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The research presented in this paper is a scientific extension of the work presented at IEEE AUTOTESTCON 2017 [8].

Multiple Fault Diagnosis Using 
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W hen supporting commercial or defense systems 
such as aircraft avionics, guidance and con-
trol, electronic warfare, or propulsion systems, 

a perennial challenge is providing effective test and diagnosis 
strategies to minimize downtime, thereby maximizing sys-
tem availability. One can argue that one of the most effective 
ways to maximize downtime is to be able to detect and iso-
late as many faults that either exist or are emerging in a system 
at one time as possible. This is referred to as the “multiple-
fault diagnosis” problem, and it is a problem that is known to 
be computationally intractable (i.e., NP-complete) [1]. While 
several tools have been developed over the years to assist in 
addressing the multiple-fault diagnosis problem, consider-
able work remains to provide the best diagnosis possible given 
the information collected through observations, gripes, test 
results, and historical data. Recently, a new model for evolu-
tionary computation has been developed called the “Factored 
Evolutionary Algorithm” (FEA) [2]. In FEA, a target optimi-
zation problem is broken down into subproblems that exhibit 
some kind of overlap. Then the optimization algorithm of 
choice (e.g., simulated annealing, genetic algorithm, particle 
swarm optimization) is applied to each of the subproblems, 
and the subproblems periodically share information with 
neighboring subproblems along the points of overlap.

One instantiation of FEA is known as Overlapping Swarm 
Intelligence (OSI) [3], and this method has been applied to the 
problem of abductive inference in Bayesian networks [4]. Both 
full and partial abductive inference in Bayesian networks are 
known to be NP-hard [5]-[7], yet OSI has been demonstrated 
to provide state-of-the-art results in performing abductive in-
ference on several medium and large scale Bayesian networks 
that are available for test purposes.

In this paper, which is an extended version of [8], we com-
bine our prior work in deriving diagnostic Bayesian networks 
from static fault isolation manuals and fault trees [9] with the 
FEA strategy to performing abductive inference. Previously, 
we compared a variety of search techniques, including simple 

hillclimbing, genetic algorithms (GA), and particle swarm 
optimization (PSO) with a more traditional approach to abduc-
tive inference, and results indicate that these methods should 
perform well on multiple-fault diagnosis as well. We dem-
onstrate the effectiveness of our FEA approach to addressing 
the multiple-fault diagnosis problem on several networks de-
rived from a model commonly used in the literature as well as 
several existing Fault Isolation Manuals (FIMs) used for main-
taining an actual military aircraft. As extended work, we also 
perform an in-depth analysis of the effect of hidden failures in 
the diagnostic model as a means of explaining the rather sur-
prising behavior from the initial experiments. We find that the 
presence or absence of hidden failures has a significant impact 
on overall multiple-fault diagnostic performance, and that our 
approach to deriving Bayesian networks from fault trees helps 
to mitigate the issues associated with hidden failures by pro-
viding clear signatures for each fault.

This paper provides background information necessary to 
understand our approach, including a brief introduction to the 
multiple-fault diagnosis problem and how multiple-fault di-
agnosis relates to Bayesian abductive inference. There is also 
an introduction to FEA. Once the basic concepts are in place, 
we review related work, discuss our technical approach, pres-
ent the results of our experiments and discuss the implications 
of our experiments. We wrap up the paper with a review of the 
main conclusions and a discussion of future work.

Background
To provide context, we begin with some formalities. First, we 
need to address the question of what constitutes multiple-
fault diagnosis. While a relatively straightforward concept, 
we decided to be a bit more formal in our definition to avoid 
confusion. We then proceed to introduce the underlying 
mathematical model that defines, not only what doing multi-
ple-fault diagnosis is, but also explains why it is such a difficult 
problem. Finally, we present our approach to solving the prob-
lem by introducing “Factored Evolutionary Algorithms” 
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(FEA). All three of these topics have been discussed at length 
in our previous work, so much of what we discuss here is lim-
ited to a brief overview.

Multiple Failure Diagnosis
In previous work, we provided a formal treatment of the 
multiple-fault diagnosis problem [1]. For completeness, we 
summarize those results here by defining what we mean by a 
fault, a test, a fault signature, and ultimately a multiple fault 
and its signature.

For our purposes, a fault is any specific cause of a system 
not being able to perform its intended function, and a test is a 
means of observing the behavior of the associated fault. A mul-
tiple fault corresponds to the presence of more than one fault in 
the system. We say that the set of test observations associated 
with each fault represents that fault's “signature.” We can rep-
resent that signature as a vector of truth values where TRUE 
indicates that a test can detect the fault and FALSE indicates it 
cannot. Given this notion of a “fault signature,” which consists 
of a set of test results that either pass or fail, the signature of a 
multiple fault then corresponds to the logical OR of the signa-
tures for the individual faults.

Using this definition of a multiple fault, the basic approach 
to performing multiple-fault diagnosis can be reduced to find-
ing the minimum set of faults in a system whose combined 
signature best explains the test results obtained. Unfortu-
nately, using this definition, we showed previously that 
the minimum set covering problem, a known NP-complete 
problem [10], can be reduced to the multiple-fault diagnosis 
problem. Thus, finding the minimum sized multiple fault set 
to explain a set of test results is itself NP-complete.

Bayesian Networks and Abductive Inference
The work discussed in this paper makes use of our additional 
prior work attempting to develop approaches to efficient ab-
ductive inference in Bayesian networks [4]. The approach 
described here involves mapping a diagnostic problem onto 
a Bayesian network and then performing abductive inference 
over that network. A Bayesian network is a directed acyclic 
graph where each vertex in the graph corresponds to a ran-
dom variable, and each edge between two variables Xi → Xj 
denotes a probabilistic relationship between these variables 
corresponding to P (Xj|Xi).

In general, a Bayesian network encodes a joint probability 
distribution over n random variables X = {X1,...,Xn} such that
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where Pa(Xi) denotes the parents of node Xi.
Considerable work has been performed developing Bayes-

ian networks for diagnostic applications; however, such 
networks often exhibit substantial complexity. As a method 
for combatting this complexity, Schwe et al. observered that the 
Noisy-Or formalism not only reduces the size of the network 
but more closely matches assumptions made in performing di-
agnosis [11], [12].

The Noisy-Or formalism makes two assumptions and rep-
resents these assumptions using the “line failure model” as 
shown in Fig. 1. First, the accountability assumption says that 
at least one parent node must account for (i.e., explain) a child 
node being observed to be true. This is key for treating fault di-
agnosis as abductive inference since the child nodes are test 
nodes and the parent nodes are fault nodes. Second, the excep-
tion independence assumption says that exceptions to normal 
behavior are independent of one another.

We can represent this model through a series of AND gates 
for each parent, where the inputs include the cause and a 
negated mechanism representing inhibition of proper func-
tioning. The output of these AND gates then feed an OR gate, 
which in combination yields the Noisy-Or model. We see this 
representation in Fig. 1, where we can think of ui as being a 
failure mechanism, and each value Ii, the failure inhibition 
mechanism, is drawn from a binary probability distribution. 
These inhibitor probabilities are what gives the Noisy-Or 
model its name, in that they introduce noise to an otherwise 
deterministic function. Then ui' provides the output of a cor-
responding AND gate. Finally, we define a function F(x) that 
corresponds to a standard OR gate, giving us F(x)= Vi ui'. Fi-
nally, Pearl provided a method for computing the conditional 
probability tables on the fly using this model, thereby reducing 
the complexity of the overall model.

Given a Bayesian network, the abductive inference prob-
lem involves assigning evidence (i.e., making observations) 
to a subset of variables in the network and then determining 
the most probable values to assign to a subset of the remain-
ing variables. More formally, let XO ⊂ X be a set of variables for 
which we have observed states values, and let XU ⊆ X \ XO be 
a set of variables that are unknown. Then abductive inference, 
also sometimes referred to as the most probable explanation 
(MPE) problem, corresponds to the problem of finding state 
assignments for XU such that
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Fig. 1. Line failure model for Noisy-Or in Bayesian networks.
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The k-MPE problem attempts to find the k most probable state 
assignments over XU.

If XU = X \ XO, then the problem is referred to as the “full” 
abductive inference problem, which is the MPE problem. If, on 
the other hand, XU ⊂ X \ XO, we have what is referred to as the 
“partial” abductive inference problem, also referred to as the 
maximum a posteriori (MAP) explanation problem. Unfortu-
nately the full abductive inference problem was proven to be 
NP-hard by Shimony [7], and even constant-factor approxi-
mate inference was proven to be NP-hard for partial abductive 
inference [6].

An extended and significantly more difficult problem is re-
ferred to as the “most relevant explanation” (MRE) problem. 
For the MRE problem, the task involves determining state as-
signments for only a subset of XU that maximizes the posterior 
probability, where which and how many of those variables 
to assign is unknown a priori. In particular, the MRE problem 
has been conjectured to be NPPP-hard because of the exponen-
tial search space associated with determining which variables 
to instantiate, combined with the abductive inference prob-
lem [13].

The question of complexity is relevant to us because we can 
regard the multiple-fault diagnosis problem as abductive in-
ference. In particular, since our approach involves mapping 
the diagnostic problem itself to a Bayesian network, we find 
ourselves faced with performing abductive inference on this 
network (whether MAP, MPE, or MRE) at the outset. Also 
given the fact this is a very real problem facing organizations 
having to perform complex system maintenance, coupled with 
the fact real-world test systems struggle due to uncertainty in-
herent in the test process [14], there is a real need to come up 
with effective approximation techniques to solve this problem, 
in spite of the discouraging complexity results. Developing an 
approach to meet that need is the focus of this paper.

Factored Evolutionary Algorithms
Factored Evolutionary Algorithms (FEA) [2] are a new model 
of cooperative co-evolutionary optimization [15]-[17] that 
subdivides a problem to be optimized into subproblems and 
then optimizes the subproblems individually. We call the sub-
problems “factors” to relate them to the process of factorizing 
a function. The basic approach assumes that the factors over-
lap, meaning that different factors may share variables. This 
establishes a “communication” network between the factors. 
FEA then proceeds by iterating through a process of search/
update, competition, and sharing of information between the 
factors.

More formally, suppose we are given a function f : DN → , 
and we wish to optimize this function over the set of parame-
ters X = (X1,...,XN ). Now let Si be a subset of X. A factor can then 
be defined over the parameters in Si that are optimizing f.

FEA typically employs a population-or swarm-based ap-
proach to optimize the function f. Because each population or 
swarm is only optimizing over a subset of values in X, the fac-
tor defined for Si needs to know the values of Ri = X \ Si for 
local fitness evaluations. These values are determined from the 

other factors, thus enabling all of the values to be combined to 
optimize the whole function. The algorithm accomplishes this 
through competition and sharing.

First, a competition is held to find which factor holds the 
best state assignment for each dimension in f. Here, we sum-
marize the competition algorithm described by Strasser et 
al. [2] (Algorithm 1). FEA constructs a full global solution G 
= (X1,...,XN ) to evaluate the combined factors. Then for each 
Xi ∈ X, the process iterates over the factors in a greedy fash-
ion to find the best values. Next, sharing (Algorithm 2) allows 
overlapping factors to introduce knowledge from the global 
solution back into other factors. It also sets the values from Ri to 
those in the full global solution G so that each factor can eval-
uate its partial solution on f. When combining these processes 
with an appropriate underlying optimization algorithm and 
iterating (Algorithm 3), we get the full FEA process.

Algorithm 1 FEA Compete
Input: Function f to optimize, factors S, full global solution G
Output: Full solution G
	 1: randVarPerm ← RandomPermutation(N)
	 2: for ranVarIndex = 1 to N do
	 3:   i ← randVarPerm[ranVarIndex]
	 4:   bestFit ← f (G)
	 5:   bestVal ← P1[Xi]
	 6:   Si ←{ Sk | Xi ∈ Sk }
	 7:   randPopPerm ← RandomPermutation(|Si|)
	 8:   for ranPopIndex =1 to |Si| do
	 9:     Pj ← Si [randPopPerm[ranPopIndex]]
10:     G [Xi] ← Pj [Xi]
11:     if f (G)is better than bestFit then
12:       bestVal ← Pj[Xi]
13:       bestFit ← f (G)
14:     end if
15:   end for
16: G [Xi] ← bestVal
17: end for
18: return G

Algorithm 2 FEA Share
Input: Full global solution G, factors S
Output: Updated factors S
	 1: for all Pi ∈ S do
	 2:   for all Xj ∈ Ri do
	 3:   Ri[Xj] ← G[Xj]
	 4:   end for
	 5:   pw ← Pi.worst()
	 6:   for all Xj ∈ Si do
	 7:     pw[Xj] ← G[Xj]
	 8:   end for
	 9:   pw.fitness ← f (pw ∪ Ri)
10: end for
11: return S



30	 IEEE Instrumentation & Measurement Magazine	 August 2018

ICPSO
As mentioned, virtually any stochastic search algorithm can 
be applied with FEA. Since the abductive inference prob-
lem is inherently discrete, we applied a new discrete PSO 
algorithm that we developed previously and found to be ef-
fective on such problems—the Integer and Categorical Particle 
Swarm Optimization (ICPSO) algorithm [18]. In normal PSO, 
particles are defined to represent the states of the various vari-
ables being optimized. In ICPSO, we define a particle p as 
Xp =[Dp,1, Dp,2,..., Dp,n], where each Dp,i denotes the probability 
distribution for variable Xi. Specifically, each dimension of the 
particle's position vector corresponds to a set of distributions 

=  
 , , , ,, , ,a b k

p i p i p i p iD d d d , where ,
j
p id  is the probability that Xi in par-

ticle p takes on value j.
A particle's velocity then becomes a matrix made up of n 

vectors , one for each variable:
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where ψ ,
j
p i is particle p's velocity for variable i in state j. The 

velocity and position update equations are identical to those 
of the gBest PSO and are applied directly to the values in the 
distribution.
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Algorithm 3 Factored Evolutionary Algorithm
Input: Function f to optimize, optimization algorithm A
Output: Full solution G
	 1: S ← initializeFactors( f, X, A)
	 2: G ← initializeFullGlobal(S)
	 3: repeat
	 4:   for all Pi ∈ S do
	 5:     repeat
	 6:       Pi.updateIndividuals()
	 7:     until Termination criterion is met
	 8:   end for
	 9:   G ← Compete (f, S, G)
10:   S ← Share (G, S)
11: until Termination criterion is met
12: return G

The difference operator is defined as a component-wise differ-
ence between the two position vectors, i.e., for each variable Xi 
and value j ∈ Vals(Xi), ( ) = −, ,- ,p p

j j j
pB i p ii

d d d
pBest P

Here, dj
pB is the personal best position's probability that 

variable Xi takes value j. The global best equation is identical 

except pBestp is replaced with gBest and dj
pB,i with dj

gB,i . Add-
ing the velocity to the position is also component-wise. Thus,

ψ= +′, , ,
j j j
p i p i p id d  .

After the velocity and position update, the resulting dis-
tributions are renormalized to ensure each probability falls 
within [0, 1], and all of the probabilities sum to 1.

To evaluate a particle p, its distributions are sampled to cre-
ate a candidate solution Sp = [sp,1,sp,2,...,sp,n] where sp,j denotes 
the state of variable Xj. Then Sp is tested using the associated 
fitness function. Thus the samples generated serve as proxies 
to evaluate the distributions. When a particle produces a sam-
ple that beats the global or local best, both the distributions 
from that particle's position, Pp, and the sample itself, Sp, are 
used to update the best values.

Mathematically, for all j ∈ Vals(Xi) the global best's proba-
bility is updated as
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where , the scaling factor, is a user-set parameter that deter-
mines the magnitude of the shift in the distribution restricted 
to [0, 1). This increases the likelihood of the distribution pro-
ducing samples similar to the best sample, while inherently 
maintaining a valid probability distribution. The procedure 
for setting the local best is the same.

Related Work
A considerable amount of research has been conducted in the 
area of multiple-fault diagnosis, and it is impossible to provide 
a comprehensive treatment here. Therefore, in this section, we 
focus on reviewing some of the more significant historical liter-
ature as well as reviewing work related to abductive inference 
in Bayesian networks.

Multiple-Fault Diagnosis
Early work in multiple “disorder” diagnosis was done in a 
medical setting by James Reggia [19]. His approach involved 
looking at the general diagnosis problem as corresponding to 
the set covering problem with the intent on using this approach 
to diagnose multiple simultaneous disorders in a patient. 
Given the complexity of set covering, Reggia proposed a 
sequential hypothesis and test mechanism to overlay explana-
tions for the disorders based on the symptoms observed.

Shortly after Reggia's work on multiple disorder diagnosis, 
Ray Reiter and Johan de Kleer independently and simula-
neously published landmark work defining the problems of 
fault diagnosis and multiple-fault diagnosis more formally 
[20], [21]. Their work led to the development of a variety of 
model-based methods for diagnosis based on first principles. 
In their approaches, a basic model of the proper functioning 
is developed, and diagnosis corresponds to coming up with 
explanations for deviations from nominal behavior. Reiter's 
approach utilized a logic-based system, where de Kleer's ex-
tended Reggia's ideas from set covering. The difference in de 
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Kleer's case was that he looked for minimal sets of violated as-
sumptions to generate the diagnosis.

By the late 1980s, several diagnostic systems had been 
developed using a variety of paradigms. Finin and Morris 
summarized and compared a lot of this work by putting di-
agnosis into the context of abductive reasoning [22]. Formally, 
they observed that most reasoning systems assume a logical 
schema consisting of the following:

1.	Major premise (rule): ∀x [P (x) ⇒ Q(x)]
2.	Minor premise (case): P (a)
3.	Conclusion (fact): Q(a)
Using this schema, Finin and Morris observed that deduc-

tive reasoning corresponds to inferring the third statement 
from statements 1 and 2, and inductive reasoning corresponds 
to inferring the first statement from statements 2 and 3. Both 
methods are generally well-founded and can be related to 
forward and backward chaining respectively. Abductive in-
ference, on the other hand, is when one has statements 1 and 3 
and wants to make a claim about statement 2. In this case, state-
ment 2 would serve as an “explanation” for statement 3 based 
on the rule structure given in statement 1. In their work, Finin 
and Morris examined a variety of systems for doing abductive 
inference, including those based on Bayesian methods, which 
is of direct relevance to this work.

Several years later, Heckerman and Schwe examined the ef-
fectiveness of three different Bayesian methods for performing 
multiple-fault diagnosis [23]. These methods included a naïve 
Bayes model (which they refer to as a “simple” Bayes model), 
a naïve Bayes multi-net model (which they call a multidimen-
sional Bayes model consisting of separate naïve Bayes models 
for each fault), and a Noisy-Or model [11]. Of note is that these 
same authors were instrumental in creating the QMR-DT med-
ical diagnostic model, which was one of the first successful 
diagnostic Bayesian networks utilizing the Noisy-Or formal-
ism [12]. One of their principal findings was that the Noisy-Or 
model was the closest to ground truth of the three models. 
Note that we use the Noisy-Or formulation in our work here.

Shortly after the comparison by Heckerman and Schwe, 
Sheppard and Simpson provided a formal definition of the 
multiple-fault diagnosis problem and proved that multiple 
fault diagnosis is NP-complete [1]. Their definition was based 
on a logic model-based approach, similar to the work of Reiter, 
and drew on reducing the set covering problem to multiple-
fault diagnosis. It is likely the community was aware of the 
complexity result at the time of this work; however, this paper 
provided the first complexity proof. It also included a greedy 
set covering algorithm to be used as an approximation doing 
multiple-fault diagnosis.

Shakeri et al. examined multiple-fault diagnosis in the con-
text of the optimal sequential diagnosis problem [24]. Within 
this context, they note that the optimization part alone is NP-
hard. When embedding multiple-fault diagnosis within the 
optimization problem, the resulting problem is conjectured 
to be NPPP-hard. Their approach was to focus on applying in-
formation theory to determine a sequence of tests covering an 
AND/OR graph to uncover multiple faults sequentially. They 

then showed a tradeoff between suboptimality and computa-
tional complexity in their approach.

Finally, we consider more recent work by Singh et al. who 
defined and developed algorithms to solve the dynamic mul-
tiple-fault diagnosis problem [25]. The difference from other 
multiple-fault diagnosis problems is that DMFD considers a 
sequence of tests collected over time and mapped to an un-
derlying temporal model, such as a hidden Markov model or 
a dynamic Bayesian network. Even though their model is tem-
poral, their focus was on explaining past behavior to perform 
diagnosis rather than attempting to predict future failure. The 
approach they took was to pose the DMFD problem as a pri-
mal-dual problem using Lagrangian relaxation. Because of the 
probabilistic formulation that results, their approach is also 
able to incorporate uncertainty of test results into the process.

Bayesian Abductive Inference
In our prior work [4], we provided a fairly complete review of 
previous research performed in abductive inference. Among 
the most significant work done in this area is work by Dech-
ter [26], [27]. In her work, Dechter adapts a form of variable 
elimination by imposing an elimination order based on mar-
ginalizing out nodes in the network with the fewest neighbors, 
In addition, her bucket elimination (and mini-bucket elim-
ination) algorithm uses max-marginalization rather than 
sum-marginalization to find the most probable explanation.

A variety of “soft computing” approaches have also been 
applied, mostly focused on using genetic algorithms. For ex-
ample, Gelsema used a GA for full abductive inference where 
the chromosome was a vector of Boolean values, and fitness 
evaluation used standard likelihood scoring [28]. Similarly, 
de Campos et al. used a GA with integer-based chromosomes 
to perform partial abductive inference [29]. Fitness was evalu-
ated using probabilistic propagation.

The first application of a PSO-based approach to abduc-
tive inference was performed by Ganesan Pillai and Sheppard 
[30], with that work being extended to a factored version (over-
lapping swarm intelligence) by Fortier et al. [4]. This work 
demonstrated significant improvement in the accuracy of both 
full and partial abductive inference over traditional and soft 
computing methods. Subsequently, we developed FEA as a 
generalization of OSI and applied it to abductive inference 
using PSO, GA, and differential evolution as underlying opti-
mization methods [2]. In every case, the FEA method yielded 
superior results, thus demonstrating that factoring the optimi-
zation process is what led to the improved performance.

Approach
To evaluate our approach, we employ a process whereby we 
construct Bayesian networks from existing diagnostic strate-
gies known as “fault isolation manuals” (FIM). We then use the 
resulting networks as the basis for performing abductive infer-
ence under uncertainty using our FEA approach. The overall 
experimental approach is described below under Experimen-
tal Design, however, we begin by reviewing the basic process 
for deriving the Bayesian networks.
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Generating Bayesian Networks from FIMs
The Bayesian networks used in this study were all derived 
from pre-existing diagnostic strategies provided in the form of 
FIMs. A FIM is a decision tree or decision graph that specifies 
pre-defined orders for executing tests where a given test choice 
is determined by the path leading to that test in the tree. The 
most common form of FIM is a diagnostic fault tree, such as 
the one shown in Fig. 2. Note that this particular tree is derived 

from a simple diagnostic logic model (Fig. 3), as described in 
Simpson and Sheppard [31].

Previously, we developed a process for deriving D-matri-
ces from FIMs [9]. The D-matrices were then used as the basis 
for constructing the Bayesian networks. D-matrices, as well 
as several algorithms for performing both fault diagnosis and 
testability analysis, are discussed at length in Sheppard and 
Simpson [31]; therefore, we refer those interested to these two 

Fig. 2. An example FIM derived from Simpson and Sheppard [31].

Fig. 3. Simple diagnostic logic model from Simpson and Sheppard [31].
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sources for more detail. The key steps in the approach, how-
ever, are as follows:

◗◗ Construct a bit matrix where rows correspond to faults in 
the FIM and columns correspond to tests in the FIM.

◗◗ From each leaf of the FIM, traverse paths back towards 
the root. If the edge traversed corresponds to a passing 
test, insert a 0 in the matrix corresponding to the row of 
the fault at the leaf and the column of the test visited. If 
the edge traversed corresponds to a failing test, insert a 1.

◗◗ Construct a bipartite directed acyclic graph where one 
layer of the graph corresponds to fault nodes and the 
other corresponds to test nodes.

◗◗ Wherever an entry exists in the D-matrix, create a directed 
edge from the fault to the test.

◗◗ Assume that all test nodes in the network are Noisy-Or 
nodes [11].

◗◗ Parameterize the network.
The formal process for building the network, taken from 

[9], is shown in Algorithm 4.

Algorithm 4 Build Bayesian Network
	 1: // FT is the fault tree
	 2: // B is the Bayesian network
	 3: for all Faults Fi ∈ FT do
	 4:   Fi ← CreateNode
	 5:   Fi ← SetCPT
	 6:   FT.AddFaultNode(Fi)
	 7: end for
	 8: for all Tests Ti ∈ FT do
	 9:   Ti ← CreateNoisyORNode
10:   FT.AddTestNode(Ti)
11:   for all Faults Fj ∈ FT do
12:     if Ti indicts Fj by pass link then
13:       Ti.AddParent(Fj)
14:       Ti.ProbOfPassGivenFault(Fj)=0.999
15:       Ti.ProbOfFailGivenFault(Fj)=0.001
16:     end if
17:     if Ti indicts Fj by fail link then
18:       Ti.AddParent(Fj)
19:       Ti.ProbOfPassGivenFault(Fj)=0.001
20:       Ti.ProbOfFailGivenFault(Fj)=0.999
21:     end if
22:   end for
23:   Ti.ProbOfLeak =0.001
24: end for
25: return B

Bayesian Network Test Cases
The experiments evaluating FEA-based diagnosis were bro-
ken into two parts. The first focused on running experiments 
with a known diagnostic model for which we could add mul-
tiple fault cases in a straightforward manner. For these test 
cases, we used the model of a hypothetical missile launcher cir-
cuit, published in Simpson and Sheppard [31]. The second set 

of experiments was based on multiple fault scenarios derived 
from real-world FIMs for a U.S. military aircraft. For these ex-
periments, DFIMs (i.e., Bayesian networks) were generated 
using the procedures described in the previous section.

Missile Launcher Circuit D-Matrix: For the first set of exper-
iments, we used the hypothetical missile launcher circuit 
published by Simpson and Sheppard [31]. For this model, we 
generated two different Bayesian networks. The first was gen-
erated directly from the model’s D-Matrix. For the second 
version, we created a network from a FIM built using a deci-
sion tree.

The following describes the process for generating the mul-
tiple fault test cases from the D-matrix.

◗◗ Generate Bayesian network: The process began by gener-
ating a diagnostic Bayesian network from the D-matrix.

◗◗ Collapse redundant tests: The D-matrix enables tests that 
provide identical diagnostic information to be identi-
fied by looking for identical matrix columns. Where these 
occurred, we selected one of the columns as a represen-
tative test and eliminated the others (and associated test 
nodes) from the network.

◗◗ Combine ambiguity groups: The D-matrix also enables 
ambiguous faults to be identified by looking for identi-
cal matrix rows. As with redundant tests, we reduced the 
Bayesian network to include a representative fault from 
the model and eliminated the other members of the ambi-
guity group.

◗◗ Generate test sequences: These test sequences are used 
as the evidence collected for performing diagnosis. The 
sequences are generated as follows:
•• For each unique pair of faults fi and fj:

οο Assign fi and fj as “Faulty.”
οο Assign all other faults as “OK.”
οο Query the probability of all tests after inference.
οο If P(tk = Fail) > 0.50, then add tk = Fail to the evidence 

list.
οο If P(tk = Pass) > 0.50, then add tk = Pass to the evidence 

list.
•• For each test sequence:

οο Assign test results as evidence based on the evidence 
list.

οο Use FEA to diagnose faults.
οο Use the ground truth to calculate correctness of solu-

tion returned from FEA.
Test cases were also generated from the fault tree derived 

from the D-matrix. The procedure for generating these test 
cases was identical to the procedure for the military aircraft 
test cases and is described in the next section.

Military Aircraft DFIMs: For the second set of experiments, we 
used ten example FIMs for a US military aircraft and derived 
DFIMs (i.e., Bayesian networks) using the procedure described 
in the Generating Bayesian Networks from FIMs section above. 
This procedure was also used to derive the DFIM from the FIM 
for the missile launcher circuit. For these experiments, we did 
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not have the corresponding D-matrices, so we assumed multi-
ple faults corresponded to different paths through the FIM. The 
following describes the process for generating these test cases.

◗◗ Select several different DFIMs of interest: The selection 
process was based on examining the structure of the avail-
able FIMs. For example, we selected one FIM that had 
mostly long paths, and we selected another FIM that had 
mostly short paths.

◗◗ Generate test sequences: As with the missile launcher 
circuit model, the test sequences were used as evidence 
collected for performing diagnosis. The sequences were 
generated as follows:
•• For each unique pair of faults fi and fj:

οο Assign fi and fj as “Faulty.”
οο Assign all other faults as “OK.”
οο Query the probability of all tests.
οο If P(tk = Fail) > 0.50, then add tk = Fail to the evidence 

list.
οο If P(tk = Pass) > 0.50, then add tk = Pass to the evidence 

list.
•• For each test sequence:

οο Assign test results as evidence from the evidence list.
οο Use FEA to diagnose faults.
οο Use the ground truth to calculate correctness of solu-

tion returned from FEA.
Notice that the process is virtually identical to the process 

used when we have a D-matrix. The key difference comes in 
how the Bayesian networks are generated. Since DFIMs un-
der-specify the information available for doing diagnosis, we 
expected the performance of DFIM-based network inference 
to be degraded when compared to D-matrix-based network 
inference. As we will see, this expectation turned out to be 
incorrect.

Experimental Design
The experimental process for each problem went as follows. 
First, we used either the D-matrix or an existing FIM as the 
basis for generating the Bayesian network. We refer to the 
Bayesian network as a DFIM since it permits us to apply evi-
dence from any of the tests performed in any order.

After constructing the DFIMs, we then generated all unique 
pairwise faults covered by that model. Thus, for a FIM with n 
unique faults, we generated n(n − 1)/2 fault pairs. We then ex-
tracted the test results from the original D-matrix or FIM for 
the individual faults and constructed an evidence set as fol-
lows. For fault pair fi,fj , construct evidence sets

	 ε  =  
1 , , mi i it t 	 (8)

	 ε  =  
1 , , mj j jt t 	 (9)

where

	


= 



0 test passes
1 test fails
test not evaluated#

k

k
t

k
k 	 (10)

and # denotes a don't care. Then we construct a combined ev-
idence vector as

	 ε ε ε⊕=,i j i j	 (11)

which corresponds to the element-wise OR of the evidence 
vectors. When OR-ing with a don't care, the non-don't care 
value is assigned.

Once the evidence vectors are specified, FEA partial abduc-
tive inference is run. Specifically, a subswarm is specified for 
each fault node in the DFIM with 10 particles per swarm. Unas-
signed test nodes are marginalized out as part of the inference 
process. The underlying optimization algorithm was ICPSO as 
described previously.

The fitness function used by FEA is defined as

	 ( )
=

= Δ
1

x i i

n

i
f x 	 (12)

where Δi is the change in probability of fault i. Δi is calculated 
as the change in probability before and after evidence has been 
applied to the network. x is a binary array where a 0 bit indi-
cates no fault (“OK”) and 1 is “Fault.” Whether or not a fault 
exists in the fitness function is based on a threshold applied to 
the inferred posterior probability for that fault node. We ter-
minated FEA after the best solution failed to change after 10 
iterations, and the corresponding vector x was compared to the 
ground truth taken from the FIMs or D-matrix.

Results
In this section, we review the results from our experiments. 
We note that we did not compare to alternative multiple-fault 
diagnosis strategies for a few reasons. First, our prior work 
already demonstrated the superiority of the FEA-based ap-
proach to abductive inference as compared to evolutionary, 
swarm-based, and traditional inference methods. Since most 
of the multiple-fault diagnosis methods fall in the “traditional” 
category (at least with respect to using Bayesian networks), we 
felt that the previous comparisons were sufficient.

Second, as we found in these results, the effectiveness of 
multiple-fault algorithms depends heavily on the type of un-
derlying model. Since our intent was not to evaluate models 
but to evaluate the effectiveness of the FEA method, we felt 
that using different model types would tend to confuse the 
issue. Therefore, we limited our model types to diagnostic 
Bayesian networks.

Finally, the work reported in this paper is not intended to be 
the final say on what constitutes the best way to perform mul-
tiple-fault diagnosis. Indeed, we recognize that it is likely that 
a “No Free Lunch” theorem applies here. Indeed, the focus of 
this research was to be more suggestive than conclusive where 
we sought to test the feasibility of the FEA approach.

To that end, we report the main results of our experiments 
in Table 1. This table shows the results on two separate sets of 
experiments, the first comparing two different Bayesian net-
works derived from the hypothetical missile launcher circuit 
model from Simpson and Sheppard [31] (which we denote 
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“MLC”), and the second focusing on the results applying FEA 
to ten actual FIMs for a military aircraft (which we denote 
“DFIM”). Note that this is a more extensive set of test cases 
than we reported in [8].

In examining the results in Table 1, the first thing to note 
is that these are aggregates over all of the scenarios run for 
each model. As reported above, this means that each entry in 
the table corresponds to all pairwise faults from the original 
D-matrix or FIM. This allowed us to consider, not only the eas-
iest fault pairs, but the most difficult too (and everything in 
between).

More specifically, the results in this table show the percent 
of the time that FEA diagnoses the correct two faults when 
compared with the expected results. Thus, in every case, we 
used the ground truth as the basis for comparison. It is partic-
ularly interesting to note the poor performance of FEA on the 
DFIM derived from the MLC D-matrix as compared to the per-
fect performance of the DFIM derived from the MLC FIM. This 
result is completely counter to our expectations since D-ma-
trices provide substantially more diagnostic information than 
FIMs alone [9].

Table 1 also shows the number of fault pairs diagnosed, 
which corresponds to the number of scenarios run for the 
corresponding Bayesian network. It then shows the average 
number of tests assigned as evidence for each of the networks 
with the associated standard deviation. One thing to note on 
the MLC models is that the number of tests assigned as evi-
dence for the D-matrix network is almost twice the number 
assigned to the FIM network. Once again, this is counter in-
tuitive as one would expect more test information to provide 
better resolution, especially when multiple faults are involved.

One thing that is quite striking from these results is that 
FEA provided perfect results on every FIM-based Bayesian 
network. That said, it is important to note that all of the tests 
were assigned accurate results based on the ground truth, so 

these results do not incorporate anything that tests the impact 
of noisy testing. Furthermore, since the test results were based 
on the ground-truth FIMs, we knew a priori that the diagnoses 
would be correct, at least for the corresponding single faults. 
Thus what we are considering is whether or not combining 
faults would somehow confuse the diagnostic process. This is-
sue will be discussed more in the next section.

Discussion
As noted in the previous section, there were two main results 
that were surprising and warrant additional discussion. The 
first is the fact that the D-matrix network performance was 
substantially worse (∼43% accuracy) than the FIM network 
performance (100% accuracy on all models). On the surface, 
this seems to make no sense, until we take a closer look at the 
MLC D-matrix.

The work in [1] explains that there are two types of multiple 
fault scenarios captured by a D-matrix that would thwart di-
agnostic strategies based on these models. The first is a “false 
failure,” which occurs when the combined fault signature of a 
multiple fault is equivalent to the fault signature of a separate 
single fault or another multiple fault. Thus, in a sense, a false 
failure corresponds to a multiple fault ambiguity group. The 
MLC model includes two false failures, one of which involves 
a pair of single faults.

But that is not enough to explain the 53% degradation in 
performance. The other type of multiple fault situation that 
creates problems for a D-matrix is a “hidden failure.” A hid-
den failure corresponds to the situation where the signature of 
one fault subsumes (i.e., is a superset of) another fault signa-
ture. When this situation arises, all of the failed tests indicting 
the subsumed fault also indict the subsuming fault, so there is 
no way to differentiate them. Consequently, there is no way to 
pull the pair out as a unique fault signature. In the MLC D-ma-
trix, a very high number of hidden failure pairs exist, so it is our 
hypothesis that this is what led to the poor performance of FEA.

When we consider the FIMs, on the other hand, by 
construction all of the evidence vectors (which are used to con-
struct the Bayesian networks in the first place) already include 
clear differentiators between the single faults. This leads to a 
situation where hidden and false failures almost never occur. 
As a result, even though fewer test results are being applied to 
the associated networks, in every case they happen to be the 
right test results to differentiate the multiple fault pairs from 
the rest of the candidates.

To test this hypothesis, we performed an analysis of the 
multiple fault signatures. First, we generated the fault sig-
nature for every multiple fault pair. We then performed the 
following steps: 1) Let fault A and B represent the two faults 
in the current multiple fault signature to be analyzed. 2) For 
all faults, determine if the multiple fault signature for A and B 
is a subset of all other single fault signatures. 3) If the multiple 
fault signature is a subset of a fault signature (not including the 
signatures for faults A and B), increment a subset counter. We 
performed this analysis on both the MLC (D-Matrix) and MLC 
(FIM) models. Results are summarized in Table 2.

Table 1 – Percent of time FEA  
diagnosed the correct faults

Model % Correct
Fault  
pairs

Tests 
assigned

MLC (D-Matrix) 42.7% 171 11.16 (3.57)

MLC (FIM) 100% 171 6.91 (1.21)

DFIM-1 100% 21 6.67 (1.53)

DFIM-2 100% 15 4.33 (0.98)

DFIM-3 100% 55 7.60 (2.10)

DFIM-4 100% 190 10.66 (2.98)

DFIM-5 100% 55 5.64 (1.30)

DFIM-6 100% 91 8.34 (2.11)

DFIM-7 100% 66 7.18 (1.52)

DFIM-8 100% 83 7.83 (2.02)

DFIM-9 100% 96 8.46 (3.01)

DFIM-10 100% 75 7.42 (1.04)
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From the results in Table 2, we can see that for the D-Ma-
trix MLC model there were 808 cases where the fault signature 
for a multiple fault was a subset of a fault signature for a sin-
gle fault, and on average, a multiple fault signature had 4.23 
hidden failures. This is a clear indication of hidden failures. 
However, on the FIM version of the MLC model, there were 0 
instances where the multiple fault signature had hidden fail-
ures for a single fault.

This leads us to the question of why do the fault signatures 
for the multiple fault scenarios not have any hidden failures. 
To answer this, we analyzed how the fault signature for mul-
tiple faults differs from the fault signatures for the individual 
faults. We took the fault signature for each individual fault 
and compared them with one another. For each pair, we calcu-
lated the size of the fault signature intersect and symmetric set 
difference. The intersect corresponds to the fault signature of 
the multiple fault while the set difference is a measure on how 
much the fault signature of the two faults differ. The results are 
reported in Table 3.

The biggest thing to take away from the results in Table 3 
was the difference in fault signature of the DFIMs vs the D-
Matrix. On the MLC (D-Matrix) model, on average the fault 
signatures differed by 5.83 tests whereas on the FIM and 
DFIMs models, the signatures differed by only one single test. 
This is because in the FIM and DFIM models, the fault signa-
ture is based upon a unique path in the tree that is a subset 
(often proper) of the total number of tests. However, in the 
D-Matrix model, the fault signature is defined over all of the 
tests, which means when combining fault signature, there is a 
greater chance of the fault signatures differing on a test.

The second result that was surprising to us was the perfect 
performance of FEA on all ten FIM-based models (MLC and 
DFIM-1 through DFIM-7). In fact, this result led us to question 
whether or not we somehow gave these multiple fault scenar-
ios an unfair advantage that might not exist in the real world. 
While this is still a distinct possibility, we do not believe it ex-
plains the behavior observed.

First, we grant that the problem solved here assumes a pri-
ori knowledge that we are looking specifically for fault pairs. 
We contend this is not that significant of an issue since most di-
agnostic systems assume single fault or multiple faults of fairly 
low order (e.g., pairs or triples). It would have been straight-
forward to include single fault and triple fault analysis as 
separate runtime scenarios, and we do not believe the results 
would have changed substantially. We acknowledge that a full 
treatment of all possible multiple fault scenarios is not feasible 

since this amounts to the MRE problem described in the previ-
ous background discussion.

As to why the performance was perfect, we believe this is 
related to what we described above. Each multiple fault sce-
nario involved combining signatures for the corresponding 
single faults. This meant extracting the test outcomes from the 
underlying FIMs for each fault's path in the tree and using that 
as evidence. If two paths had contradictory test results, we left 
those results out of the evidence set. Consequently, each of the 
fault pairs would have had unique evidence sets, so it was just 
a matter of examining the joint posterior distributions on the 
fault pairs for FEA to discover the best diagnosis.

Conclusions
Based on our prior work developing distributed and pop-
ulation-based methods for abductive inference, we had 
hypothesized that these results could be extended to the mul-
tiple-fault diagnosis scenario. To that end, this paper describes 
preliminary experiments applying factored evolutionary algo-
rithms (FEA) to the multiple-fault diagnosis problem, posed as 
an abductive inference problem. In summary, the results were 
astounding and suggest the FEA approach could provide a 
promising new method for multiple-fault diagnosis, at least 
when the right underlying model is being used.

Key to this conclusion is the observation that the model 
type matters, and that more information is not necessarily bet-
ter than less information. In fact, while prior work suggests 
that Bayesian networks derived from fault trees could face 
challenges because of a loss of information and an increase 
in uncertainty as to how test results reflect fault state, these 
results suggest that the corresponding reduction in informa-
tion might actually give the derived Bayesian networks an 
advantage.

Based on these observations, it appears further study is war-
ranted to determine what constitutes the optimal amount of 

Table 2 – Results of analyzing the number of times 
multiple fault signatures were subsets of single 

fault signature

Model
Total number  

of subsets
Subsets per  

fault pair

MLC (D-Matrix) 808 4.23

MLC (FIM) 0 0

Table 3 – Results of analyzing the average set 
intersect and symmetric difference of all pairs of 

fault signatures

Model Intersect Difference

MLC (D-Matrix) 10.16 5.83

MLC (FIM) 0.82 1.0

DFIM-1 1.19 1.0

DFIM-2 1.33 1.0

DFIM-3 2.13 1.0

DFIM-4 3.84 1.0

DFIM-5 0.81 1.0

DFIM-6 3.09 1.0

DFIM-7 1.15 1.0

DFIM-8 1.45 1.0

DFIM-9 2.29 1.0

DFIM-10 1.75 1.0
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information to include in a diagnostic model to support single 
and multiple-fault diagnosis. As this question was not the focus 
of the study reported here, we leave that question to future work.

Other questions arising from this work include the 
following:

◗◗ To what extent will noise in the test results degrade FEA-
based multiple-fault diagnosis?

◗◗ Are there reasons other than the false and hidden fail-
ure scenarios that might explain why D-matrix networks 
perform poorly in the multiple fault setting? For exam-
ple, could the behavior be tied to an inherent single-fault 
assumption in the D-matrix models?

◗◗ The method for deriving the Bayesian networks 
discussed in this work makes heavy use of the Noisy-Or 
assumption. To what extent does this assumption affect 
performance, especially given the extreme simplification 
of the semantics defined for the relationships included in 
the networks?

◗◗ Given that a variety of fault trees can be generated for 
a unit under test, how might an ensemble of FIM-based 
networks improve (or degrade) multiple-fault diagnosis?

◗◗ It should be relatively straightforward to create a distrib-
uted version of FEA; therefore, would using a distributed 
architecture affect overall diagnostic performance? In 
particular, could the distributed architecture be exploited 
to improve performance?

◗◗ Finally, what would the impact be if temporal informa-
tion was incorporated into the diagnostic process (e.g., 
by mapping the problems to dynamic Bayesian networks 
and capturing the timing of the test results)?

These questions represent only a few of the issues of inter-
est to us. It is our hope that further study will provide not only 
better insight into the behavior of FEA on multiple-fault Bayes-
ian diagnosis but might also yield even better methods for 
more general multiple-fault diagnosis problems.
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