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Abstract

This paper presents Variable Interaction Graph Particle Swarm Op-
timization (VIGPSO), an adaptation to Particle Swarm Optimization
(PSO) that dynamically learns and exploits variable interactions dur-
ing the optimization process. PSO is widely used for real-valued opti-
mization problems but faces challenges in high-dimensional search
spaces. While Variable Interaction Graphs (VIGs) have proven ef-
fective for optimization algorithms operating with known problem
structure, their application to black-box optimization remains lim-
ited. VIGPSO learns how variables influence each other by analyz-
ing how particles move through the search space, and uses these
learned relationships to guide future particle movements. VIGPSO
was evaluated against standard PSO on eight benchmark functions
(three separable, two partially separable, and three non-separable)
across 10, 30, 50 and 1000 dimensions. VIGPSO achieved statistically
significant improvements (p < 0.05) over the standard PSO algo-
rithm in 28 out of 32 test configurations, with particularly strong
performance extending to the 1000-dimensional case. The algorithm
showed increasing effectiveness with dimensionality, though at the
cost of higher variance in some test cases. These results suggest
that dynamic VIG learning can bridge the gap between black-box
and gray-box optimization effectively in PSO, particularly for high-
dimensional problems.
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1 Introduction

Particle Swarm Optimization (PSO) is a population-based method
inspired by biological swarms, where particles navigate the search
space by tracking their best positions and exchanging information
across various topologies [1, 5]. Gray-box approaches enhance
standard PSO by incorporating partial problem structure knowledge
via Variable Interaction Graphs (VIGs), which capture correlations
among variables [2, 12].

We present VIGPSO—a PSO variant that dynamically constructs
a VIG during optimization. Our hypothesis is that dynamically
learned variable interactions can (1) accelerate convergence, (2)
lower objective values (p < 0.05), and (3) improve robustness,
especially in high-dimensional, non-separable spaces [4].

2 Background and Related Work

Incorporating fitness landscape insights can enhance stochastic
search methods like PSO. Towers et al. [11] used neural networks
to estimate fitness landscapes and predict ruggedness, enabling
adaptive parameter selection. Chicano et al. [2] extended these ideas
with the Dynastic Potential Crossover operator for pseudo-Boolean
problems. They construct Variable Interaction Graphs (VIGs) using
either co-occurrence patterns or Fourier analysis, later transforming
these graphs into chordal structures and clique trees—a process
that works best under sparse connectivity.

The original PSO algorithm by Kennedy and Eberhart [5] up-
dates particle velocities by combining inertia, cognitive, and social
components. Building on this framework, Tin’os et al. [10] demon-
strated that dynamic VIGs can be learned during optimization using
a simple criterion based on fitness differences, successfully detect-
ing over 97% of true variable interactions without extra evaluations.

Detecting variable interactions is also crucial in cooperative co-
evolutionary algorithms. For example, Omidvar et al. [7] proposed
differential grouping, which infers interactions by examining fitness
variations when variables are perturbed. While earlier variants
such as GDG, XDG, DDG, ODG, and RDG rely on predetermined
interactions, dynamic methods update groupings as the search
progresses [13].

3 Optimization Strategy

Our approach leverages learned variable interactions to modify
particles’ continuous trajectories via a dynamically created VIG
in a black-box setting. Unlike the ILS algorithm by Tin’os et al.
[10], which used VIGs for discrete changes, we begin (Steps 1-2 of
Algorithm 1) by initializing a zero-weighted adjacency matrix G
to record correlations between dimensions. In each PSO iteration,
standard position and velocity updates are computed and used to
calculate pairwise Pearson correlations between dimensions [14].
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Algorithm 1 VIGPSO

1: Initialize PSO parameters: particles, velocities, pbest,
gbest,r1, T2,

2: Initialize empty Variable Interaction Graph (VIG) matrix G « 0

3: for t = 1 to max_iterations do

4: Compute inertial weight weyrr < w(1 — 0.6prog)

5 Store current positions as X4
6: for each particle p do
7: for each dimension d do
8 Compute standard PSO velocity v
9 Retrieve connected dimensions N from G
10: if N is not empty then
1 Get weights: w, « G4, forn e N
12: Normalize weights: W, «<— wn /Y e 4 Wn
13: Uyig <— ZineN Wnin
14: o — 0.3(1 — g~ 2t/tmax)
15: 0" — (1 - a)vs + avyig
16: else
17: v — v
18: end if
19: Clip velocity o’ to bounds
20: end for
21: Update position x « x + o’
22: Update pbest and gbest if improved
23: end for
24: if t mod update_interval = 0 then
25: Compute particle movement AX < X — X4
26 for each pair of dimensions i, j do
27: Compute correlation p « corr(AX;, AX;)
28: if |p| > 71 then
29: Gij < |pl
30: else if |p| < 72 then
31: Gi,j «— 0
32: end if
33: end for
34: end if
35: end for

36: return gbest

Weak correlations below a pruning threshold 72 are removed (Steps
24-31 of Algorithm 1) to retain only meaningful interactions.

The VIG is then integrated into the PSO velocity update using an
adaptive weighting scheme (Steps 8—17 of Algorithm 1). For each
dimension d, the new velocity is computed as:

o) = (1-a)vs +avyg
2lie Ny Wivi
Oyig = ———
vie > ie Nyw;

where v; is the standard velocity update, w; is the VIG edge weight
for neighbors N, and « is an adaptive weight that increases with
iterations. Alternative communication topologies (e.g., ring or star)
can replace the fully connected gbest topology, and velocity clipping
is applied to prevent explosions [3].
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The weight a, which determines the relative contribution of vy;g,
evolves as optimization proceeds according to:

a =0.3(1— e 2PT09)

where prog = t/max_iterations, ensuring a smooth transition from
exploration to exploitation. Thus, VIGPSO enhances standard PSO
by gradually increasing the influence of learned variable interac-
tions over time.

4 Experimental Design
We tested the effectiveness of our approach using benchmark func-
tions specifically chosen to represent different types of variable
interactions and separability characteristics. Three categories of
functions were selected to help understand how the VIG adaptation
performed under different optimization scenarios. For consistency,
all functions were evaluated within the bounds [-5, 5] for all di-
mensions. For fully separable functions where variables could be
optimized independently, we used the Sphere function:

n

fe =2,

i=1

the Sum Squares function:

flx) = Zn: ix?,

i=1

and Schwefel 2.22:

F) =l + [ | il
i=1 i=1

For partially separable functions, where groups variables interacted
while the groups remained independent of each other, we used the
Dixon-Price function:

n
F@) = (= )%+ )i - xim1)?,
i=2
and the Rastrigin function:
n
F(x) =10n+ > [x? 10 cos(27x;)].
i=1

For fully non-separable functions, where all variables interacted in
complex ways, we used the Rosenbrock function:
n-1
£ = D 11000xi1 = xH)? + (1 - x1)?],
i=1
the Griewank function:
x? n

f) =1+ —— —[Teos(ZL),
;4000 LTy

and the Alpine function:
n
f(x) = Z |x; sin(x;) + 0.1x;].
i=1
Performance was evaluated on dimensions 10, 30, 50, and 1000
using 50 particles over 300 iterations, with 100 independent runs
per configuration. The evaluation metrics included final objective
value, convergence curves, robustness across function types, and



Using Variable Interaction Graphs to Improve Particle Swarm Optimization

Table 1: Statistical Comparison of VIGPSO vs Standard PSO

Type Function: p-value; Winner

Sphere, SumSquares, Schwefel 2.22:
All<0.001 (VIGPSO)

Dixon-Price: All<0.001 (VIGPSO).
Rastrigin: 10: 0.0047 (PSO), 30: n.s., 50
& 1000: <0.001 (VIGPSO)
Rosenbrock: All<0.001 (VIGPSO).
Griewank: 10: n.s., 30/50/1000: <0.001
(VIGPSO).

Alpine: 10: 0.0021 (VIGPSO), 30: n.s., 50
& 1000: <0.001 (VIGPSO).

Statistical significance determined using Mann-Whitney U test with «
= 0.05. P-values are rounded to three decimal places.

Separable

Partially Separable

Non-Separable

statistical significance (Mann-Whitney U test, two-sided, with a =
0.05).

A parameter sensitivity analysis was performed for each of the
32 configurations (8 functions x 4 dimensions) via grid search over
the following parameters: inertial weight 0.4, 0.5, 0.6, 0.8, cognitive
and social learning factors 1.0, 1.5, 2.0, 2.5, correlation thresholds
0.3,0.5,0.7, pruning thresholds 0.3,0.5,0.7, and update intervals
5,10, 15. Each combination was evaluated over 100 iterations to
select the best configuration, ensuring a fair comparison between
standard PSO and VIGPSO.

Tuning results revealed that VIGPSO generally performs best
with lower inertial weights (@ = 0.4) and higher social learning
factors, while standard PSO favors moderate inertial weights (0 =
0.6) with higher cognitive factors.

The time complexity of VIGPSO is O(TSd?)—with T iterations,
S particles, and d dimensions—compared to standard PSO’s O(TSd)
due to: (i) per-particle VIG influence computations requiring O(d?)
operations per particle (each dimension sums contributions from
up to d — 1 others) and (ii) VIG updates costing O(Sd?) per iteration.
Although this overhead is significant in high dimensions, the im-
proved performance justifies the trade-off; the VIG update interval
parameter helps control the frequency of these updates without
altering the asymptotic complexity.

5 Results and Discussion

As mentioned above, the benchmark experiments were conducted
across eight test functions, categorized by their separability charac-
teristics. The results of the Mann-Whitney U test are presented in
Table 1. The column labeled “Lower Obj”” identifies the algorithm
that returned the lower objective value (on average). A dash (“-”)
indicates no statistically significant difference in performance.

Figure 1 shows the convergence curves for both algorithms at
1000 dimensions. The solid line represents the mean global best
fitness over 100 independent runs, and the shaded area indicates
one standard deviation from the mean.

Figure 2 shows the distribution of final fitness values achieved by
both algorithms for the 1000-dimensional experiments. The boxplot
illustrates the median, quartiles, and outliers of the final solutions
from 100 independent runs.
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Convergence Curves for d=1000
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Figure 1: Mean fitness and standard deviation bands in 1000
dimensions.

The results across three performance criteria were very strong.
VIGPSO achieved statistically significant objective improvements
(p < 0.05) in 20 out of 24 test configurations (Table 1), particularly
in higher dimensions. Three of the remaining four configurations
were statistically equivalent, and standard PSO was best in only
one 10-dimensional case. As dimensionality increased, VIGPSO’s
performance consistently surpassed that of PSO.

For fully separable functions (Sphere, Sum Squares, and Schwefel
2.22), VIGPSO generally converged faster with less variance, al-
though some functions like Schwefel 2.22 exhibited notable fluctua-
tions. For partially separable functions (Dixon-Price and Rastrigin),
VIGPSO showed mixed results: it significantly improved Dixon-
Price across all dimensions (p < 0.001), while Rastrigin favored
PSO atd = 10 (p = 0.005), was equivalent at d = 30 (p = 0.468),
and was outperformed by VIGPSO at d = 50 (p = 0.027). At 1000
dimensions, VIGPSO outperformed PSO across all runs (p < 0.001),
highlighting its scalability.

For non-separable functions (Rosenbrock, Griewank, and Alpine),
VIGPSO significantly improved results for Rosenbrock (p < 0.001).
Griewank showed no difference at d = 10 (p = 0.691) but favored
VIGPSO at d = 30 and d = 50 (p < 0.001) with strong performance
continuing at 1000 dimensions, while Alpine also favored VIGPSO
atd =10 (p = 0.002), d = 50, and d = 1000 (p < 0.001). These find-
ings emphasize VIGPSO’s enhanced capacity to leverage variable
interactions as the search space expands.
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Final Fitness Distribution by Function
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Figure 2: Distribution of final fitness values achieved by both
algorithms across all test functions at 1000 dimensions.

The robustness analysis for the 1000-dimensional experiments
(Figure 2) indicates that in several test configurations, VIGPSO ex-
hibits wider interquartile ranges. This increased variability may
be attributed to its adaptive variable interaction graph, which pro-
motes diverse exploration paths across runs.

Although VIGPSO incurs additional computational overhead for
maintaining and updating its variable interaction graph, this cost is
justified by its improved convergence and solution quality—even on
separable functions, where its velocity update mechanism appears
to impart extra diversity and implicit momentum effects.

6 Conclusion

The results demonstrate VIGPSO’s effectiveness in black-box op-
timization, with statistically significant improvements in 28 of 32
configurations and consistent performance across separable and
non-separable problems, especially at higher dimensions.

Although VIGPSO improved solution quality, it also introduced
greater variance in lower dimensions, likely due to its adaptive
learning mechanism. This trade-off appears acceptable for complex
problems where superior solutions are critical.
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Future work will explore adaptive mechanisms to modulate
learned interactions by dimensionality, alternative correlation met-
rics beyond Pearson correlation, and extensions to constrained

problems. The success of variable interaction learning suggests
incorporation into advanced PSO variants such as Comprehen-

sive Learning PSO (CLPSO) [6] and adaptation for cooperative
co-evolutionary methods. For instance, VIGPSO could refine sub-
population grouping in differential grouping-based CCEA methods
[7], enhance factored evolutionary algorithms (FEA) [9] where
overlapping factors capture additional interactions, and integrate
with dynamic factor approaches [8] to directly tie adaptive VIG
construction to improved group definitions.

References

[1] Tim Blackwell and James Kennedy. 2019. Impact of Communication Topology in
Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 23,
4(2019), 689-702. doi:10.1109/TEVC.2018.2880894

[2] Francisco Chicano, Gabriela Ochoa, L. Darrell Whitley, and Renato Tinos. 2022.
Dynastic Potential Crossover Operator. Evolutionary Computation 30, 3 (09 2022),
409-446. doi:10.1162/evco_a_00305 arXiv:https://direct.mit.edu/evco/article-
pdf/30/3/409/2040916/evco_a_00305.pdf

[3] Eberhart and Yuhui Shi. 2001. Particle swarm optimization: developments, appli-
cations and resources. In Proceedings of the Congress on Evolutionary Computation,
Vol. 1. 81-86 vol. 1. doi:10.1109/CEC.2001.934374

[4] Tim Hendtlass. 2009. Particle Swarm Optimisation and high dimensional problem
spaces. In IEEE Congress on Evolutionary Computation. 1988-1994. doi:10.1109/
CEC.2009.4983184

[5] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of International Conference on Neural Networks, Vol. 4. IEEE, 1942—
1948.

[6] JJ.Liang, AK. Qin, P.N. Suganthan, and S. Baskar. 2006. Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions. IEEE
Transactions on Evolutionary Computation 10, 3 (2006), 281-295. doi:10.1109/
TEVC.2005.857610

[7] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, and Xin Yao. 2014. Cooperative
Co-Evolution With Differential Grouping for Large Scale Optimization. IEEE
Transactions on Evolutionary Computation 18, 3 (2014), 378-393. doi:10.1109/
TEVC.2013.2281543

[8] Shehzad Qureshi and John W. Sheppard. 2016. Dynamic sampling in training
artificial neural networks with overlapping swarm intelligence. In 2016 IEEE
Congress on Evolutionary Computation (CEC). 440-446. doi:10.1109/CEC.2016.
7743827

[9] Shane Strasser, John Sheppard, Nathan Fortier, and Rollie Goodman. 2017. Fac-

tored Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation

21, 2 (2017), 281-293. doi:10.1109/TEVC.2016.2601922

Renato Tinds, Michal Witold Przewozniczek, and Darrell Whitley. 2022. Iter-

ated Local Search with Perturbation Based on Variables Interaction for Pseudo-

Boolean Optimization. In Proceedings of the Genetic and Evolutionary Computation

Conference (Boston, MA, USA). Association for Computing Machinery, New York,

NY, USA, 296-304. doi:10.1145/3512290.3528716

Sebastian Towers, Jessica James, Harrison Steel, and Idris Kempf. 2024. Learning-

Based Estimation of Fitness Landscape Ruggedness for Directed Evolution.

bioRxiv 2024.02.28.582468 (2024). do0i:10.1101/2024.02.28.582468

L Darrell Whitley, Francisco Chicano, and Brian W Goldman. 2016. Gray box

optimization for Mk landscapes (NK landscapes and MAX-KSAT). Evolutionary

computation 24, 3 (2016), 491-519.

Shuai Wu, Zhitao Zou, and Wei Fang. 2018. A Dynamic Global Differential Group-

ing for Large-Scale Black-Box Optimization. In Advances in Swarm Intelligence,

Ying Tan, Yuhui Shi, and Qirong Tang (Eds.). Springer International Publishing,

Cham, 593-603.

Maoqing Zhang, Wuzhao Li, Liang Zhang, Hao Jin, Yashuang Mu, and Lei Wang.

2023. A Pearson correlation-based adaptive variable grouping method for large-

scale multi-objective optimization. Information Sciences 639 (2023), 118737. doi:10.

1016/j.ins.2023.02.055

[10

[11

[12

ey
&

[14


https://doi.org/10.1109/TEVC.2018.2880894
https://doi.org/10.1162/evco_a_00305
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/30/3/409/2040916/evco_a_00305.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/30/3/409/2040916/evco_a_00305.pdf
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1109/CEC.2009.4983184
https://doi.org/10.1109/CEC.2009.4983184
https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/CEC.2016.7743827
https://doi.org/10.1109/CEC.2016.7743827
https://doi.org/10.1109/TEVC.2016.2601922
https://doi.org/10.1145/3512290.3528716
https://doi.org/10.1101/2024.02.28.582468
https://doi.org/10.1016/j.ins.2023.02.055
https://doi.org/10.1016/j.ins.2023.02.055

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Optimization Strategy
	4 Experimental Design
	5 Results and Discussion
	6 Conclusion
	References

