
Ant Colony Optimization with Policy Gradients and Replay
William Jardee

william.jardee@msu.montana.edu
Montana State University
Bozeman, Montana, USA

John W. Sheppard
john.sheppard@montana.edu
Montana State University
Bozeman, Montana, USA

ABSTRACT
Ant Colony Optimization (ACO) has served as a widely-utilized
metaheuristic algorithm for decades for solving combinatorial opti-
mization problems. Since its initial construction, ACO has seen a
wide variety of modifications and connections to Reinforcement
Learning (RL). Substantial parallels can be seen as early as 1995 with
Ant-Q’s relationship with Q-learning, through 2022 with ADACO’s
connection with Policy Gradient. In this work, we describe ACO,
more specifically the Stochastic Gradient Descent ACO algorithm
(ACOSGD), explicitly as an off-policy Policy Gradient (PG) method.
We also incorporate experience replay into several ACO algorithm
variants, including AS, MaxMin-ACO, ACOSGD, ADACO, and our
two policy gradient-based versions: PGACO and PPOACO, drawing
the connection to elitist ACO strategies. We show that our imple-
mentation of PG in ACO with experience replay and a baselined
reward update strategy applied to eight TSP problems of varying
sizes performs competitively with both fundamental ACO and SGD-
based ACO versions. We also show that the replay buffer seems to
unilaterally improve the performance of ACO algorithms through
an ablation study.

CCS CONCEPTS
• Computing methodologies→ Heuristic function construc-
tion;Multi-agent reinforcement learning;Bio-inspired approaches.

KEYWORDS
Ant Colony Optimization, Ant Algorithms, Metaheuristics, Rein-
forcement Learning, Replay Buffer, Policy Gradient

ACM Reference Format:
William Jardee and John W. Sheppard. 2025. Ant Colony Optimization
with Policy Gradients and Replay. In Genetic and Evolutionary Computation
Conference (GECCO ’25),July 14–18, 2025, Malaga, Spain. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3712256.3726452

1 INTRODUCTION
Ant ColonyOptimization (ACO) has been a commonplace algorithm
in the world of swarm intelligence and combinatorial optimization
for multiple decades [6, 45]. In that time, the algorithm has seen
various improvements that have mostly remained independently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’25, July 14–18, 2025, Málaga, Spain
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1465-8/2025/07
https://doi.org/10.1145/3712256.3726452

implemented, and few algorithms that have seen regular imple-
mentation. Like many other swarm intelligence models, parallels
to the rest of the world of AI/ML/Stochastic optimization are often
drawn to mixed success. Many of these models tout slight perfor-
mance advantages and deserve consideration but face the struggle
of pulling slight advantages at the cost of substantial implemen-
tation difficulty. To this end, commonly used algorithms see more
application when bolstered by well known algorithms and common
modifications.

To help unify the large number of ACO algorithm variants, we
propose an explicit connection to the Policy Gradient (PG) paradigm.
We claim that connecting ACO to the fundamentals of state-of-
the-art Reinforcement Learning methods will allow for broader
acceptance of the metaheuristic. Beyond stating this connection,
which has been done by others before us [4, 22, 48], we argue
that our extensions generalize the concepts behind the ACO elitist
strategies and reinforcement functions. This is done, while also
extending the gradient update to be an off-policy method, through
the incorporation of importance sampling in the ACO update rule.

We hypothesize that the extension of ACO to account for the
off-policy nature of previously sampled ants should provide an
increase in performance, being more emphasized in difficult prob-
lems. Further, we expect that the incorporation of experience replay
and a more sophisticated reward mechanism will yield significant
improvements in the resulting ACO algorithm.

In this paper, we offer greater insight and improved performance
of ACO by making the following contributions:

(1) We make the explicit connection between ACO and the Off-
Policy, Policy Gradient method, implementing importance
sampling and the Proximate Policy Optimization clipping
function. To our knowledge, this is the first implementation
of importance sampling to the update function of ACO and
the PPO clipping function to ACO.

(2) We incorporate and evaluate experience replay as a gen-
eralization of the elitist strategies implemented by many
ACO algorithms. We validate and explore the relationship
between buffer size and problem size by an ablation study.

(3) We implement a variety of advantage functions in the ACO
update rule and show that baselined reward seems to perform
the best.

(4) We demonstrate how standard concepts in Reinforcement
Learning (i.e., importance sampling, advantage functions,
and experience replay) can be applied directly to ACO.

2 BACKGROUND
2.1 Combinatorial Optimization Problems
ACO is a commonly applied swarm intelligence model that tends
to perform at its best when tackling shortest path problems [5, 6].

https://doi.org/10.1145/3712256.3726452
https://doi.org/10.1145/3712256.3726452

GECCO ’25, July 14–18, 2025, Málaga, Spain William Jardee and John W. Sheppard

The class of problems addressed by ACO, as introduced in [4, 40],
involves, without loss of generality, a Combinatorial Optimization
Problem (COP), denoted as (F, � ,Ω), where the objective is to find
a candidate solution, F ∈ W, that minimizes an optimization
function, � (F), while following a set of constraints, Ω.

In the Traveling Salesperson Problem (TSP), we are given a graph,
G = (V, E), whereV represents the set of nodes and E the set of
edges. The goal is to identify the shortest Hamiltonian tour within
the graph. We define a set of feasible walks,F ∈ W ⊂ V= , where
= = |V|, subject to the following constraints:

(1) We start at some start node, E0 ∈ V ,
(2) Each walk,F , contains every node inV at most once, and
(3) The last node in F , E 5 , has at most one successor, which

is the start node; that is, for all E8 ∈ N (E 5), E8 ∈ F and
E0 ∈ N (E 5), where N(E) is the neighborhood of E .

Our objective in TSP is to find the walk,F∗, that minimizes � (F∗)
and satisfies the constraints (1)–(3) and every node in V is in
F∗. Here, � is the sum of all edge weights in F∗ and in the case
of a Euclidean graph problem, the edge weights are typically the
Euclidean distance between nodes. This formulation follows the
construction graph proposed in [25]. For a discussion of the connec-
tion between Markov Decision Processes and COP in the context
of ACO, see [4, 25].

2.2 Reinforcement Learning
In Reinforcement Learning (RL), an agent receives some represen-
tation of the environment, BC ∈ S, and some set of available actions,
AC ⊆ A. The agent’s objective is to learn a policy, c : S → A,
which maps the current state to the action that maximizes the ex-
pected return over time,�C [44]. Alternatively, a stochastic policy
maps states to a probability distribution over A, c : S → Δ(A).
Several functions play a key role in RL:
• The quality function,& (B, 0), measures the expected cumula-
tive reward returned for each state-action pair, (B, 0) ∈ S×A.
Methods that focus on & are called &-learning methods.
• Thevalue function,+ (0), represents the expected cumulative
reward for a given state, B ∈ S. A common method for
learning + is called Temporal Difference (TD) learning.
• The advantage, �(B, 0) = & (B, 0) −+ (B), gives the difference
between the expected reward for a given action, 0, compared
to the other actions at state B . The advantage shows up in
many algorithms to reduce variance in the learning process.

A common assumption considered with RL problems is the Markov
property, where the conditional dependence of all future steps only
depends on the current state. The construction of a policy with
the Markovian property addresses the Markov decision process
(MDP), with nice optimality properties with regards to the &- and
+ -functions.

Experience replay, a key component in modern reinforcement
learning, boosts learning efficiency and stability [19, 29].Themethod
involves learning from samples stored and then drawn from a
dataset,D, called the replay buffer. This allows the learning process
to be smoother by decoupling the samples used in learning from
the current model by using historical data [44]. Experience replay
can also be used to provide a set of examples to the model to bias
training towards better traces known a priori. While popularized

in &-learning methods like Deep Q-Networks (DQN), the princi-
ples behind experience replay have been adapted to various RL
algorithms, including some policy-based approaches [12, 33].

A foundational policy-based approach is the policy gradient
algorithm (PG), which directly optimizes the parameters of the
policy using gradient ascent. The parameters, \ , are updated as:

\C+1 = \C + d ∇\ � (\C)

∇\ � (\C) = E
(0C ,BC)∼c\C

[
�C ∇\ logc (0C | BC ; \C)

]
, (1)

where d is the learning rate. Alternative functions can be substi-
tuted in place of �C (e.g., baselined reward, quality function, or
advantage function), reducing variance while maintaining PG’s
theoretical guarantees [12, 24]. The REINFORCE algorithm [46]
first derived Equation (1) and introduced a Monte Carlo algorithm
to sample (0C , BC) from c\ . [46] also demonstrated that subtracting
a state-dependent baseline, 18 9 , from �C reduces update variance
without introducing bias.

Two widely used policy gradient algorithms are Proximal Policy
Optimization (PPO) [39] and Advantage Actor-Critic (A2C) [20, 32].
PPO, uses a clipping mechanism in its objective function to pre-
vent excessive policy updates, leading to more stable learning. It is
known for its robustness to hyperparameter variations and stability
across a wide range of tasks [1, 20]. A2C uses an actor-critic archi-
tecture, where the actor network learns the policy via Equation (1)
and a critic network estimates the value function to compute �C

for a given state. Although A2C can be computationally efficient
and effective when properly tuned, it is often more sensitive to
hyperparameters than both PPO and DQN [20].

2.3 Ant Colony Optimization
Ant Colony Optimization (ACO) is a metaheuristic often deployed
to solving combinatorial optimization problems [6, 13]. Using the
structure of the construction graph, we can relate a COP problem to
a graph-based problem. Because of this, and for brevity, we will re-
strict our handling of ACO to TSP.There are various extensions that
project this problem into the more broad COP [13, 23], continuous
space problems [37], and a wide variety of applications [6, 9, 27].

The ACO algorithm’s goal is to find a heuristic values, called
“pheromones” and notated as) , to measure how preferable the
edge is. Either the best solution found while searching for this
pheromone level, or the whole table of pheromone levels can be
returned. Ideally, greedily following this heuristic should return
the optimal solution, meaning reporting of the heuristic trivially
produces the optimal solution as well. Being a Population-Based
Incremental Learning (PBIL) [3] method, ACO employs an iterative,
stochastic, batch search over the problem space. In [4], this process
is broken down into three steps:

(1) The forward phase: A Monte Carlo run over G that follows a
stochastic policy parameterized by) .

(2) The backward phase: Each ant back-tracks over all the edges
in their solution and proposes new values for) ,) ′.

(3) The merge phase: An update function combines all the) ′’s
into the next generation’s) .

PPOACO GECCO ’25, July 14–18, 2025, Málaga, Spain

Taking a closer look at the first, and most popular, version of
ACO, Ant System (AS) (specifically the ant-cycle algorithm) [16]
we define the steps as:

(1) The forward phase: Let< ants search the space, where each
step is decided from the stochastic policy:

?8, 9 =

gU
8 9
ℎ
V

8 9∑
; ∈N(8) g

U
8;
ℎ
V

8;

if 9 ∈ N (8)

0 otherwise ,
(2)

where N(8) is the neighborhood of node 8 (i.e., all edges
accessible from 8 and not in a tabu list), U and V are positive
hyperparameters, g8 9 ∈) are the learned heuristic for each
edge, and ℎ8 9 is some heuristic prior passed to the algorithm,
typically 1/38 9 , where 38 9 is the weight of the edge 〈8, 9〉.

(2) The backward phase: Each ant creates a) ′ such that each
edge in the ant’s solution,F , is reinforced by&/!(F), where
& is some amount of pheromone and !(F) is the path length.

(3) The merge phase: The pheromone table is reduced by a rate
of (1−d), a process called pheromone evaporation, and then
increased by the sum of all proposed changes:

) ← (1 − d)) +
<∑
:=1

Δ) ′
:
.

ACO has seen many variants through the years. Elitist AS [17]
and MMACO [41–43] were two of the first to restrict updates in
the backward step to only the best performing ant(s). MMACO also
included a clipping of the) values, preventing them from getting
too large or small. Rank-AS [8], ^-best ACO [28], and Best-Worst
Ant System (BWAS) [11] expand the Elitist strategy by keeping
more than one best and adding weights according to how the ant’s
rank compare to the other peers in the generation. While Rank-AS
and ^-best ACO add weights to better performing samples, BWAS
aims to utilize positive and negative reinforcement learning to
increment the best while decrementing the worst.

Some models, like, Hyper-Cube AS [7], and Graph Based AS
(GBAS) [25, 26] focus on limiting the bounds of elements of) ,
redefining the problem space and ensuring limited bounds andmore
predictable behavior. These, along with the clipping from MMACO,
relate to concepts in RL focused on maintaining exploration, such
as entropy regularization and experience replay [44].

Some ACO models have drawn directly from the inspiration of
RL algorithms. The first explicit connection between ACO and RL
was Ant-Q [22] which employed the same update rule used in Q-
learning [44]. Many models, such as Ant Colony System (ACS) [14,
15, 21], Entropy-basedDynamicHeterogeneousACO (EDHACO) [10],
and greedy-Levy ACO [30], attempt to tackle the exploration -
exploitation problem by modifying the forward step search rule in
ways also seen in RL. There are two models we are aware of, Ant
Temporal Difference (AntTD) [36] and Label Section-Ant RL (LS-
AntRL) [35], that directly invoke TD methods to update a value
function.

ADaptive ACO (ADACO) [47, 48] addresses the AS update rule
as Policy Gradient, building on the ACO with Stochastic Gradient
Descent (ACOSGD) and ACO with Cross-Entropy (CEACO) algo-
rithms [18, 31]. ADACO applied the ADADELTA algorithm to the
update rule in AS to create a dynamic evaporation rate. While a

connection between ACO and PG can be seen in [47, 48], they im-
plement a gradient approximation in place of the exact calculation.

3 NOTATIONAL CONVENTIONS USED
Both RL and ACO have developed their distinct terminologies, cre-
ating ambiguities when integrating the two. For clarity, we present
the notation used going forward, which aligns with the conventions
in optimization and RL literature. We denote the parameterization
of the learned pheromone table by \ , replacing) . For an edge 〈8, 9〉,
with pheromone, g8 9 , we define g8 9 ≡ \8 9 . Given a path through
the graph, we define a trace g ≡ 〈B0, 00, B1, 01, · · · , 0)−1, B) 〉, where
each state, B8 ∈ S, corresponds to a node of the construction graph
and each action, 08 ∈ A, to an edge. Since the full construction
history, g0:C , is embedded in the current state, BC , the construction
graph serves as a bridge between the TSP solutions and MDPs As
such, we note that c (0C | g0:C ;\) = c (0C | BC ;\) when we utilize
the construction graph. We reuse the evaporation rate, d , to denote
the learning rate, drawing an intentional analogy between the two
terms.1 The distance between two nodes connected by edge 0 is
denoted 30 , and the path length of the path (trace) is !(g). The
neighborhood at state, BC is the set of outgoing edges not yet in the
current trace:

N(BC) ≡ {08 | 08 originates from BC and 08 ∉ g0:C }.

At iteration : , the set of samples collected in that iteration is D: ,
where the size of this set represents the number of ants, |D: | =<.
The replay buffer, which stores persistent samples across iterations,
is denotedD, with size |D|. A generalized measure of the utility of
an action during the solution construction is ΨC (0C | g0:C), which is
equivalent to Ψ(0C | BC) in the homogeneous-Markov process case.
To allow for the application of PG, we assert that Ψ is independent
of \ .

To simplify notation, we define ℏ8 9 ≡ ℎ
V

8 9
, and c\ ≡ c (· | · ;\).

The vector of parameters that contribute to the decision at step C ,
given g0:C , is ®\g0:C , where entries corresponding to edges already in
g0:C or edges not originating from current state, BC , are zero. When
the history is clear from context, we omit the subscript for brevity.
We define the operation ®\ · ®ℏ as the element-wise (Hadamard) prod-
uct of the vectors. Similarly, ®\U and ®\−1 refer to the vectors of
component-wise exponentiation and reciprocal values, respectively.
A stochastic decision made from the policy is denoted 0C ∼ c (BC),
and a trace drawn from the policy, starting at a random node, as
g ∼ c . The expectation of a quantity with respect to a trace ran-
domly drawn from c is expressed as Eg∼c [·].

4 METHODS
Drawing on the inspiration of previous ACO and RL methods, we
present an algorithm that incorporates a collection of select method
from both. To address variance in parameter updates, we implement
a robust Policy Gradient update implementing experience replay,
importance sampling, an advantage reward function, and a PPO
gradient clipping function.

1See the appendix in [47] for a derivation of pheromone evaporation from gradient
ascent with an L2 regularizer.

GECCO ’25, July 14–18, 2025, Málaga, Spain William Jardee and John W. Sheppard

4.1 Replay Buffer
Bringing previous generation’s information into future generations
is a common concept to PBIL and is especial familiar to ACO in
the form of the Elitist Ant strategy [3, 17]. However, existing ap-
proaches often keep a static list either of the most recent or only
the best samples. We draw on the success of experience replay and
implement a stashing and resampling method for ACO [19, 32].
Instead of applying the current generation’s sampled paths, they
are added to a collection of paths, which is then sampled to calcu-
late the batch gradient. The experiences in the replay buffer can be
added from the model, as we will do here, or provided to the model
to provide guided examples to learn from.

Experience replay should yield more diversity and, by extension,
more exploration, while not substantially increasing the runtime of
the algorithm [19, 44]. In the application of ACO in domains where
collection is costly, experience replay permits more efficient usage
of the collected samples by having the chance to revisit them before
discarding. For the bulk of models, we can apply experience replay
directly with no additional modifications to the backward step.
Especially in the case that the backward step is dependent on the
parameters themselves, off-policy methods need to be considered.
We address this in Section 4.2.

For each generation, we generate the ants as is done in the typical
forward step of AS.These samples are added to a collection of stored
experiences, and then pruned. To help promote randomness in the
search, samples used in the backwards step are drawn i.i.d. with
replacementD times from a uniform distribution of the replay buffer,
4 ∼ Unif(D). We implemented two pruning rules to remove pruned
samples from the replay buffer:

• Evict: We keep the |D| most recent samples by using a
queue structure, adding< samples, and removing the oldest
< samples at every step.
• Elitist: We keep only the |D| best ants in the buffer.

Throughout our preliminary testing, the Elitist strategy outper-
formed the Evict strategy, so we used the Elitist rule for our
experiments.

The replay buffer can seen as a generalization of previous elitist-
ACO algorithms. MMACO, Rank-AS, ^-best ACO, and BWAS can
be seen as instances of replay buffers applied to ACO. In MMACO
and BWAS the Elitist strategy is invoked with |D| = 1, with
BWAS including a Elitist update for both the best and the worst
sampled. Rank-AS and ^-best ACO are also Elitist updates with
a fixed buffer size and the whole buffer being used for updates.
The weighting methods used in these two algorithms could be
considered similar to the advantage function seen in the PG update
rule, where better samples are given more weight. Finally, AS can
be seen as a specific instance of the Evict strategy, where the
population size is the same as the buffer size. By generalizing the
idea of replay buffers for ACO, we open up the potential for rapid
development of sampling methods to make better efficiency of the
sampled data.

4.2 Importance Sampling
One of the assumptions made in deriving Equation (1), is that
samples used to update the parameters were sampled from our

Figure 1: Average performance of different advantage func-
tions over five runs with 1000 iterations. Only iterations after
step 20 are shown to highlight the behavior after the initial
burn-in period.

policy [46]. By utilizing a replay buffer, we are now generating up-
dates according to a different policy, ` ≠ c\C . This problem is called
off-policy learning, as we are learning from experience that are
not in line with our current policy (the alternative, where we learn
from g ∼ c\C , is called on-policy learning). In [12], the derivation
for policy gradient for experiences sampled from ` is provided as:

∇\ � (\C) = E
0C∼`

[
c\C (0C | BC)
` (0C | BC)

Ψ(0C | BC) ∇\ logc\C (0C | BC)
]
. (3)

PPOACO GECCO ’25, July 14–18, 2025, Málaga, Spain

This added term, c/`, is called importance sampling and serves
to weight updates according to how relevant to the current pol-
icy they are. This yields the same update rule as seen in [18], but
with an added importance sampling term. It is generally seen that
on-policy methods learn more conservative policies and avoid neg-
ative rewards during training, while off-policy methods coverage
faster and explore the space more, tending to include more costly
moves [44].

4.3 Clipping
To mitigate extreme policy updates, SGD methods often constrain
step magnitudes, typically through a tuned learning rate, d , or by
allowing d to be adaptive. While this helps control overall stability,
it does not prevent occasional poor updates due to stochasticity [39].
PPO address this by directly limiting the influence of policy updates
that diverge significantly from the current policy. The PPO clipping
function is:

� (\ | BC , 0C , `) = min
\

{
c\

`
Ψ(0C | BC), clip

(
c\

`
, Y

)
Ψ(0C | B)

}
,

where clip restricts the importance sampling ratio to between (1+Y)
and (1−Y), preventing overly large updates.This approach improves
upon earlier methods by being simpler to implement and more
robust in practice [20], making it a natural choice for our broader
argument about synergy between ACO and modern RL. Given that
ACO updates pheromones in batches, we apply clipping per sample
rather than to the averaged gradient, ensuring stable reinforcement
at the individual sample level.

4.4 Advantage
Finally, recall that Equation (3) refers to Ψ, and that we have a
collection of choices on how to define this. In classic ACO, the back-
ward step uses the aggregated cost of the path, Ψ(g:) = 1/!(g:),
for the ant’s walk, g: . Drawing from RL, we consider a variety of
alternative advantage algorithms.
• Quality: The pheromone weight of the action. This update
is the term in the original derivation for Equation (1) [46].
• Local advantage: The difference between a pheromone and
all pheromones in its neighborhood:

Ψlocal (0C | BC) =
1
\0C
− |N (BC) |∑

0′∈N(BC) \0′
.

• Path advantage: The difference between the whole path’s
cost and the average cost of all path’s in the replay buffer:

Ψpath (g:) =
1

!(g:)
− |D|∑

g4 ∈D !(g4)
.

• Reward: The typical AS update of 1/!(g:).
• Baselined reward: The reward from the edge minus the
average of the neighborhood:

Ψbase (0C | BC) =
1
30C
− |N (BC) |∑

0′∈N(BC) 30′
.

The baselined reward is argued to be a better function for
ΨC and used in REINFORCE to help reduce the variance in
policy updates [44, 46].

Algorithm 1 PPOACO

1: initialize_ants()
2: while not_terminate() do
3: D: ← forward_step()
4: D ← Elitist_buffer_update(D:)
5: grad_list← {}
6: for 1..D do
7: 4 ∼ Unif(D)
8: grad4 ← clipped_gradient(4)
9: grad_list.add(grad4)
10: end for
11: grad← avg (grad_list)
12: \ ← \ − d · grad
13: MaxMin())
14: end while

• Reward-to-go: The average of the reward from the next =
steps:

Ψtogo (0C | BC) =
=∑
8=0

1
30C+8

.

This reward takes into account not just the current step, but
what the following finite trace rewards.
• Baselined reward-to-go: The application of both baseline
and reward-to-go:

Ψbtg (0C | BC) =
1
30C
+�togo (0C | BC) −�base (0C | BC) .

To determine which advantage function is the best choice, we ran
preliminary tests over TSP problems with the different advantage
functions. From Figure 1, the baselined reward showed the best
performance, so we ran all experiments for the PG-based ACO
algorithms with it.

4.5 Algorithm
The previous elements come together to form PPOACO, given in
Algorithm 1. When we omit the clipping function, we call that
algorithm PGACO. For the sampled action, 0C ∼ ` (0C | BC), and the
policy, c , from Equation (2), the gradient update becomes

∇\ � = E
g∼`

[
c\C (0C | BC)
` (0C | BC)

Ψ(0C | BC)∇\ logc\C (0C | BC)
]

≈ A Ψ∇\ log
\U0C ℏ0C∑

0′∈N(BC) \
U
0′ℏ0

′

= A Ψ

[
∇\ log\U0C ℏ0C − ∇\ log

∑
\U0′ℏ0′

]
= A Ψ

[
∇\ log\U0C +���: 0∇\ℏ0C − ∇\ log

∑
\U0′ℏ0′

]
= A Ψ

[
U \ -10C 4̂0C − U ®c · ®\

-1

]
= −U A Ψ

[
®c − 4̂0C

]
· ®\ -1 ,

GECCO ’25, July 14–18, 2025, Málaga, Spain William Jardee and John W. Sheppard

where A ≡ c\C (0C |BC)
` (0C |BC) is the importance sampling ratio, and 4̂0C

is the unit vector for the action. We typically approximate the
expectation by taking the average of a stochastic search over the
space, which is why we dropping the expectation in the second
line. This calculation closely resembles the results of previous SGD
applications to ACO [18, 47]. For each element in the replay buffer,
we only need to store the path, the advantage function, and the
policy value of the observed action. If the query table for c is pre-
calculated, the calculation of the gradient runs in$ (D ·=) time. The
space required for the replay buffer is $ (|D| · =).

5 EXPERIMENTS
We ran two different experiments: an ablation study and a compar-
ative performance study. All tests were run over a collection of 2D
Euclidean TSP problems from the problem-set TSPLib, ranging from
small to medium size [38]. The parameters of U = 1, V = 2,< = 10,
were selected following trends in previous literature [13, 47]. The
parameters, d , |D|, D, and Y were tuned with Bayesian optimiza-
tion [2]. The algorithm selected d ≈ 0.2 for AS and MaxMin-ACO,
and d ≈ 3 for PGACO and PPOACO. The replay size and update
size were both tuned to 20. The clipping bound in PPOACO, Y, was
tuned to 0.2. The performance of all algorithms was measured by
the average best solution observed during training (measured by
the length of the final path found).

5.1 Datasets
To test the performance of PGACO and PPOACO, we utilized the
TSPLib dataset of TSP graphs. Developed by Gerhard Reinelt, the
datasets serve as benchmarks for researchers to test and compare
the performance of various optimization algorithms. The library
encompasses a diverse collection of problem instances sourced from
various origins and of different types, facilitating the evaluation of
algorithmic efficiency across a broad spectrum of scenarios. At this
point, all graphs in the TSP set have optimal values calculated.

The problem instances in TSPLIB vary in size and complexity,
and we utilized eight small to medium sized problems. We chose
the following graphs, each with known optimal tour lengths:

• att48: 48 U.S. state capitals, optimal tour length = 10,628.
• pr76: 76-city problem represented in a 2D Euclidean space,
optimal tour length = 108,159.
• rd100: 100 random cities in 2D Euclidean space, optimal tour
length = 7,910.
• tsp225: 225-city problem in 2D Euclidean space, optimal
tour length = 3,916.
• pcb442: 442-node drilling problem in 2D Euclidean space,
optimal tour length = 50,778.
• att532: 532-city problem, optimal tour length = 27,686.
• ali535: 535 airports worldwide represented as geographical
locations, optimal tour length = 202,339.
• pr2392: 2,392-city problem in 2D Euclidean space, optimal
tour length = 378,032.

All eight of these problems were used for a comparative study, the
smaller four being used for an ablation study.We chose these graphs
to observe both problem size and distance magnitude’s effects on
ACO.

Table 1: The average best solution over five runs, with att48,
pr76, and rd100 run for 1000 iterations and tsp225 for 2000.

Problem Buffer Size AS ADACO PPOACO

att48
None 11825 11376 11054
Small 11682 11153 10862
Large 11769 11150 10741

pr76
None 110460 126981 120233
Small 110272 124162 116578
Large 109775 123438 116878

rd100
None 8950 8584 8418
Small 8984 8391 8211
Large 8890 8304 8225

tsp225
None 4436 4398 4257
Small 4428 4300 4183
Large 4407 4211 4136

Table 2: P-values of the two-sidedWilcoxon signed-rank tests.
“None” is shorthanded to “N”, likewise for “Small” being
“S” and “Large being “L.” Significant as possible values are
shaded.

Problem p-value AS ADACO PPOACO

att48
N vs. S 0.062 0.063 0.063
N vs. L 0.125 0.063 0.063
S vs. L 0.063 1.0 0.813

pr76
N vs. S 0.813 0.063 0.063
N vs. L 0.125 0.063 0.063
S vs. L 0.063 0.313 0.625

rd100
N vs. S 0.313 0.063 0.063
N vs. L 0.313 0.063 0.063
S vs. L 0.125 0.063 0.313

tsp225
N vs. S 0.063 0.063 0.063
N vs. L 0.125 0.063 0.063
S vs. L 1.0 0.063 0.063

5.2 Ablation Study
To test whether the replay buffer affected the performance of the
algorithm, we ran an ablation study with the replay size under test.
We chose to focus on three algorithms, AS, ADACO, and PPOACO,
to target the simplest algorithm, an on-policy update, and an off-
policy update, respectively. The replay buffer size was allowed to
take on three values

(1) None: The replay buffer was disabled; only the ants sampled
that iteration updated the parameter values.

(2) Small: The replay buffer was set to 20. This sampled a con-
stant, conservative number of ants.

(3) Large: The replay buffer was set to the dimension of the
problem, =.

As argued in [34], ACO should not require an abundant number
of ants, motivating a smaller replayer buffer. In the experience
replay literature, a more extensive replay buffer tends to perform
better [19] and ADACO sets< = = to large success [47].The number
of sampled elements from the replay buffer was fixed to 20 for
both replay rules, and the batch gradients were averaged at each

PPOACO GECCO ’25, July 14–18, 2025, Málaga, Spain

iteration to prevent the application of experience replay to be a
proxy for d . Each algorithm was run for 1,000 iterations, five times.
The percentage improvement from no experience replay is reported
in Table 1.

Across all algorithms and problems, the replay size had a signifi-
cant impact on the performance. The advantage was more evident
in the two gradient-based methods. It appears that the replay buffer
should be much larger in the case of AS and ADACO, with a grow-
ing importance on the size as problems get larger. For ADACO, the
superiority of a larger replay buffer has a growing gap between
the two sizes as the problem sizes get larger and show a larger
ability to exploit the benefits of experience replay. PPOACO saw a
unilateral advantage from the replay buffer but did not see a clear
relationship between buffer size and performance conditioned on
problem size. These results provide an affirmation that the inclusion
of experience replay is largely beneficial to AS.

To validate these results, we ran a two-sided Wilcoxon signed-
rank test to test the whether adding a replay buffer affected the
performance of these algorithms to a statistically signifcant degree.
To control for seeding in the tests, permutations in the order of
tests were not allowed. The p-values can be seen in Table 1, and
it should be noted that the lowest possible p-value for the test on
this size is 0.063. We can see, with few exceptions, that including
a replay buffer seemed to shift the average performance of the
algorithms to a statistically significant degree, always improving
the performance. The size of the replay buffer seems to have had
a much smaller effect on the performance, opening up a possible
choice as to what size to implement.

For the Elitist rule, at every time step the algorithm has to
iterate over all elements of both D and the sampled data points to
find the batch of worst performing samples; this process runs in
$ (|D| +<). The storage cost for the buffer is$ (|D| ·=). In the case
of the large buffer, |D| = = and$ (=2), which is both the size of the
problem and the driving term in the space complexity of ACO. In the
case of runtime, this addition is not the driving term and matches
the space complexity of the larger problem. Theoretically the best
performing buffer size should be used until |D| � =. Because of the
comparative performance of the small and large buffers in PPOACO
and with practical runtime considerations, we employed a small
(|D| = 20), Elitist replay buffer to PGACO and PPOACO.

5.3 Comparative Analysis
We tested both PGACO and PPOACO against the traditional ACO al-
gorithms, AS andMMACO, and against its gradient peers, ACOSGD
and ADACO. All alternative algorithms were tested as outlined in
their respective sources, using their hyperparameters, outside of
what was defined earlier, without modifying their update functions.
For PGACO and PPOACO, we employed an elitist replay buffer
strategy with |D| = 20 and D = 20. The algorithms were run across
the eight TSP problems from TSPLib described in Section 5.1 ten
times. The average of the best path found can be seen in Table 3.
Each run was seeded, ensuring seeds did not overlap with the abla-
tion study’s seeds, and controlling for random staring points across
algorithms.

Across all the problems, PGACO and PPOACO found better so-
lutions than all alternatives. This margin decreased as the problems

got larger, with att532 showing no improvement in PGACO com-
pared to ADACO. On this same dataset, however, PPOACO had
a large improvement over all other algorithms. The number of it-
erations given to the algorithm did not appear to be the primary
factor driving performance differences. The tsp225 instance, which
was run with the same number of iterations as the larger problems,
exhibited a substantial performance increase between PGACO and
the other algorithms. In contrast, the larger problems showed only
a modest improvement, suggesting that other factors contributed
to the observed differences in performance.

To validate qualitative results, we ran a one-sided Wilcoxon
signed-rank test to test the alternative hypothesis that our model
score was less than the comparativemodel, on average.The p-values
can be seen in Table 2. In every test, PGACO and PPOACO had
a ∼ 0.001 p-value to provide a lower performance average than
the compared models. We also saw that PPOACO had a p-value of
∼ 0.001 to perform better than PGACO on all datasets, except att48
and rd100, in which case the p-values were ∼ 0.042 and ∼ 0.053,
respectively.Therefore, we assert that there is evidence that PGACO
and PPOACO achieve lower objective values on 2D Euclidean TSP
problems than the four alternatives tested. Further, there is evidence
that the clipping function significantly improved the results as well.

6 DISCUSSION
As shown in Figure 1, the baselined reward function provided im-
provement compared to the typical reward function. This improve-
ment may be due to parameters’ magnitudes being dependent on
the problem-specific distances. Algorithms such as Hypercube-
ACO and GBAS mitigate this issue by constraining the parameter
bounds, requiring substantial modifications to the backward and
merge steps of ACO. The baseline function offsets the reward by a
mean of the neighborhood, requiring only minor modifications to
existing ACO functions. The PPO Clipping function helps stabilize
variance during learning by preventing extreme parameter updates
until they have reached a magnitude where large changes are less
disruptive.

The ablation study (Table 1) indicates that a replay buffer im-
proved the ACO performance, with statistical significance on many
of the datasets. For ADACO, larger replay buffer sizes led to signif-
icant performance improvements, whereas PPOACO showed no
statistically significant relationship between buffer size and perfor-
mance. Our analysis of experience replay focused on quantitative
behavior and a limited set of buffer sizes. Future work could explore
a broader range of values, alternative sampling distributions over
� , and employing more advanced replay buffer strategies. Our find-
ings motivate further exploration of experience replay variations
to enhance ACO performance.

In the larger comparison study, PPOACO, followed by PGACO
to a lesser extent, outperformed all competitors examined. We at-
tribute PGACO’s strong performance to a careful consideration of
its fundamental design principles. By casting the algorithm explic-
itly into the ACO forward/backward/merge framework with a PG
update, modifications were straightforward. As a population-based
RL algorithm, ACO benefits from stressing this unified framework
that facilitates integrationwithmodern RLmethods and application-
driven refinements.

GECCO ’25, July 14–18, 2025, Málaga, Spain William Jardee and John W. Sheppard

Table 3: Average best solution of ACO models over ten runs.

Problem Iters AS MaxMin-AS ACOSGD ADACO PGACO PPOACO
pr2392 9000 525362 527043 499671 500144 491681 485854
ali535 5000 272290 271228 259683 261126 257014 253365
att532 5000 35610 35410 33961 33500 33498 33131
pcb422 5000 56788 56918 54096 54539 53102 52506
tsp225 5000 4436 4296 4117 4147 4022 4003
rd100 2000 8967 8682 8321 8383 8131 8092
pr76 2000 120250 117219 111604 112986 109884 109162
att48 1000 11720 11434 10981 11089 10856 10815

In [47], the pheromone evaporation rule in AS is shown to be
an L2 regularizer. Initially introduced to prevent parameter run-
away, evaporation has since been adopted by most ACO models.
In contrast, entropy regularization is a common RL technique for
mitigating early convergence by preventing premature parameter
reduction [44]. The effectiveness of entropy regularization in other
RL models suggests that the L2 regularization should be analyzed
alongside alternative parameter-bounding strategies.

To our knowledge, the theoretical guarantees for PG have not
been formally established within the context of ACO. Numerous RL
theorems apply universally to PG methods, and our connections in
this paper motivate a more formal discussion of what PG can tell
us about ACO behavior.

RL is a field with broad applications to real-world problems.
With the connection between ACO and RL, we have opened up
many practical solutions to problems that arise. Replay buffers
with importance sampling allow algorithms to reuse data from
previous samples reliably, providing both sample efficiency and
more exploration in the search [19, 44]. We see practical application
of this principle in the world of swarm robotics or network routing,
where data collection may be costly and sparse, but computation
may be plentiful. By stashing and resampling observations, these
algorithms can continue to learn, adding irregular updates to the
buffer whenever they come in. With the connection to SGD directly
made through policy gradients, custom loss function, regularizers,
and solvers can be applied according to domain-knowledge.

7 CONCLUSION
This work demonstrates that integrating reinforcement learning
principles into Ant Colony Optimization can yield significant per-
formance improvements. By incorporating policy gradient updates
and experience replay, we have enhanced ACO’s adaptability while
maintaining its core strengths. Our results show that these modifica-
tions enable more effective solution search, particularly on medium-
scale Traveling Salesperson Problem instances. More broadly, this
study highlights the potential of unifying population-based opti-
mization with reinforcement learning, paving the way for future
advancements in learning-driven metaheuristics.

While our evaluation focused on medium-sized TSP instances,
the success of our approach suggests promising directions for larger
and more complex combinatorial optimization problems. Future
work will explore scalability to high-dimensional problems, alterna-
tive problem domains beyond TSP, and a deeper sensitivity analysis

to refine hyperparameter selection. Additionally, further investiga-
tion into the interplay between ACO enhancements and reinforce-
ment learning techniques may yield even greater improvements.
By building upon these foundations, we can push the boundaries
of learning-augmented optimization and unlock new possibilities
for adaptive, high-performance metaheuristics.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
comments that have lead to a tighter presentation of our work. We
also thank members of the Numerical Intelligent Systems Labora-
tory at Montana State University for their support and guidance
through this project. This material is based upon work supported
in part by the National Science Foundation EPSCoR Cooperative
Agreement OIA-2242802. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] Jacob Adkins, Michael Bowling, and AdamWhite. 2024. A Method for Evaluating

Hyperparameter Sensitivity in Reinforcement Learning. https://doi.org/10.
48550/arXiv.2412.07165 arXiv:2412.07165

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-Generation Hyperparameter Optimization Frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (Kdd ’19). Association for Computing Machinery,
Anchorage, AK, USA, 2623–2631. https://doi.org/10.1145/3292500.3330701

[3] Shumeet Baluja and Rich Caruana. 1995. Removing the Genetics from the Stan-
dard Genetic Algorithm. In Proceedings of the Twelfth International Conference on
Machine Learning, Armand Prieditis and Stuart Russell (Eds.). Morgan Kaufmann,
Tahoe City, CA, 38–46. https://doi.org/10.1016/B978-1-55860-377-6.50014-1

[4] Mauro Birattari, Gianni Di Caro, and Marco Dorigo. 2002. Toward the Formal
Foundation of Ant Programming. In ANTS. Springer Berlin Heidelberg, Berlin,
Heidelberg, 188–201. https://doi.org/10.1007/3-540-45724-0_16

[5] Christian Blum. 2005. Ant Colony Optimization: Introduction and Recent Trends.
Physics of Life reviews 2, 4 (2005), 353–373.

[6] Christian Blum. 2024. Ant Colony Optimization: A Bibliometric Review. Physics
of Life Reviews 51 (Dec. 2024), 87–95. https://doi.org/10.1016/j.plrev.2024.09.014

[7] Christian Blum, Andrea Roli, and Marco Dorigo. 2001. HC–ACO: The Hyper-
Cube Framework for Ant Colony Optimization. InMIC’2001, Vol. 4. IRIDIA, Porto,
Portugal, 399–403.

[8] Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. 1999. A New Rank
Based Version of the Ant System–a Computational Study. Central European
Journal of Operations Research 7, 1 (1999).

[9] M. Chandana and SanjeevThakur. 2016. Ant-Net: AnAdaptive Routing Algorithm.
In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control
and Energy Systems (ICPEICES). IEEE, 1–4. https://doi.org/10.1109/ICPEICES.
2016.7853616

[10] Jia Chen, Xiao-Ming You, Sheng Liu, and Juan Li. 2019. Entropy-Based Dynamic
Heterogeneous Ant Colony Optimization. IEEE access : practical innovations,
open solutions 7 (2019), 56317–56328.

https://doi.org/10.48550/arXiv.2412.07165
https://doi.org/10.48550/arXiv.2412.07165
https://arxiv.org/abs/2412.07165
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1016/B978-1-55860-377-6.50014-1
https://doi.org/10.1007/3-540-45724-0_16
https://doi.org/10.1016/j.plrev.2024.09.014
https://doi.org/10.1109/ICPEICES.2016.7853616
https://doi.org/10.1109/ICPEICES.2016.7853616

PPOACO GECCO ’25, July 14–18, 2025, Málaga, Spain

[11] Oscar Cordon, Iñaki Viana, Francisco Herrera, and Llanos Moreno. 2000. A New
ACO Model Integrating Evolutionary Computation Concepts: The Best-Worst
Ant System. Proceedings of Ants’2000 (Aug. 2000), 22–29.

[12] Thomas Degris, Martha White, and Richard S. Sutton. 2013. Off-Policy Actor-
Critic. https://doi.org/10.48550/arXiv.1205.4839 arXiv:1205.4839

[13] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant Colony Op-
timization. In IEEE Computational Intelligence Magazine, Vol. 1. IEEE, 28–39.
https://doi.org/10.1109/MCI.2006.329691

[14] M. Dorigo and L.M. Gambardella. 1997. Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem. IEEE Transactions on
Evolutionary Computation 1, 1 (1997), 53–66. https://doi.org/10.1109/4235.585892

[15] Marco Dorigo and Luca Maria Gambardella. 1997-July. Ant Colonies for the
Travelling Salesman Problem. Bio Systems 43, 2 (1997-July), 73–81. https:
//doi.org/10.1016/S0303-2647(97)01708-5

[16] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. 1991. Positive Feedback
as a Search Strategy. Technical Report (June 1991).

[17] M. Dorigo, V. Maniezzo, and A. Colorni. 1996. Ant System: Optimization by
a Colony of Cooperating Agents. In IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), Vol. 26. IEEE, 29–41. https://doi.org/10.1109/
3477.484436

[18] Marco Dorigo, Mark Zlochin, Nicolas Meuleau, and Mauro Birattari. 2002. Up-
dating ACO Pheromones Using Stochastic Gradient Ascent and Cross-Entropy
Methods. In Applications of Evolutionary Computing: EvoWorkshops 2002: EvoCOP,
EvoIASP, EvoSTIM/EvoPLAN Kinsale, Ireland, April 3–4, 2002 Proceedings. Springer,
21–30.

[19] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo
Larochelle, Mark Rowland, and Will Dabney. 2020. Revisiting Fundamentals of
Experience Replay. In Proceedings of the 37th International Conference on Machine
Learning. PMLR, 3061–3071.

[20] Neil De La Fuente and Daniel A. Vidal Guerra. 2024. A Comparative Study of
Deep Reinforcement Learning Models: DQN vs PPO vs A2C. https://doi.org/10.
48550/arXiv.2407.14151 arXiv:2407.14151

[21] L.M. Gambardella and M. Dorigo. 1996. Solving Symmetric and Asymmetric TSPs
by Ant Colonies. In Proceedings of IEEE International Conference on Evolutionary
Computation. IEEE, 622–627. https://doi.org/10.1109/ICEC.1996.542672

[22] Luca M. Gambardella and Marco Dorigo. 1995-July. Ant-Q: A Reinforcement
Learning Approach to the Traveling Salesman Problem. In Proceedings of the
Twelfth International Conference on Machine Learning. Morgan Kaufmann, San
Francisco (CA), 252–260. https://doi.org/10.1016/B978-1-55860-377-6.50039-6

[23] Fred Glover and Gary A. Kochenberher. 2003. Handbook of Meta-Heuristics.
INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT
SCIENCE, Vol. 57. KLUWER ACADEMIC PUBLISHERS, Dordrecht.

[24] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. 2004. Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning. Journal of Machine
Learning Research 5, 9 (2004).

[25] Walter J. Gutjahr. 2000. A Graph-based Ant System and Its Convergence. Future
Generation Computer Systems 16, 8 (June 2000), 873–888. https://doi.org/10.1016/
S0167-739X(00)00044-3

[26] Walter J. Gutjahr. 2003. A Generalized Convergence Result for the Graph-Based
Ant System Metaheuristic. Probability in the Engineering and Informational
Sciences 17, 4 (Oct. 2003), 545–569. https://doi.org/10.1017/S0269964803174086

[27] Poul E. Heegaard and Werner Sandmann. 2007. Efficient Estimation of Loss
Rates in Optical Packet Switched Networks with Wavelength Conversion. In
2007 Second International Conference on Systems and Networks Communications
(ICSNC 2007). IEEE, 59–59. https://doi.org/10.1109/ICSNC.2007.32

[28] Nikola Ivković, Robert Kudelić, and Marin Golub. 2023. Adjustable Pheromone
Reinforcement Strategies for Problems with Efficient Heuristic Information. Al-
gorithms 16, 5 (2023). https://doi.org/10.3390/a16050251

[29] Long-Ji Lin. 1992. Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching. Machine Learning 8, 3 (May 1992), 293–321.
https://doi.org/10.1007/BF00992699

[30] Yahui Liu, Buyang Cao, and Hehua Li. 2021. Improving Ant Colony Optimization
Algorithm with Epsilon Greedy and Levy Flight. Complex & Intelligent Systems
7, 4 (2021), 1711–1722.

[31] Nicolas Meuleau and Marco Dorigo. 2002. Ant Colony Optimization and Sto-
chastic Gradient Descent. Artificial Life 8, 2 (April 2002), 103–121. https:
//doi.org/10.1162/106454602320184202

[32] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. https://doi.org/10.48550/
arXiv.1602.01783 arXiv:1602.01783

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-Level Control through Deep Reinforcement Learning. Nature 518, 7540
(Feb. 2015), 529–533. https://doi.org/10.1038/nature14236

[34] Frank Neumann, Dirk Sudholt, and Carsten Witt. 2010. A Few Ants Are Enough:
ACO with Iteration-Best Update. In Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’10). Association for Computing
Machinery, New York, NY, USA, 63–70. https://doi.org/10.1145/1830483.1830493

[35] Yuchen Pan, Yulin Xue, Jun Li, and Jianhua Xu. 2024. Label Selection Algorithm
Based on Ant Colony Optimization and Reinforcement Learning for Multi-label
Classification. In Neural Information Processing, Biao Luo, Long Cheng, Zheng-
GuangWu, Hongyi Li, and Chaojie Li (Eds.). Springer Nature, Singapore, 509–521.
https://doi.org/10.1007/978-981-99-8073-4_39

[36] Mohsen Paniri, Mohammad Bagher Dowlatshahi, and Hossein Nezamabadi-pour.
2021. Ant-TD: Ant Colony Optimization plus Temporal Difference Reinforcement
Learning for Multi-Label Feature Selection. Swarm and Evolutionary Computation
64 (July 2021), 100892. https://doi.org/10.1016/j.swevo.2021.100892

[37] Seid H. Pourtakdoust and Hadi Nobahari. 2004. An Extension of Ant Colony
System to Continuous Optimization Problems. In Ant Colony Optimization and
Swarm Intelligence, Marco Dorigo, Mauro Birattari, Christian Blum, Luca Maria
Gambardella, Francesco Mondada, and Thomas Stutzle (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 294–301.

[38] Gerhard Reinelt. 1991. TSPLIB—A Traveling Salesman Problem Library. ORSA
Journal on Computing 3, 4 (Nov. 1991), 376–384. https://doi.org/10.1287/ijoc.3.4.
376

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. https://doi.org/10.48550/arXiv.
1707.06347 arXiv:1707.06347

[40] Thomas Stutzle and Marco Dorigo. 2002. A Short Convergence Proof for a
Class of Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary
Computation 6, 4 (Aug. 2002), 358–365. https://doi.org/10.1109/TEVC.2002.802444

[41] Thomas Stutzle and Holger H Hoos. 1996. Improving the Ant System: A Detailed
Report on the MAX–MIN Ant System. Technical Report AIDA-96-12. FG Intellektik,
FB Informatik, TU Darmstadt, Germany.

[42] Thomas Stützle and Holger H. Hoos. 2000. MAX–MIN Ant System. Future
Generation Computer Systems 16, 8 (2000), 889–914. https://doi.org/10.1016/S0167-
739X(00)00043-1

[43] Thomas G. Stutzle. 1998. Local Search Algorithms for Combinatorial Problems -
Analysis, Improvements, and New Applications. Ph. D. Dissertation. Darmstadt
University of Technology.

[44] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction (2nd ed.). MIT press, Cambridge, Massachusetts.

[45] El-Ghazali Talbi. 2021. Machine Learning into Metaheuristics: A Survey and
Taxonomy. ACM Comput. Surv. 54, 6 (July 2021), 129:1–129:32. https://doi.org/
10.1145/3459664

[46] Ronald J Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine learning 8 (1992), 229–256.

[47] Yi Zhou, Weidong Li, Xiaomao Wang, Yimin Qiu, and Weiming Shen. 2022.
Adaptive Gradient Descent Enabled Ant Colony Optimization for Routing Prob-
lems. Swarm and Evolutionary Computation 70 (April 2022), 101046. https:
//doi.org/10.1016/j.swevo.2022.101046

[48] Y. Zhou,W. D. Li, X.Wang, and Q. Qiu. 2021. Enhancing Ant Colony Optimization
byAdaptive Gradient Descent. Data Driven Smart Manufacturing Technologies and
Applications (Feb. 2021), 191–215. https://doi.org/10.1007/978-3-030-66849-5_9

https://doi.org/10.48550/arXiv.1205.4839
https://arxiv.org/abs/1205.4839
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/4235.585892
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.48550/arXiv.2407.14151
https://doi.org/10.48550/arXiv.2407.14151
https://arxiv.org/abs/2407.14151
https://doi.org/10.1109/ICEC.1996.542672
https://doi.org/10.1016/B978-1-55860-377-6.50039-6
https://doi.org/10.1016/S0167-739X(00)00044-3
https://doi.org/10.1016/S0167-739X(00)00044-3
https://doi.org/10.1017/S0269964803174086
https://doi.org/10.1109/ICSNC.2007.32
https://doi.org/10.3390/a16050251
https://doi.org/10.1007/BF00992699
https://doi.org/10.1162/106454602320184202
https://doi.org/10.1162/106454602320184202
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1602.01783
https://arxiv.org/abs/1602.01783
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/1830483.1830493
https://doi.org/10.1007/978-981-99-8073-4_39
https://doi.org/10.1016/j.swevo.2021.100892
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TEVC.2002.802444
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1145/3459664
https://doi.org/10.1145/3459664
https://doi.org/10.1016/j.swevo.2022.101046
https://doi.org/10.1016/j.swevo.2022.101046
https://doi.org/10.1007/978-3-030-66849-5_9

	Abstract
	1 Introduction
	2 Background
	2.1 Combinatorial Optimization Problems
	2.2 Reinforcement Learning
	2.3 Ant Colony Optimization

	3 Notational Conventions Used
	4 Methods
	4.1 Replay Buffer
	4.2 Importance Sampling
	4.3 Clipping
	4.4 Advantage
	4.5 Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Ablation Study
	5.3 Comparative Analysis

	6 Discussion
	7 Conclusion
	References

