAGRID outperforms the standard
GA for four of the six head-to-head comparisons; although, the
difference between the methods is not statistically significant in
any of these cases. For the tomato dataset, HAGRID outperforms
the standard GA in three of six experiments with HAGRID being
significantly better than its GA counterpart for HAGRID*/10 and
HAGRID*/5. The new HAGRID method has been shown to perform
at least as well as the standard GA, but also has the benefit of
estimating the bandpass filter bandwidths. Another possible benefit
includes allowing for uncertainty quantification.

6.2 Bandwidth Prediction
Results for the filter bandwidth experiments are summarized in
Table 3. The PLS-DA method is omitted from this section due to its
poor performance in the feature selection experiments. For this sec-
tion, let “H” denote the histogram-based bandwidths and “S” denote
standard 20 nm bandwidths. For both datasets, the simulated RGB
and RGB+NIR filters tend to perform the worst overall. For the av-
ocado dataset, the best solution is found by HAGRID*/10/H, which
achieves an accuracy of 85.889%. The best non-histogram band-
width approach for the avocado dataset is GA*/5/S, which achieves
a classification accuracy of 85.723%. Although HAGRID*/10/H and
GA*/5/S are not statistically significantly different from each other,
they both are significantly better than RGB and RGB+NIR. It is in-
teresting to note that for both fitness1 and fitness2, the HAGRID/H
method achieves the highest accuracy.

For the tomato dataset, the best histogram bandwidth determina-
tion is achieved by HAGRID*/5/H, with 77.773% accuracy. However,
for this dataset, the histogram-based determination is outperformed
by both HAGRID/5/S and HAGRID/10/S, with the former achieving
the highest overall classification accuracy of 78.766%. Again, the dif-
ference between HAGRID*/5/H and HAGRID/5/S is not statistically
significant, but both significantly outperform RGB and RGB+NIR.



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Walton, Sheppard, and Shaw

Avocado Tomato
Method Filter Bandwidth # of Wavelengths Accuracy Standard Deviation Accuracy Standard Deviation
RGB Known 3 80.388% 2.33% 67.275% 2.75%

RGB+NIR Known 4 82.334% 2.13% 74.314% 2.75%
GA 20 nm 3 84.222% 1.22% 77.335% 2.08%
GA 20 nm 5 83.276% 2.43% 76.339% 2.07%
GA 20 nm 10 84.945% 2.44% 75.703% 2.07%

HAGRID 20 nm 3 81.112% 2.74% 74.791% 1.35%
HAGRID 20 nm 5 82.945% 3.00% 78.766% 2.25%
HAGRID 20 nm 10 84.444% 1.94% 78.608% 1.76%
GA* 20 nm 3 83.168% 1.88% 76.227% 2.40%
GA* 20 nm 5 85.723% 2.98% 76.223% 1.69%
GA* 20 nm 10 84.610% 1.88% 76.621% 1.31%

HAGRID* 20 nm 3 84.722% 2.41% 73.241% 1.47%
HAGRID* 20 nm 5 85.500% 2.10% 77.614% 1.72%
HAGRID* 20 nm 10 85.055% 2.35% 76.581% 1.49%
HAGRID Histogram 3 82.945% 2.17% 74.197% 3.08%
HAGRID Histogram 5 83.334% 2.21% 76.264% 2.07%
HAGRID Histogram 10 85.721% 1.97% 77.016% 2.84%
HAGRID* Histogram 3 83.223% 1.72% 73.397% 1.72%
HAGRID* Histogram 5 85.612% 1.68% 77.773% 1.95%
HAGRID* Histogram 10 85.889% 1.22% 76.740% 1.24%

Table 3: Classification accuracy using various wavelength centers and simulated filter bandwidths. The best results for each
dataset are shown in bold.

7 CONCLUSIONS
In the majority of head-to-head comparisons for the wavelength
selection experiments, the HAGRID method outperforms its corre-
sponding standard GA formulation. The filter bandwidth experi-
ments are a little more varied, with the histogram determination
of bandwidths performing the best for the avocado dataset, but
second best for the tomato dataset. Overall, the fact that in all four
experiments, the HAGRID method produces the best overall result
is encouraging.

The most computationally intensive portion of a genetic algo-
rithm is the iteration through the generations, not the selection of
the solution from the final population. Since the HAGRID method
is simply a new way of selecting the solution from this final pop-
ulation, it can be utilized in tandem with the standard selection
of the fittest individual without adding much overhead, and the
two methods can then be compared for the selection of the best
solution.

While here the HAGRID method is applied to multispectral im-
ager design, there is no reason why it cannot be extended to other
feature selection problems where the input space is continuous.
The method may also have extensions to optimization problems
where the variable to be optimized is continuous. As mentioned
in Section 6.1, the fact that HAGRID considers a distribution of
solutions, rather than a single solution opens a number of possi-
bilities, including uncertainty quantification and other statistical
evaluations.

There are several directions for future work. In general, the
manual classification of produce is subjective, which introduces a
fair amount of noise into the data. One way of reducing this noise

would be to use a tool such as a penetrometer, which measures the
force required to dent or penetrate a surface. Penetrometer readings
could be taken for produce at various ages, and the learning target
would then be predicting these readings based on hyperspectral
data, making the classification much more objective. Another area
of interest is the fitness functions utilized in the process. Parameters
such as filter prices could be included in the fitness function to
optimize the cost/performance trade-off inherent in imager design.
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