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ABSTRACT
Uncertainty of the environment limits the circumstances with
which any optimization problem can provide meaningful infor-
mation. Multiple optimizers can combat this problem by communi-
cating different information through cooperative coevolution. In
reinforcement learning (RL), uncertainty can be reduced by apply-
ing learned policies collaboratively with another agent. Here, we
propose policy Co-training with Factored Evolutionary Algorithms
(CoFEA) to evolve an optimal policy for such scenarios. We hypoth-
esize that self-paced co-training can allow factored particle swarms
with imperfect knowledge to consolidate knowledge from each of
their imperfect policies in order to approximate a single optimal
policy. Additionally, we show how the performance of co-training
swarms of RL agents can be maximized through the specific use of
Expected SARSA as the policy learner. We evaluate CoFEA against
comparable RL algorithms and attempt to establish limits for which
our procedure does and does not provide benefit. Our results indi-
cate that Particle Swarm Optimization (PSO) is effective in training
multiple agents under uncertainty and that FEA reduces swarm and
policy updates. This paper contributes to the field of cooperative co-
evolutionary algorithms by proposing a method by which factored
evolutionary techniques can significantly improve how multiple
RL agents collaborate under extreme uncertainty to solve complex
tasks faster than a single agent can under identical conditions.
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1 INTRODUCTION
The phrase “soldiers win skirmishes; armies win wars” suggests
that individuals operating with a unifying objective can surmount
much more complex challenges than if each individual acted alone.
In computer science, this element of collaboration is illustrated
well with multi-agent systems and multi-population evolutionary
algorithms in being able to collaboratively solve an optimization
problem. Collaborative problem solving implies having multiple
agents observe the task in order to offer different angles of insight.
The exchange of different knowledge is what partially manifests
a solution to the problem faster than if each individual attempted
to solve it alone. Especially under extreme uncertainty or when
each individual possesses incomplete knowledge of the problem,
collaboration is not only a convenience but a necessity. This is the
primary motivation of this paper in which we propose a method
for collaborative problem solving under extreme uncertainty.

We illustrate our method by considering a scenario of robotic
navigation where a swarm of reinforcement learning agents as-
sesses how to navigate from one end of a maze to another. They do
not know where the goal state is, what obstacles are forthcoming,
and cannot observe past the next single state. However, they can
communicate with one another and must navigate through collabo-
ration. One result of our study also reveals that Expected SARSA is
particularly effective in a collaborative setting, most likely because
of the smoothing that occurs across the policies. We hypothesize
that Factored Evolutionary Algorithms (FEA) can provide increased
speed and efficiency at which policies are learned for a Markov
decision process (MDP) within swarms when evaluated against a
comparable single-particle agent in conditions of uncertainty. Ad-
ditionally, we hypothesize that factored evolutionary algorithms
[23] combined with self-paced multi-view co-training (SPaMCo)
[13, 14] can improve performance further by facilitating the use
of pseudo-rewards and more efficient inter- and intra-swarm com-
munication. Finally, we hypothesize that these methods can be
especially advantageous in predicting actions for several states
ahead given only the knowledge of the current occupied state. In
what follows, we denote our method as CoFEA (Co-training with
Factored Evolutionary Algorithms) and demonstrate that CoFEA
can result in a higher cumulative reward and fewer policy updates
when evaluated against conventional single-agent policy learners.

The contributions of this work can be summarized as follows:

(1) We develop an algorithm for using FEA with PSO as the
optimizer on a given task, where each particle within the
swarm is a separate reinforcement learning agent.

(2) We show how to improve performance by incorporating
factored evolution and/or self-paced co-training.
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(3) We demonstrate that our algorithm results in a larger cumu-
lative reward under high uncertainty by leveraging Expected
SARSA and comparing its performance to greedy Q-learning.

(4) We evaluate the potential of our algorithm to predict actions
for several next states by demonstrating why co-training and
pseudo-rewards can allow our algorithm to infer rewards
for longer state-action trajectories.

We unify these contributions into a single method denoted as (Pol-
icy) Co-training for Factored Evolutionary Algorithms (CoFEA).

2 BACKGROUND
Our research is motivated primarily by the works of [13] and [19].
First, we extend the concept presented in [13] in which they uti-
lize self-paced co-training to train classifiers on two or more dif-
ferent views and exchange pseudo labels of unlabeled instances.
Effectively, they present a method called self-paced co-training
(SPaMCo) that allows classifies unlabeled data based on minimal
training data. SPaCo focuses exclusively on classification problems,
andwe consider extending their ideas to accommodateMarkov deci-
sion processes and reinforcement learning. Specifically, we analyze
state-action-reward triplets, where each state-action pair is sam-
pled from a map whose rewards are mostly unobservable since the
rewards for most of the state-action pairs are unknown or masked.
We then learn the rewards and apply “pseudo-rewards” to unob-
servable states instead of “pseudo-labels” to unlabeled instances.
In the context of multi-view co-training, a “view” in classification
may be interpreted like an “observation” in an MDP.

In [19], Pillai and Sheppard define a method for allowing swarms
to “overlap”, which was shown to improve performance over back-
propagation in training deep neural networks. They demonstrate
that factoring the search space into subproblems promotes better
swarm communication in what they define as overlapping swarm
intelligence (OSI). Our work attempts to demonstrate how fac-
toring the search space in this manner can be advantageous with
co-training a single policy in reinforcement learning. Here, we lever-
age differential grouping for factoring, which is a decomposition
method that can reveal interactions between decision variables, and
use the resulting groups to define a structure for subcomponents
such that dependence between them is minimized [18].

We use nearly identical notation to [19] when discussing fac-
tored PSO. Much of the same notation from [13] and SPaMCo can
also be directly leveraged, but there are some adjustments needed to
both the process and methodology in order to map from classifica-
tion to reinforcement learning. We maintain the idea of self-paced
regularization and attributing weights to each sample, except in
our case, a “sample” is synonymous with a state-action pair, which
we refer to as a “trajectory.” The self-paced aspect of co-training
is also maintained; however, the greediness 𝜖 of the reinforcement
learning algorithm shall be a function of the self-paced hyperpa-
rameter _𝑠𝑝 . Expected SARSA and Q-learning are the specific RL
algorithms trained by co-training. Sutton and Barto demonstrate
in [25] that, by allowing the greediness to be tuned throughout
policy learning, Expected SARSA converges to Q-learning by the
end of the training process; a formal proof of this can be found
in [26]. We leverage this principle by increasing greediness 𝜖 in
direct proportion to _𝑠𝑝 . Additionally, we focus on a tabular-based

approach here versus one based on neural networks as a means
to demonstrate that the performance observed is correlated with
CoFEA and not due to some radical network architecture.

3 RELATEDWORK
With CoFEA, our intention is to investigate a derivative of Ma’s
2017 [14] and 2020 [13] work with self-pacedmulti-view co-training
(SPaMCo) but within the context of FEA-optimizedMarkov decision
processes. Our analysis of related work contains references to algo-
rithms that ultimately act as the building blocks each of FEA and
SPaMCo, but to our knowledge, no prior work exists surrounding
the exact methodology proposed in this paper.

3.1 Reinforcement Learning
Under the reinforcement learning umbrella exist imitation learn-
ing and inverse reinforcement learning. In their paper, Abbeel and
Ng define inverse reinforcement learning (IRL) as the problem of
deriving a reward function from observed behavior of a supposed
“expert” [1] Conversely, Huang et al. define imitation learning (IL)
as deriving a policy from demonstrations of expert behavior [11].
While parallels of each can be applied to the method proposed here,
both IL and IRL suggest that the model to be imitated demonstrates
perfect expert behavior, whereas the behavior of our co-trained
policy is unobservable and, therefore, cannot qualify as an expert to
imitate. IRL requires traditional model-based reinforcement learn-
ing in order to approximate the reward function, and imitation
learning can be reduced to the same traditional methods for deter-
ministic agents as demonstrated in [8]. Later we show how CoFEA
can be retuned to accommodate both IL and IRL as subroutines.

3.2 Co-training and Co-regularization
The methodology behind co-training was shown to be tractable
in 1998 by Blum and Mitchell under the initial assumption that
instances from different views are independent contingent on the
co-trainer’s classifier making useful predictions on unlabeled data
[3]. Brefeld and Scheffer implemented a co-training algorithm com-
bining a naïve Bayes classifier with a support vector machine, im-
proving upon prior work accomplished by Nigam and Ghani [4, 17].

Later attempts to provide a more resilient co-regularization
function were published in [21] and [28], where both attempt
to encode prediction dependencies among views into a single co-
regularization term. The resulting objective function was difficult
to optimize and orthogonal to the fundamental approach of co-
training. Many attempts to harmonize technical nuances behind
co-training up to this point leveraged only two-shot cases and
gave unclear performance measures. Dai et al. published work on
using pseudo labels and abductive learning to improve classifica-
tion of unlabeled data that prefaced this strategy with neighboring
graphs [9]. SPaCo was proposed by Ma et al. that established a more
generalizable objective function and self-paced learning technique
over a pseudo-supervised co-training algorithm [14]. However, this
model only complied with two-view cases. Building on top of this
work, Ma et al. incorporated additional methods into SPaCo that
allowed for resiliency against false negative samples, accommo-
dated multi-view cases, and improved on co-regularization that
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manifested into what eventually became SPaMCo [13]. SPaMCo in-
troduced co-training such that it could be used beyond the two-view
scenario. Similar works to SPaMCo followed with [12] showing
multi-view co-training in clustering that built upon the works of
[32]. Zheng et al. demonstrated similar effects with image segmen-
tation, among others [33]. Soon after, Wang et al. introduced the
concept of self-paced and self-consistent co-training over image
segmentation [27].

3.3 Co-training Theory
From our research, works attempting to apply co-training with
multi-view or self-paced aspects to reinforcement learning have
been scarce. Wang et al. show how two “dueling” models can
achieve strong performance collaboratively, but they do not use co-
training and suggest splitting the state-value and action functions,
which is not the intent here [29]. Akella and Lin demonstrate how
co-training can be used to train a reinforcement learning agent on
when to select an action by learning a temporal policy [2]. Wu et
al. propose training a Q-learning agent to learn a policy for data
selection and then exploit that policy to train co-training classifiers
automatically [31]. In this context, RL was used as a means to train
a supervisor over a classification problem, but an RL-based agent
was not trained with co-training itself. The work of Song et al.
demonstrates how co-training can be used to enable an RL agent to
learn a policy in settings with multiple state-action representations
[22]. This work seems to align closely with the research proposed
here in regard to RL being combined with co-training, but they do
not incorporate the self-paced element that we do. Additionally,
they demonstrate learning a co-trained policy to learn a policy more
efficiently, not as a technique for learning policies whose domains
have little known data. While they did use a Q-learning algorithm,
they did not consider Expected SARSA, PSO, or FEA.

3.4 Factored Evolutionary Algorithms
Factored evolutionary algorithms (FEA) are cooperative co-evolutionary
algorithms that create overlapping subpopulations (i.e., the “fac-
tors”) that optimize over a subset of variables for a common ob-
jective function. These subpopulations can be considered as sub-
problems of the primary optimization function. FEA was defined
formally by Strasser et al., where they introduce the importance in
selecting a factor architecture [23]; however, they do so by extend-
ing the original definition proposed in [19] and [10] on overlapping
swarm intelligence (OSI). In their 2011 work, Pillai and Sheppard
demonstrate the effectiveness of OSI in training artificial neural net-
works by allowing each swarm to represent a unique path starting
at an input node and ending at an output node. A global view of the
neural network evaluated using a common vector of weights that is
maintained across all swarms. This vector of weights is created by
combining the weights of the particles from each swarm that attain
the highest fitness. Our work most closely resonates with the OSI
model. Pillai and Sheppard also showed that OSI outperformed sev-
eral alternative cooperative co-evolutionary PSO-based methods in
addition to backpropagation. Distributed OSI (DOSI) was Defined
by Fortier et al. in which swarms were allowed to communicate
values to facilitate competition with one another. Butcher et al. then
extended this work by illustrating a concept of information sharing

and conflict resolution through an actor model that could be ac-
complished through this communication via Pareto improvements
[6, 7]. Both [15] and [27] apply PSO to reinforcement learning, but
they do not leverage the factored approach.

4 COFEA
CoFEA is defined as a set of swarms of policy learners collabora-
tively minimizing regret toward a single unifying policy, where
Muthukumar defines regret as the loss between the reward re-
ceived under the current policy versus the reward received by the
action taken under the optimal policy [16]. The set of swarms (each
of which homogeneously contains either Expected SARSA or Q-
learner agents) are trained iteratively through the exchange and re-
finement of predicted pseudo rewards assigned to state-action pairs
(i.e., trajectories). Note that, although there are multiple swarms
and multiple agents per swarm, all are constructing and updating
the same policy.

4.1 Self-Paced Learning
Let the ground truth reward for the 𝑖𝑡ℎ trajectory be denoted as 𝑦𝑖
where 𝑖 ∈ [0, 𝑁 ] and 𝑁 is the number of trajectories available in the
observable domain. Similarly, let the input state-action sequence—
or trajectory—be denoted as 𝜙𝑖 ∈ Φ, the vector of swarm model
parameters be denoted as \ ∈ Θ = {\ (1) , \ (2) , ..., \ (𝑛) }, and 𝑔 de-
note the function that estimates the pseudo reward. Let the loss
function that calculates the cost between the ground truth reward
and the estimated reward be denoted as 𝐿(𝑦𝑖 , 𝑔(𝜙𝑖 , \, 𝜖)), where
𝑔(𝜙𝑖 , \, 𝜖) denotes the estimated reward as a function of the input
sequence, model parameters, and greediness. Let 𝑓 (𝑣, _, 𝜖) denote
the self-paced regularization function where 𝑣 relates to the latent
weights of unrewarded instances, _ is the age parameter that mod-
erates learning within the self-paced model, and 𝜖 is the current
greediness of the policy.

The goal, then, is to optimize the following:

min
\,𝑣∈[0,1]𝑛

𝐸 (\, 𝑣 ; _; 𝜖) =
𝑁∑︁
𝑖=0
(𝑣𝑖𝐿(𝑦𝑖 , 𝑔(𝜙𝑖 , \ )) + 𝑓 (𝑣𝑖 , _, 𝜖)) (1)

Note that the self-paced regularization term for the 𝑗𝑡ℎ observation
of the 𝑖𝑡ℎ trajectory sample can be written as _ ( 𝑗 )𝑣 ( 𝑗 )

𝑖
as in [14]. The

adjustment of the age parameter _ coupled with the joint learning
of the model parameters and the latent weights allow for the model
to moderate the number of training samples during each iteration
of the algorithm as a function of sample complexity. This self-paced
model allows the loss between pseudo-rewards and true rewards
to be minimized through the tuning of samples that are observed
for training.

4.2 Soft Co-Regularization
CoFEA weights each unlabeled training instance to coordinate
learning order; weights are added to rewarded sequences after
enough sequences have been assigned rewards. These weights help
determine the pseudo rewards to apply to sequences during training.
The policy realized via co-training learns by analyzing two observa-
tions of the same state-action sequence and exchanging the pseudo
rewards associated with that sequence. A soft co-regularization
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term harmonizes this to aid the self-paced learning capability of the
model. Different observations maintain common knowledge of the
confidence in the pseudo rewards assigned to samples. Due to this,
the inner product of the weights for both observations enforces
the weight of the reward penalizing the loss of one trajectory ob-
servation that is similar to another. This co-regularization ensures
that the learned reward estimates from multiple observations of
unrewarded trajectories are consistent throughout training, while
simultaneously working to moderate the complexity of observa-
tions trained.

We define a co-regularization procedure that normalizes rewards
between two different observations. The co-regularization term
is denoted as 𝑅 for the 𝑝𝑡ℎ and 𝑞𝑡ℎ observation, where 𝑝, 𝑞 ∈
[1, 2, .., 𝑁 ], 𝑞 = 𝑁𝑢 − 𝑝 , 𝑝 < 𝑞, 𝑁 defines the total number of state-
action sequences, and 𝑁𝑢 denotes the total number of unrewarded
state-action sequences. Then 𝑅 is defined as:

𝑅(𝑉 ) = 𝛾𝑠𝑝

𝑁𝑢∑︁
𝑝=1

(
v(𝑝 ) − v(𝑞)

)⊤ (
v(𝑝 ) − v(𝑞)

)
(2)

where 𝑣 (𝑝 ) , 𝑣 (𝑞) ∈ 𝑉 , v(𝑝 ) contains all the weights of unrewarded
sequences in the 𝑝𝑡ℎ observation, and 𝛾𝑠𝑝 denotes the degree to
which one observation’s pseudo-rewards influence the other ob-
servation’s pseudo-rewards. The self-paced learning element of
SPaMCo allows the model to grow its confidence in reward pre-
dictions incrementally with each successive iteration, allowing it
to learn with increasingly complex sequences. The selection for
proper values of the age parameter _ shall be defined in Section 5 to
demonstrate the ability of self-paced learning to handle sequences
with noisy rewards.

4.3 Expected SARSA
Q-learning is an off-policy temporal difference (TD) algorithm that
learns to approximate the optimal action-value function directly,
independent of the policy being followed [30]. It learns a policy
that selects the next state-action pairs that produces the maximum
reward. It is one of the most commonly used TD algorithms in
reinforcement learning due to its computational efficiency and
good approximation of the total cumulative reward.

Recall that CoFEA is training a set of swarms of policy learners it-
eratively through the back-and-forth exchange of pseudo-rewarded
trajectories. The rate at which pseudo-rewards are applied to trajec-
tories is initially highly erratic; one can effectively consider rewards
as being assigned to state-action pairs at random. Intuitively, an
agent seeking the average reward will be able to approximate the
hidden true reward of an environment better than an agent that
is always seeking the maximum reward, such as a Q-learner. The
maximum reward sought is erroneous when training begins be-
cause there is low confidence in the assignment of rewards, so a
Q-learner is maximizing a lossy policy while an Expected SARSA
learner [25] is approximating it—it is effectively minimizing its
losses. The regularization terms defined above do provide some
protection against this, but they are not entirely effective.

In most state-of-the art reinforcement learning research where
the environment can be observed directly, Q-learning and its vari-
ants strike a balance between performance and computational cost
against other TD algorithms. However, based on our experiments,

we have evidence to suggest that a Q-learner’s performance is con-
tingent on the degree to which it is able to observe the true rewards
for its actions confidently. If there is a high degree of confidence
that the rewards being observed match those of ground truth, a
greedy Q-learner is expected to have superior performance. For
these reasons, we hypothesize Expected SARSA to be the better
performing RL algorithm for CoFEA and co-training in general,
where the update rule for Expected SARSA is as follows.

𝑄∗ (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾

𝑛

𝑛∑︁
𝑖=1

𝑄 (𝑠′𝑖 , 𝑎
′
𝑖 ) −𝑄 (𝑠, 𝑎)

]
As Ma et al. demonstrated in [13, 14] with image classification,

we show that, as confidence in reward assignment grows through
successive iterations, CoFEA becomes more accurate in correctly
attributing rewards to state-action trajectories. Therefore, the Ex-
pected SARSA policy learner may be allowed to become more
greedy. As 𝜖 approaches 1, Sutton and Barto [25] show it begins
to select the action that results in the highest cumulative reward
and evolves into exactly Q-learning. Expected SARSA will allow
the algorithm to take advantage of both worlds by moderating the
learning of its policy as a function of correct reward assignment and
the self-paced learning parameter _. In this fashion, early iterations
of CoFEA will begin with a policy that approximates SARSA,

𝑄∗ (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)]

moderating the high loss, and then evolve into Q-learning

𝑄∗ (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)

]
as the policy becomes more refined. This also affords the algorithm
to be used as both an on-policy and off-policy learner.

After careful examination, one can see that the only difference
that Expected SARSA possesses over Q-learning is the averaging of
the rewards in place of their maximization. Due to this, Expected
SARSA is more computationally expensive because the expected
reward is being calculated at each update state. However, as ex-
plained above, it is also more accurate and robust in co-training
since it eliminates the early volatility in reward estimation. Espe-
cially in the beginning of co-training when the pseudo-rewards of
unrewarded trajectories is highly erroneous, Expected SARSA can
provide smoother learning. Since the objective is to infer rewards
for unobservable states accurately, it may be that the increase in
computational complexity is justified. Expected SARSA affords us
the freedom to fluctuate between on-policy and off-policy methods
while providing a natural means of controlling reward loss. For
our experiments, we allow 𝜖 in Expected SARSA to increase as a
function of the self-paced learning parameter.

4.4 CoFEA Algorithm
The CoFEA algorithm uses a loss function between the ground
truth reward and the estimated reward and adds it to the self-paced
learning model presented in Equation 1. Two regularization terms
are also added: the co-regularization term from Equation 2, and
a regularization term for all swarms’ model parameters \ (1) , ... ,
\ (𝑛𝑠 ) ∈ Θ. In its entirety, the objective function for CoFEA can be
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defined as:

min
\,v

𝐸 (\, v; _; 𝜖) =

𝑛∑︁
𝑗=1

𝑁𝑟∑︁
𝑖=1

𝐿(𝑦𝑖 , 𝑔 ( 𝑗 ) (𝜙 ( 𝑗 )𝑖
;\ ( 𝑗 ) , 𝜖)) (3)

+
𝑛∑︁
𝑗=1

𝑁𝑟+𝑁𝑢∑︁
𝑘=𝑁𝑟+1

(v( 𝑗 )
𝑘

𝐿(𝑦𝑘 , 𝑔 ( 𝑗 ) (𝜙
( 𝑗 )
𝑖

;\ ( 𝑗 ) , 𝜖))

−_ ( 𝑗 )v( 𝑗 )
𝑘
)

− 𝛾𝑠𝑝

𝑁𝑢∑︁
𝑝=1
(v(𝑝 ) − v(𝑞) )⊤ (v(𝑝 ) − v(𝑞) )

+ 1
𝑛

𝑛∑︁
𝑗=1
∥\ ( 𝑗 ) ∥𝑛

where 𝑔(𝜙𝑖 ;\, 𝜖) denotes the reward received by the policy of the
corresponding swarm as a function of the trajectory 𝜙𝑖 , model
parameters \ , and greediness 𝜖 for each agent.

5 OPTIMIZATION STRATEGY
The routine for optimizing the loss of CoFEA is defined in Algorithm
1. While the algorithm generates two observations—one trajectory
observation per swarm—we describe the steps of the algorithm
in terms of one observation for the ease of interpretation since
both agents are optimized in an identical manner. In other words,
Algorithm 1 describes the procedure each of the two RL agents
follows in order to exchange policy information with the other.

The algorithm first initializes the input instances 𝜙 (1) , ..., 𝜙 (𝑛𝑠 )
∈ Φ as unrewarded trajectories; it assumes the RL agents (the par-
ticles) within the set of swarms of policy learners, 𝛼 (1) , . . . , 𝛼 (𝑛𝑠 ) ,
are also appropriately initialized. We need a small amount of unre-
warded data to begin training each swarm so we initialize the age
parameters _ (1) , . . . , _ (𝑛𝑠 ) ∈ Λ to very small values to allow only
a few unrewarded trajectories into the training pool. For the age
parameters, we found values of 0.3–0.5 provide a robust training
pace that generalizes well. Unless otherwise stated, we elect 0.3 as
the age parameter. We set each of the weight vectors v(1) , . . . , v(𝑛𝑠 )
as zero vectors and then proceed with training the two swarms
over the selected instances to acquire the initial losses over both
unrewarded and rewarded trajectories.

From here, we begin co-training by selecting trajectories that
we are confident are rewarded in accordance to the optimal policy.
Rewarded instances with loss values less than _ (𝑛𝑠 ) from the ob-
servations of 𝛼 (𝑛𝑠 ) are viewed as confidently rewarded trajectories
that should be selected for the training pool for the next co-training
iteration. In a similar manner, we then select which unrewarded
trajectories will be added into the training pool for each 𝛼 (𝑛𝑠 ) by
sampling from values whose loss is greater than that of the largest
_ (𝑖 ) . If the age parameters are tuned appropriately and the self-
paced nature of the training is correctly controlled, trajectories
selected to the training pool of, for example, 𝛼 (1) , will maintain a
higher probability of being selected for the training pool of agent
𝛼 (2) and vice-versa.

The model parameter vectors \ (1) , . . . , \ (𝑛𝑠 ) are updated next to
reflect new knowledge from the previous iteration. These weights
are updated by optimizing the RL policy via either standard PSO or

Algorithm 1 CoFEA Optimization Algorithm

Input: samples
[
𝜙
(1)
1 , . . . , 𝜙

(1)
𝑁𝑟+𝑁𝑢

]
,

[
𝜙
(𝑛𝑠 )
1 , . . . , 𝜙

(𝑛𝑠 )
𝑁𝑟+𝑁𝑢

]
,

rewards 𝑦1, . . . , 𝑦𝑁𝑟
, parameters _ (1) , . . . , _ (𝑛𝑠 ) , and 𝛾𝑠𝑝

Output: v(1) , ..., v(𝑛𝑠 )

Initialize
[
𝜙 (1) , ..., 𝜙 (𝑛𝑠 )

]
,

[
_ (1) , . . . , _ (𝑛𝑠 )

]
, and 𝛾𝑠𝑝

Update 𝑣 (1) , ..., 𝑣 (𝑛)
training_iter = 1
while not converge || training_iter < max_iter do

for 𝑗 ← 1 : 𝑛𝑠 do
Initialize \ ( 𝑗 ) , u( 𝑗 ) : agent weights, params ∈ j𝑡ℎ obs
\ ( 𝑗 ) , u( 𝑗 ) ← PSO
if do factorization then

\ ( 𝑗 ) , 𝑢 ( 𝑗 ) ← Factored PSO: weights of RL agent
end if
Update v(𝑛𝑠+1− 𝑗 )

𝑘
: Prepare confident trajectories

Update v( 𝑗 )
𝑘

: Add unrewarded trajectories to pool
Update \ ( 𝑗 ) , u( 𝑗 ) : Train on pool of 𝑗𝑡ℎ observation
Update 𝑦𝑘 : Find unrewarded pseudo rewards
Augment _ (1) , ..., _ (𝑛𝑠 )

end for
end while
Return v(1) , . . . , v(𝑛𝑠 )

Factored PSO (shown in Algorithm 2). If Factored PSO is selected,
we determine the factors through overlapping differential grouping
as defined in [20] and [24]. We select this factorization method
due to its ability to produce consistent results within our experi-
ments and leave the assessment of other factorization techniques
as opportunity for future work. Factoring the state space provides
an additional heuristic upon which the swarm can be organized
to learn the policy. The updated weights are used to evaluate the
pseudo labels for the 𝑗𝑡ℎ observation. One can interpret Algorithm
1 as optimizing the assignment of pseudo-rewards and PSO or Fac-
tored PSO as optimizing the policy being learned by each swarm
given new knowledge obtained from those pseudo rewards.

By updating the model parameter vectors \ (1) , . . . , \ (𝑛𝑠 ) , we
are effectively training a model from truly rewarded and pseudo-
rewarded samples. Note that this model is separate from the set
of swarms of policy learners 𝛼 (1) , . . . , 𝛼 (𝑛𝑠 ) . The model here is a
separate learner that is being trained to perform binary classifica-
tion over rewarded and pseudo-rewarded trajectories. In fact, Ma
et al. show that the SPaCo model degenerates to simple support
vector machine (SVM) optimization by setting the loss function to
hinge loss. We do not provide the formal proof of this here, but by
direct extension of their work, we can derive the following SVM
optimization model from Equation 3:

min
\ (𝑖 ) ∈[0,1]

1
𝑛
∥\ (𝑖 ) ∥𝑛 +

𝑁𝑟∑︁
𝑗=1

𝐿
(𝑖 )
𝑗
+

𝑁𝑟+𝑁𝑢∑︁
𝑘=𝑁𝑟+1

v(𝑖 )
𝑘

𝐿
(𝑖 )
𝑘

where 𝐿 (𝑖 )𝑡 = 𝐿(𝑦𝑡 , 𝑔 (𝑖 ) (𝜙 (𝑖 )𝑡 ;\ (𝑖 ) , 𝜖)), 𝑡 = 1, . . . , 𝑁𝑢 +𝑁𝑟 . Follow-
ing the update of model parameters, we update the pseudo-rewards
of each trajectory. We can do so by computing each reward through
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Algorithm 2 Factored Particle Swarm Optimization

Input: \ ( 𝑗 ) , u( 𝑗 ) network weights, parameters from 𝑗𝑡ℎ obs.
Output: \ ( 𝑗 ) , u( 𝑗 )

Initialize population as the network weights
gvn← u( 𝑗 )

Create and initialize particles of each swarm 𝑠𝑖 in population 𝑆

for all s𝑖 ∈ 𝑆 do
for all x𝑖, 𝑗 ∈ s𝑖 do

Construct sub-policy p𝑖, 𝑗
Evaluate particle fitness 𝑓 (p𝑖, 𝑗 )
Assign particle x𝑖, 𝑗 fitness, 𝑓 (x𝑖, 𝑗 ) = 𝑓 (p𝑖, 𝑗 )
if 𝑓 (x𝑖, 𝑗 ) < 𝑓 (pbest𝑖, 𝑗 ) then

pbest𝑖, 𝑗 = x𝑖, 𝑗
end if
Evaluate global fitness 𝑓 (gvn)
if 𝑓 (x𝑖, 𝑗 ) < 𝑓 (gvn) then

Update sharedgvn𝑖, 𝑗
end if
Update velocity for each particle x𝑖, 𝑗
𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)
if 𝑟 < 𝜎𝑎𝑐𝑐 then

v𝑖, 𝑗 = 0
end if
if 𝑟 > 𝜎𝑎𝑐𝑐 then

v𝑖, 𝑗 = 𝜔v𝑖, 𝑗 + 𝑐1𝑟1 (p𝑖, 𝑗 − x𝑖, 𝑗 ) + 𝑐2𝑟2 (pbest𝑖, 𝑗 − x𝑖, 𝑗 )
end if
x𝑖, 𝑗 = x𝑖, 𝑗 + v𝑖, 𝑗

end for
end for
Update \ ( 𝑗 )

u( 𝑗 ) ← P𝑗
Return updated \ ( 𝑗 ) , u( 𝑗 )

solving the following minimization problem:

𝑦𝑘 = argmin
𝑦𝑘

𝑛𝑠∑︁
𝑖=1

v(𝑖 )
𝑘

𝐿(𝑦𝑘 , 𝑔 (𝑖 ) (𝜙
(𝑖 )
𝑘

;\ (𝑖 ) ))

Finally, we marginally increment each of the age parameters, _ (1) ,
... , _ (𝑛𝑠 ) , in order to allow for more unrewarded trajectories to par-
ticipate in policy training. The process above is performed for each
model at each iteration until there are no more unrewarded trajec-
tories of which to assign pseudo-rewards, the maximum amount of
training iterations has been reached, or (ideally) the optimal policy
to the goal has been found.

6 EXPERIMENTS
To evaluate the performance of CoFEA, we conducted several exper-
iments in a simulated environment. Each experiment corresponds
to a two-dimensional gridworld-style navigation task. There are
five tasks: the Cliff Walking problem from [25]; the Frozen Lake
problem from [5]1; and three custom racetrack tasks that represent
1As they are defined in [25] and [5], the Cliff Walking and Frozen Lake problems
contain state spaces of 48 and 64 respectively. These state space sizes are too small to
be of relative interest here, so we scale each of these problems up to 16x their original
size, keeping all other dynamics of the problem unchanged.

additional navigational routes in the shapes of letters L, R, and O of
which we denote as L-track, R-track and O-track, respectively. The
former two problems represent discrete state spaces while the latter
three represent continuous state spaces. Graphical representations
of these tasks are given in Appendix C of the Supplementary Mate-
rial. For each task, particles are placed at the starting position 𝑆 and
then cooperate to find a direct route to the finish position 𝐹 . For
the Cliff Walking and Frozen Lake tasks, we follow their default
specifications regarding rewards. For the racetrack problems, each
state transition decrements the reward by 1 while a collision with
boundaries of the track result in an immediate reset to the start
position; boundary collisions are determined by the Bresenham
algorithm and reaching the goal receives a reward of 100.

To allow some practicality to the real world, each particle has
a velocity and an acceleration that are used to define its position
within the map. For adjusting position, speed, and velocity, we
incorporate fundamental kinematic principles to each particle and
swarm update. In order to address a further level of stochasticity,
we establish a parameter 𝜎𝑎𝑐𝑐 that denotes a probability for which
acceleration of the particle fails such that the particle does not per-
form a velocity update as expected. We evaluate each single-agent
control over both its deterministic (accelerator works every time)
and stochastic (accelerator fails 100 ∗ 𝜎𝑎𝑐𝑐% of the time) behaviors;
deterministic versions are marked with a (D) suffix in each table.
Each algorithm is run 20 times per task and their results averaged.

We use a non-decaying learning rate of 0.1 and a discount factor
of 0.8 for each RL agent. In evaluating the influence of swarm size
on the performance of CoFEA, we assess swarm sizes of 4, 8, and 16.
Each time a particle is updated, it performs a single episode within
the environment with 10 steps. We allow only a single episode
to occur because this allows each particle to update the policy
in a controlled manner and thus maintain a global consensus of
sorts. In general, we see the best performance with 2–5 co-training
iterations and, when applicable, the number of FEA iterations is
equivalent to the number of co-training iterations. As a means of
control, we perform all experimental runs involving co-training
with 3 co-training and FEA iterations. Furthermore, we limit the
number of generations for evolution to 1000 across all variants of
CoFEA. For the control, the maximum number of episodes is limited
to 500 with a step limit of 100. In other words, there is a maximum
of 500,000 policy updates allowed. For all other algorithms, each
particle is allowed a single episode with a step limit of 10 on the
update subroutine of either PSO or Factored PSO.

We capture three primary metrics to assess the validity of our
experiments in evaluating our hypotheses: (1) the cumulative re-
ward achieved by the policy, (2) the total number of swarm updates,
and (3) the average number of policy updates per particle needed
to reach the goal. We evaluate each task with Expected SARSA and
Q-learning and use their single-agent variants as the experimental
control. We compare the performance of this control to the per-
formance of swarms of Expected SARSA and Q-learning agents
each evaluated over the same tasks but as part of (a) a PSO routine,
(b) a factored PSO routine, (c) a PSO routine with co-training, and
(d) a factored PSO routine with co-training. Finally, we evaluate
the effects of learning extended trajectories in each of these four
scenarios, totaling eight experiments per task. In each scenario, we
denote a “particle” as a single RL agent of either Expected SARSA



Factored Particle Swarm Optimization for Policy Co-training in Reinforcement Learning GECCO ’23, July 15–19, 2023, Lisbon, Portugal

or Q-learning type. 2 In this context, the control can be interpreted
as a single-particle “swarm” since there is only one agent learning
the policy with which to solve each task. We consider there to be
sufficient evidence to support our hypotheses if any of these four
variations result in a higher cumulative reward than the control,
less swarm updates, less policy updates per particle than the control,
or any combination of the three.

7 RESULTS
Results for Expected SARSA are shown in Table 1 while analogous
results for Q-learning are shown in Table 2. For each task, we ob-
serve that each of the four target algorithms consistently construct
a policy that solves the task in fewer total policy updates in com-
parison to the Control, regardless of whether Expected SARSA or
Q-learning are used. For each algorithm, Wilcoxon Signed-Rank
tests were conducted against the control, and it was observed that
p-values less than 0.05 were achieved when comparing both the
rewards and cumulative number of policy updates. For all but one
scenario on the L-track, we see that results from Table 1 show Ex-
pected SARSA to complete tasks with fewer total policy and swarm
updates than equivalent Q-learning tasks in Table 2. We observe
that Expected SARSA achieves an equivalent or greater cumula-
tive reward over every task in comparison to those of Q-learning,
with one exception in each the L-track and O-track racetrack tasks.
We observe that, for both Q-learning and Expected SARSA, PSO
achieves fewer policy updates than the Control. In all but only a
few cases with the R-track racetrack task, FEA completes the task
with even fewer iterations than unfactored PSO, and with fewer
swarm updates. The O-track is the most complex task with respect
to the average number of policy updates needed to find the optimal
policy, and we note that the single-agent Control for Q-learning
did not converge within 500,000 iterations for this task; we mark
this task with an asterisk in Table 2 as a result.

Tables 3 and 4 show results over each task for two additional FEA
iterations. In every task, this resulted in fewer policy and swarm
updates than the 3-iteration variant. In addition, p-values less than
0.05 were observed when comparing the rewards, policy updates,
and swarm updates of all corresponding Expected SARSA and Q-
learning algorithms indicating statistically significant evidence to
support Expected SARSA as having strategic benefit when coupled
with FEA. This applied to both the 3- and 5-iteration FEA variants.
However, in only 60% of scenarios, the additional FEA iterations
provided a higher or equivalent reward for Expected SARSA, while
this was true for 70% of scenarios for Q-learning. P-values less than
0.05 were not achieved when comparing the differences between
3-iteration and 5-iteration Expected SARSA. This also held for Q-
learning indicating that, while the introduction of FEA into training
suggests improved performance, the additional iterations may not
produce statistically significant results.

Tables 5–14 inAppendix A of the supplementarymaterial present
the effects of different swarm sizes, and we see that the performance

2For these experiments, onemay consider the swarm as “homogeneous” due to identical
reinforcement learning agent types among particles. In other words, each swarm will
either have all particles as Expected SARSA agents or all particles as Q-learning agents,
but will not include both simultaneously. While preliminary experimentation suggests
that a heterogeneous swarm has potential to facilitate encouraging results, we leave
this as an opportunity for future work.

Table 1: CoFEA Results – Expected SARSA

Algorithm Task # Swarm # Policy Reward

Control (D) Cliff N/A 156,107 -327
Control Cliff N/A 156,007 -331
PSO Cliff 2877 2793 -9
PSO+FEA Cliff 542 281 -12
PSO+Co Cliff 3822 8911 -5
PSO+FEA+Co Cliff 2700 3062 -6
Control (D) Lake N/A 469,292 -1004
Control Lake N/A 463,722 -992
PSO Lake 7994 19,974 -43
PSO+FEA Lake 3993 19,264 -54
PSO+Co Lake 10,650 26,639 -25
PSO+FEA+Co Lake 10,691 13,420 -5
Control (D) L-track N/A 53,695 -164
Control L-track N/A 51,437 -143
PSO L-track 6947 12,655 -36
PSO+FEA L-track 3606 9717 -18
PSO+Co L-track 14,343 24,494 -17
PSO+FEA+Co L-track 14,237 9612 -11
Control (D) R-track N/A 158,390 -698
Control R-track N/A 162,063 -728
PSO R-track 23,771 59,996 -21
PSO+FEA R-track 12,021 60,112 -5
PSO+Co R-track 31,992 79,818 -10
PSO+FEA+Co R-track 31,974 39,624 -3
Control (D) O-track N/A 227,580 -1001
Control O-track N/A 224,022 -971
PSO O-track 37,721 99,974 -62
PSO+FEA O-track 13,328 50,055 -9
PSO+Co O-track 53,333 133,329 -21
PSO+FEA+Co O-track 53,312 66,740 -6

comparisons observed in Tables 1 and 2 above are consistent but
with slightly lower rewards and policy updates and fewer swarm
updates in general. We expect the effects of swarm size to be more
prominent for larger problems and leave this as a primary interest of
future work. Tables 15 and 16 in Appendix B of the supplementary
material present the effects of varying trajectory length. For tasks
such as CliffWalking and L-track, where minimal direction changes
are needed to evaluate a complete policy, we see that performance
increase is most noticeable. For Frozen Lake, R-track, and O-track,
we observe that co-training shows the highest gain in performance
for both Expected SARSA and Q-learning with the exception of
the PSO+Co-training variant of the O-track and Frozen Lake tasks.
This suggests that the use of pseudo-rewards in co-training may
aid in estimating the reward horizon under ambiguity.

Tables 17 and 19 in Appendix A of the supplementary material
show that co-training 3 swarms produced higher reward for 19
of 20 tasks in comparison to co-training 2 swarms, with 75% of
these metrics resulting in fewer average policy updates per parti-
cle. Similarly, in tables 18 and 19, we demonstrate how increasing
the number of co-training swarms to 4 further improved the total
cumulative reward in 17 of 20 tasks, albeit with only 45% of these
tasks resulting in fewer policy updates. Those tasks using Expected
SARSA that did not improve with additional swarms did improve
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Table 2: CoFEA Results – Q-Learning

Algorithm Task # Swarm # Policy Reward

Control (D) Cliff N/A 166,801 -398
Control Cliff N/A 166,246 -406
PSO Cliff 1401 6639 -15
PSO+FEA Cliff 159 1839 -36
PSO+Co Cliff 5463 13,107 -4
PSO+FEA+Co Cliff 3153 3638 -5
Control (D) Lake N/A 110,289 -457
Control Lake N/A 111,981 -485
PSO Lake 7994 19,603 -42
PSO+FEA Lake 3961 17,858 -46
PSO+Co Lake 10,656 26,621 -21
PSO+FEA+Co Lake 10,648 13,350 -25
Control (D) L-track N/A 52,021 -240
Control L-track N/A 54,646 -240
PSO L-track 6615 14,342 -36
PSO+FEA L-track 3518 11,298 -20
PSO+Co L-track 15,627 20,393 -18
PSO+FEA+Co L-track 15,423 11,832 -24
Control (D) R-track N/A 493,825 -1054
Control R-track N/A 498,672 -1058
PSO R-track 23,997 59,997 -22
PSO+FEA R-track 12,109 99,773 -9
PSO+Co R-track 32,048 79,997 -18
PSO+FEA+Co R-track 31,991 40,097 -18
Control (D) O-track N/A 500,000* -1064
Control O-track N/A 500,000* -1063
PSO O-track 40,006 100,042 -67
PSO+FEA O-track 19,992 99,773 -9
PSO+Co O-track 53,337 144,381 -33
PSO+FEA+Co O-track 53,401 77,820 -19

using Q-learning, and vice-versa, which may suggest that a hetero-
geneous mixture of both Expected SARSA and Q-learning agents
within each swarm could further refine performance.

We acknowledge the fact that, although there is statistical ev-
idence that FEA and co-training may result in fewer total policy
updates with higher rewards, there is indeed added complexity.
Factored evolution acts as an excellent method for decomposing
the underlying search space organically, and co-training proves to
be an excellent heuristic for learning sparse rewards. Together, they
allow for distributed and parallel RL, but their cooperation entails
several more operations per iteration versus a simple single-agent
model. We recognize the room this provides for optimizing our
work and leave this as an area of future research.

8 CONCLUSION
In consideration of our results, we find evidence to support our
hypothesis regarding the advantage of Expected SARSA in com-
parison to Q-learning under conditions of high uncertainty. Ad-
ditionally, we see strong evidence supporting the use of PSO for
optimizing multiple agents in constructing a single policy with
fewer cumulative updates than a single agent. Furthermore, we find
that evolutionary factorization of the search space can generally
result in even fewer swarm and cumulative policy updates than one
that is unfactored. With additional swarms added to the task, we see

Table 3: CoFEA Results – Expected SARSA, 5 FEA Iterations

Algorithm Task # Swarm # Policy Reward

PSO+FEA Cliff 391 1317 -11
PSO+FEA+Co Cliff 2794 1943 -5
PSO+FEA Lake 2399 12,112 -8
PSO+FEA+Co Lake 11,333 9096 -5
PSO+FEA L-track 2198 7018 -18
PSO+FEA+Co L-track 10,054 6088 -11
PSO+FEA R-track 2400 12,111 -6
PSO+FEA+Co R-track 11,330 9090 -4
PSO+FEA O-track 12,000 60,112 -10
PSO+FEA+Co O-track 5664 45,097 -6

Table 4: CoFEA Results – Q-learning, 5 FEA Iterations

Algorithm Task # Swarm # Policy Reward

PSO+FEA Cliff 69 86 -49
PSO+FEA+Co Cliff 3444 2446 -5
PSO+FEA Lake 1601 6066 -4
PSO+FEA+Co Lake 11,324 8961 -25
PSO+FEA L-track 2122 5867 -20
PSO+FEA+Co L-track 11,021 7836 -24
PSO+FEA R-track 1598 6154 -6
PSO+FEA+Co R-track 11,440 9074 -20
PSO+FEA O-track 8000 3070 -10
PSO+FEA+Co O-track 56,667 44,704 -18

even fewer cumulative updates and higher total rewards for both
factored and unfactored PSO when co-training 2, 3, and 4 swarms.
Finally, we show evidence to suggest that benefits compound when
coupling co-training with Expected SARSA and Factored PSO for
trajectories of varying length.

Our results with CoFEA establish a foundation from which par-
allel and distributed reinforcement learning is enabled through
cooperative coevolution, but it is by no means comprehensive. We
acknowledge that the tasks we investigate regard only the domain
of navigation, but emphasize that the success we demonstrate here
lays the necessary groundwork for extrapolation to other domains
such as computer vision and natural language processing. In future
work, we intend to improve the performance of CoFEA in such
domains and evaluate more complex tasks to further demonstrate
reasoning about uncertainty. Opportunities to replicate CoFEA’s
performance over network-based learning, as well as assessing the
performance of different factor architectures as defined in [23], also
exist. Our work is motivated by the interest in training autonomous
agents to act collaboratively under uncertainty and we hope that
CoFEA inspires other coevolutionarymethods within this context.
Source code for CoFEA is available from the authors upon request.
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SUPPLEMENTARY MATERIAL

A EXPERIMENTAL RESULTS
A.1 Varying Swarm Size
Results for varying swarm sizes for each algorithm are shown below.
We evaluate swarm sizes of 2, 4, 8, 16, and 32 particles. Each result
was runwith 3 FEA iterations (if applicable), 3 co-training iterations,
and 1000 generations, over the specified swarm size.

Table 5: CoFEA Results - Expected SARSA, Particles = 2

Algorithm Task # Swarm # Policy Reward

PSO Cliff 3196 14,769 -4
PSO+FEA Cliff 569 3841 -6
PSO Lake 7987 39,968 26
PSO+FEA Lake 3996 40,203 -4
PSO L-track 6992 29,651 -17
PSO+FEA L-track 3648 22,993 -9
PSO R-track 8000* 40,000* -11
PSO+FEA R-track 2663 20,130 -5
PSO O-track 40,000* 200,000* -32
PSO+FEA O-track 19,992 199,162 -5

Table 6: CoFEA Results - Q-Learning, Particles = 2

Algorithm Task # Swarm # Policy Reward

PSO Cliff 340 440 -25
PSO+FEA Cliff 165 604 -18
PSO Lake 7989 39,366 -29
PSO+FEA Lake 3982 40,207 -2
PSO L-track 6724 25,971 -19
PSO+FEA L-track 3587 19,639 -10
PSO R-track 40,000* 8000* -10
PSO+FEA R-track 3898 39,892 -3
PSO O-track 40,000* 200,000* -32
PSO+FEA O-track 13,328 100,110 -5

Table 7: CoFEA Results - Expected SARSA, Particles = 4

Algorithm Task # Swarm # Policy Reward

PSO Cliff 577 769 -577
PSO+FEA Cliff 116 134 -49
PSO Lake 8000* 19,378 -58
PSO+FEA Lake 3996 20,102 -4
PSO L-track 6652 12,482 -40
PSO+FEA L-track 3590 9306 -18
PSO R-track 8000* 19,991 -21
PSO+FEA R-track 3996 20,102 -5
PSO O-track 40,000* 100,000* -65
PSO+FEA O-track 13,328 50,055 -10

Table 8: CoFEA Results - Q-Learning, Particles = 4

Algorithm Task # Swarm # Policy Reward

PSO Cliff 525 621 -33
PSO+FEA Cliff 141 239 -40
PSO Lake 8000* 19,398 -56
PSO+FEA Lake 2664 10,065 -4
PSO L-track 6371 10,800 -37
PSO+FEA L-track 3571 9083 -20
PSO R-track 8000* 20,000* -19
PSO+FEA R-track 2664 10,064 -6
PSO O-track 40,000* 98,126* -64
PSO+FEA O-track 13,338 50,053 -9

Table 9: CoFEA Results - Expected SARSA, Particles = 8

Algorithm Task # Swarm # Policy Reward

PSO Cliff 2740 3166 -20
PSO+FEA Cliff 620 1066 -24
PSO Lake 7989 9896 -95
PSO+FEA Lake 3986 10,050 -17
PSO L-track 7013 7364 -68
PSO+FEA L-track 3697 5933 -34
PSO R-track 8000* 10,003 -48
PSO+FEA R-track 3976 10,051 -14
PSO O-track 40,000* 50,019 -128
PSO+FEA O-track 19,993 50,041 -21

Table 10: CoFEA Results - Q-Learning, Particles = 8

Algorithm Task # Swarm # Policy Reward

PSO Cliff 519 260 -68
PSO+FEA Cliff 130 111 -89
PSO Lake 8000* 9828 -115
PSO+FEA Lake 2664 5033 -8
PSO L-track 6408 5610 -75
PSO+FEA L-track 3541 4927 -37
PSO R-track 8000* 9997 -34
PSO+FEA R-track 2664 5033 10
PSO O-track 40,000* 50,029 -117
PSO+FEA O-track 13,328 25,028 -20
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Table 11: CoFEA Results - Expected SARSA, Particles = 16

Algorithm Task # Swarm # Policy Reward

PSO Cliff 541 142 -139
PSO+FEA Cliff 139 117 -122
PSO Lake 7998 4874 -235
PSO+FEA Lake 3996 5026 -17
PSO L-track 6456 2853 -151
PSO+FEA L-track 2188 1329 -90
PSO R-track 8000* 5000* -72
PSO+FEA R-track 3996 5025 -22
PSO O-track 40,000* 25,000* -48
PSO+FEA O-track 13,328 12,514 -44

Table 12: CoFEA Results - Q-Learning, Particles = 16

Algorithm Task # Swarm # Policy Reward

PSO Cliff 412 81 -165
PSO+FEA Cliff 114 25 -197
PSO Lake 8000 4854 -241
PSO+FEA Lake 2664 2516 -16
PSO L-track 6262 2758 -149
PSO+FEA L-track 3553 2419 -83
PSO R-track 8000* 4999 -76
PSO+FEA R-track 2664 2515 -23
PSO O-track 40,000* 24,806 -250
PSO+FEA O-track 13,328 12,513 -40

Table 13: CoFEA Results - Expected SARSA, Particles = 32

Algorithm Task # Swarm # Policy Reward

PSO Cliff 3203 936 -76
PSO+FEA Cliff 743 328 -87
PSO Lake 7989 2497 -409
PSO+FEA Lake 3997 2513 -69
PSO L-track 7092 1853 -303
PSO+FEA L-track 2364 861 -176
PSO R-track 8007 2500 -165
PSO+FEA R-track 3996 2512 -56
PSO O-track 40,003 12,501 -513
PSO+FEA O-track 19,992 12,510 -74

Table 14: CoFEA Results - Q-Learning, Particles = 32

Algorithm Task # Swarm # Policy Reward

PSO Cliff 391 25 -348
PSO+FEA Cliff 126 25 -359
PSO Lake 7999 2464 -476
PSO+FEA Lake 2664 1258 -36
PSO L-track 6793 1686 -337
PSO+FEA L-track 3570 1230 -141
PSO R-track 8007 2503 -158
PSO+FEA R-track 3987 2517 -38
PSO O-track 40,048 12,503 -488
PSO+FEA O-track 13,328 6257 -87

A.2 Extended Trajectories
We evaluate the performance of each CoFEA variant to construct a
policy with trajectories of extended length.We denote the trajectory
length as 𝜏 where a 𝜏 = 1 indicates the prediction of a reward for
a single state given the next action, a value of 𝜏 = 2 indicates the
prediction of the next two rewards for a single state given the next
two actions, and so on. Each result was run with 3 FEA iterations (if
applicable), 3 co-training iterations, 1000 generations, and swarm
sizes of 4 particles.

Table 15: CoFEA Results - Expected SARSA, 𝜏 = 2

Algorithm Task # Swarm # Policy Reward

PSO Cliff 7814 19,329 -6
PSO+FEA Cliff 2664 10,065 -4
PSO+Co Cliff 31,795 26,428 -2
PSO+FEA+Co Cliff 10,573 13,323 -2
PSO Lake 7986 19,991 -43
PSO+FEA Lake 2664 10,065 -5
PSO+Co Lake 31,999 26,665 -24
PSO+FEA+Co Lake 13,320 20,112 -4
PSO L-track 7937 19,744 -35
PSO+FEA L-track 3994 20,038 -8
PSO+Co L-track 31,997 26,647 -8
PSO+FEA+Co L-track 13,319 20,107 -3
PSO R-track 8004 19,983 -38
PSO+FEA R-track 3996 20,103 -8
PSO+Co R-track 31,999 26,687 -9
PSO+FEA+Co R-track 13,991 21,783 -4
PSO O-track 39,994 99,801 -49
PSO+FEA O-track 19,992 100,094 -11
PSO+Co O-track 159,937 133,334 -16
PSO+FEA+Co O-track 63,308 91,754 -6
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Table 16: CoFEA Results - Q-Learning, 𝜏 = 2

Algorithm Task # Swarm # Policy Reward

PSO Cliff 7831 19,327 -6
PSO+FEA Cliff 2620 9862 -4
PSO+Co Cliff 31,489 26,183 -2
PSO+FEA+Co Cliff 10,569 13,304 -2
PSO Lake 7995 19,978 -44
PSO+FEA Lake 3996 20,103 -7
PSO+Co Lake 31,998 26,664 -24
PSO+FEA+Co Lake 11,988 16,765 -4
PSO L-track 7963 19,788 -37
PSO+FEA L-track 3990 19,976 -9
PSO+Co L-track 32,004 26,647 -7
PSO+FEA+Co L-track 14,650 23,454 -3
PSO R-track 8007 19,984 -37
PSO+FEA R-track 3998 20,141 -7
PSO+Co R-track 32,003 26,668 -9
PSO+FEA+Co R-track 13,986 21,785 -4
PSO O-track 39,995 99,793 -50
PSO+FEA O-track 19,993 100,083 -11
PSO+Co O-track 159,966 133,194 -25
PSO+FEA+Co O-track 56,621 75,031 -18

A.3 Multi-Swarm Co-training
For co-training, we evaluate the effects of leveraging greater than
2 swarms for the exchange and evolution of pseudo-rewards. Each
result was run with 3 FEA iterations (if applicable), 3 co-training
iterations, 1000 generations, and swarm sizes of 4 particles.

Table 17: CoFEA Results - Expected SARSA, 3 swarms

Algorithm Task # Swarm # Policy Reward

PSO+Co Cliff 3782 8826 -3
PSO+FEA+Co Cliff 2697 3085 -4
PSO+Co Lake 10,652 26,641 -17
PSO+FEA+Co Lake 10,656 13,719 -4
PSO+Co L-track 9616 20,669 -12
PSO+FEA+Co L-track 9484 9548 -7
PSO+Co R-track 10,771 26,668 -8
PSO+FEA+Co R-track 10,657 13,419 -3
PSO+Co O-track 10,667 26,677 -20
PSO+FEA+Co O-track 10,656 13,420 -7

Table 18: CoFEA Results - Expected SARSA, 4 swarms

Algorithm Task # Swarm # Policy Reward

PSO+Co Cliff 4032 9456 -2
PSO+FEA+Co Cliff 2556 2885 -3
PSO+Co Lake 10,643 26,637 -13
PSO+FEA+Co Lake 10,564 13,319 -3
PSO+Co L-track 9693 20,951 -9
PSO+FEA+Co L-track 9454 9524 -5
PSO+Co R-track 10,666 26,689 -6
PSO+FEA+Co R-track 10,659 13,424 -2
PSO+Co O-track 10,670 26,701 -15
PSO+FEA+Co O-track 10,662 13,442 -5

Table 19: CoFEA Results - Q-learning, 3 swarms

Algorithm Task # Swarm # Policy Reward

PSO+Co Cliff 4893 11,697 -3
PSO+FEA+Co Cliff 3633 4264 -3
PSO+Co Lake 10,677 26,635 -14
PSO+FEA+Co Lake 10,648 13,340 -17
PSO+Co L-track 10,412 24,326 -12
PSO+FEA+Co L-track 10,349 11,899 -16
PSO+Co R-track 10,667 26,668 -7
PSO+FEA+Co R-track 10,654 13,423 -2
PSO+Co O-track 10,775 26,758 -14
PSO+FEA+Co O-track 10,650 13,400 -13

Table 20: CoFEA Results - Q-learning, 4 swarms

Algorithm Task # Swarm # Policy Reward

PSO+Co Cliff 3799 8842 -2
PSO+FEA+Co Cliff 2663 3028 -3
PSO+Co Lake 10,653 26,638 -13
PSO+FEA+Co Lake 10,655 13,382 -3
PSO+Co L-track 9681 20,877 -9
PSO+FEA+Co L-track 9479 9664 -5
PSO+Co R-track 10,666 26,724 -6
PSO+FEA+Co R-track 10,687 13,419 -2
PSO+Co O-track 10,674 26,773 -15
PSO+FEA+Co O-track 10,672 13,534 -5
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B IMAGES OF RACETRACK ENVIRONMENTS
We provide further clarification for the three Racetrack environ-
ments evaluated by CoFEA since they are non-standard RL en-
vironments. Simplified graphical representations for each of the
three environments is illustrated below. For each environment, "."
indicates a vacant position, "#" denotes a penalized boundary, "S"
denotes a starting position, and "F" denotes a finish/goal position.

B.1 L-track

Figure 1: A simplified representation of the L-track environ-
ment

B.2 R-track

Figure 2: A simplified representation of the R-track environ-
ment

B.3 O-track

Figure 3: A simplified representation of the O-track environ-
ment
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