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P erforming general prognostics and health man-
agement (PHM), especially in electronic systems, 
continues to present significant challenges. The low 

availability of failure data makes learning generalized mod-
els difficult and constructing generalized models during the 
design phase often requires a level of understanding of the 
failure mechanisms that elude the designers. In this paper, we 
present a generalized approach to PHM based on two types of 
probabilistic models, Bayesian Networks (BNs) and Continu-
ous-Time Bayesian Networks (CTBNs), and we pose the PHM 
problem from the perspective of risk mitigation rather than 
failure prediction. This paper also constitutes an extension of 
previous work where we proposed this framework initially 
[1]. In this extended version, we also provide a comparison of 
exact and approximate sample-based inference for CTBNs to 
provide practical guidance on conducting inference using the 
proposed framework.

Introduction
In previous work, we developed a diagnostic modeling tool 
using BNs called the Standards-based Analysis Platform for 
Predictive Health and Integrated Reasoning Environment 
(SAPPHIRE) [2], which conforms to IEEE Std 1232-2010 (AI-
ESTATE) [3]. We also developed a modeling tool designed for 
prognostics called the Continuous-time Hazard Analysis and 
Risk Mitigation (CHARM) system [4]. The models used in 
CHARM are based on CTBNs [5], which represent systems as 
factored continuous-time conditional Markov processes.

Although these two models are natural to combine, there 
is little to no application of these models used in combina-
tion for conducting diagnostics and prognostics under a single 
modeling framework. In this work, we discuss an approach 
to combining their use for PHM. Our intent is not to focus 
on SAPPHIRE or CHARM specifically, but rather to discuss 
how BNs and CTBNs can be used together to support PHM. 

Therefore, we use SAPPHIRE and CHARM for example pur-
poses only. Ultimately, this paper is about describing a new 
process for risk-based PHM that combines elements of diag-
nostics and health state information as a starting point from 
which predictive diagnostics (i.e., prognostics) can then be 
performed.

Background
Here, we provide background necessary to follow the method 
presented in this paper. First, we define what we mean by 
Prognostics and Health Management (PHM) relative to cur-
rent views in the industry. We then present the main tools 
employed in our approach.

Prognostics and Health Management
Simply put, there is little agreement about the scope and rel-
evant practice of PHM. We take a literal approach when 
considering PHM in that we believe PHM must include both 
state estimation (health management) and prediction (prog-
nostics). This is contrary to many who believe the focus is on 
health management as a practice of diagnostics and condition-
based maintenance, which largely centers on state estimation.

Vichare and Pecht noted that “The term ‘diagnostics’ 
pertains to the detection and isolation of faults or failures. 
‘Prognostics’ is the process of predicting a future state (of reli-
ability) based on current and historic conditions. Prognostics 
and health management (PHM) is a method that permits the 
reliability of a system to be evaluated in its actual life-cycle 
conditions, to determine the advent of failure, and mitigate the 
system risks [6].” We see both inspiration and limitation in this 
view. As inspiration, we see that we can use reliability informa-
tion during the design phase to create initial predictive models 
and consider risks associated with system failure. However, as 
limitation, there is no tie between diagnostics and prognostics 
in this view of PHM.

This paper contains extended research originally presented at IEEE AUTOTESTCON 2022 and recognized as Best Student 
 Paper (© IEEE 2022, used with permission, [1]).
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Kalgren et al. also provide a definition of PHM. They 
say PHM is “a health management approach utilizing mea-
surements, models, and software to perform incipient fault 
detection, condition assessment, and failure progression pre-
diction” [7]. Their view includes incipient fault detection and 
condition assessment, which ties back to the current health 
state of the system. However, their views related to failure pro-
gression prediction largely depend upon physics-of-failure 
models, which are neither generalizable nor scalable in com-
plex systems.

Li et al. pose PHM more literally, as we do. “Prognostic and 
Health Management (PHM) systems support aircraft main-
tenance through the provision of diagnostic and prognostic 
capabilities, leveraging the increased availability of sensor 
data on modern aircraft. Diagnostics provide the functional-
ities of failure detection and isolation, whereas prognostics 
can predict the remaining useful life (RUL) of the system” [8]. 
In this definition, diagnostics are limited to on-board systems, 
and prognostics are focused on RUL. We adapt this idea to con-
sider off-board diagnostics and time-to-failure.

We also consider the ideas expressed in the recently 
approved IEEE Standard 1856, which divides the defini-
tion of PHM into two parts [9]. First, the standard defines 
prognostics to be “the process of predicting an object sys-
tem’s RUL by predicting the progression of a fault given the 
current degree of degradation, the load history, and the an-
ticipated future operational and environmental conditions 
to estimate the time at which the object system will no longer 
perform its intended function within the desired specifica-
tions.” Once again, the focus is on remaining useful life and 
on failure progression, which would largely be from a point 
of failure perspective. Second, the standard defines health 
management as “The process of decision-making and im-
plementation of actions based on the estimate of the state of 
health derived from health monitoring and expected future 
use of the system.” This is good in the sense that the depen-
dence is on state of health, but the definition excludes the 
health assessment itself.

We have previously asserted that all aspects of health as-
sessment, including fault detection, localization, isolation, 
and even determining there are no faults, are diagnostic pro-
cesses [10]. We assert that PHM begins with diagnosis and then 
proceeds to determine when future failures might occur (prog-
nosis). We like to refer to prognostics as predictive diagnostics 
in that we also want to know what faults are occurring when. 
This sets up a pipeline process whereby PHM consists of a 
sequence of five steps: monitoring; health state assessment (di-
agnosis); prediction (prognosis); assessment; and action. This 
results in an evidence-based decision-making process that 
leads to the overall support of the system.

Risk-based PHM
Motivated by Vichare and Pecht, who draw on reliability infor-
mation, we employ a “risk-based” approach to PHM (rPHM). 
We seek to introduce a framework that includes both diag-
nostics and prognostics and incorporates effects or hazards 

using the same model semantics. By building hazards into 
the model, predictions can be made about the risks associ-
ated with likely faults and downstream results of those faults. 
Our approach incorporates user-specified performance func-
tions (i.e., utility functions) that place value on various system 
states, which allows one to assess potential impact on mis-
sion outcomes should hazards be realized or averted. Hence, 
the framework also allows modeling of risk mitigation strate-
gies to be employed directly into the decision-making process. 
Our approach combines two types of models, one focused on 
diagnostics and another on prognostics. We use BNs for diag-
nostics, allowing us to estimate (with uncertainty) the current 
health state of the system. Once health state is determined, we 
use this as “virtual evidence” in a companion CTBN model to 
reason through time.

Bayesian Networks
Here, we provide a brief introduction to BNs. A BN is a 
graph-based representation of a joint probability distribu-
tion. Given a set of random variables X X Xn= …{ }1, , , the 
BN provides a compact representation of joint distribution 
P X P X Xn( ) = …( )1, ,  by applying the product rule of proba-
bilities and properties of conditional independence among the 
variables. A BN can be regarded as a “factored” representation 
of the joint distribution corresponding to:

 P X X P X Pa Xn

X X

i i

i

1, , |…( ) = ( )( )
∈
∏  (1)

Representing conditional probabilities P X Xi j|( ) in a di-
rected acyclic graph, the vertex for Xj is connected by an 
outward directed edge to the vertex for Xi, in which case we 
say Xj is a parent of Xi (i.e., X Pa Xj i∈ ( )). The graph structure, 
combined with a parameterization of the local distributions 
for each random variable Xi, corresponds to the specification 
of a BN.

Continuous-Time Bayesian Networks
For predictive modeling, we use CTBNs. At the heart of a 
CTBN is a Continuous-Time Markov Process (CTMP). A 
CTMP is a model over continuous-time random process X  , 
consisting of two parts: an initial distribution PX 0( ) and a tran-
sition intensity matrix QX  defined over the states of X . The 
entries qi j,  in QX  govern the rate of transition from state xi to 
state xj as a function of time. The i th diagonal entry, denoted 
qi, is constrained to be the negative sum of the rest of the row 
(i.e., q qi j i i j= −∑ ≠ , ). The distribution indicating if the process 
remains in state i is exponential with rate qi:

 f q q tq i ii
= − ( )exp . (2)

Conditional on a transition out of state i occurring at time 
t X,  transitions from state xi to state xj according to a multino-
mial distribution with probabilities:

 P x x t
q

q
j i

j

i

| , .( ) = −  (3)
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CTBNs provide a factored representation of CTMPs. Let 
X X Xn= …{ }1, ,  be a set of discrete random variables. The 
model consists of two parts: a graph structure G  and a set of pa-
rameters P. Graph G  is a directed, possibly cyclic graph with 
nodes corresponding to variables X. Parameterization P corre-
spond to intensity matrices of conditional Markov processes, 
one for each X Xi ∈ , conditioned on its parents in graph G . 
These intensity matrices are referred to as “conditional inten-
sity matrices” (CIMs). We use a CTBN to capture the failure 
and hazard dynamics of the system under test.

Diagnostic Bayesian Networks
We now present our formulation for the diagnostic BN. Recall, 
a CTMP (and thereby a CTBN) requires a prior distribution to 
kick start the process. We use a diagnostic BN as the basis for 
that prior distribution. Furthermore, we use a D-matrix [11] to 
provide the structure of that BN.

D-Matrices
A variety of diagnostic models are possible for establishing 
health state. These include fault trees [10], first principle mod-
els [12], expert systems [13], and BNs [14]. Because it integrates 
with our framework, we use a BN derived from a diagnostic 
dependency matrix (i.e., D-matrix) [8].

A D-matrix is a binary matrix D mapping faults to tests. 
Let F F Fd= …{ }1, ,  be a set of faults or diagnostic conclu-
sions to be drawn in a system. Assume each Fi is Boolean. Let 
T T Tn= …{ }1, ,  be a set of tests designed to detect presence of 
faults. Assume each test is also Boolean. Finally, let D be the 
d n×  binary matrix where:

 D
F is detected by T

Otherwise
i j

i j

, .=






1

0

    
 (4)

A D-matrix can be represented as a BN, similar to the model 
described by Schwe et al. [11] which represents the depen-
dency structure via noisy-Or nodes. Each Fi and Tj are defined 
as random variables (i.e., vertices) in the network, and con-
ditional dependence relationships are defined where Di j, = 1 
indicates Fi is a parent of Tj. Prior probabilities on each Fi can be 
based on reliability data, and conditional probabilities P T Fj i|( ) 
can be defined based on properties of the underlying test sys-
tem [15].

Virtual Evidence
One difficulty with probabilistic diagnostic systems is ac-
counting for uncertainty in evidence collected. Two different 
formalisms exist to address evidence uncertainty in BNs: soft 
evidence and virtual evidence [16]. Soft evidence corresponds 
to replacing the conditional probability P T Fj i|( ) at the time an 
observation is made (i.e., the test is performed) to capture the 
confidence in the test result. Inference is then applied using 
this distribution. More formally, if P Tj( ) reflects probability of 
a test result, we derive this by computing P T P Dj T Tj( ) = ∑ ( )\  
(i.e., we marginalize out the rest of the network). With soft ev-
idence, we replace P Tj( ) with a revised estimate ′( )P Tj  and 
update using Jeffrey’s rule:

 ′ = ′( ) ′( )
′
∑P D P D T P T

T

j j

j

( ) |  (5)

Virtual evidence, on the other hand, inserts additional ver-
tices into the model reflecting confidence of the evidence, 
P obs T Tj j( )( )| . This is shown graphically in Fig. 1. In this case, 
we pre-set test confidences through the definition of obser-
vation distributions and apply the evidence to those vertices. 
Corresponding state of fault vertices is then inferred using the 
usual inference methods.

Prognostic CTBNs
In previous sections, we spent time setting up tools for prob-
abilistic fault diagnosis. This approach allows us to take 
observation uncertainty, dependency uncertainty, and fail-
ure uncertainty into account in a unified way. It also provides 
a way to specify prior distribution PX 0( ) for the CTBN that we 
will be using for prognosis. We now discuss how prognostic 
CTBNs are constructed.

Fault Trees
Within the automatic test systems community, many will have 
encountered the concept of a fault tree. The question we face 
is what kind of fault tree? In test program sets (TPS), a fault 
tree corresponds to the decision process of specifying a test, 
observing an outcome, and branching to the next step until a 
diagnosis or call out can be returned. Alternative forms of fault 
trees arise from Fault Tree Analysis (FTA) [17].

A fault tree arising from FTA corresponds to a directed acy-
clic graph where edge directions all proceed upward, from leaf 
to root. Leaves of the tree correspond to faults in the system. 
Interior vertices of the graph correspond to failures, effects, or 
hazards resulting from a fault. Interior vertices are also repre-
sented using logic gates (e.g., AND, OR, or XOR) indicating 
whether the corresponding effect is expected to occur because 
of fault(s) at the leaves of the tree. An example fault tree taken 
from [1], [18] is shown in Fig. 2.

F1 Fi Fd

T1

o (T1) o (Tj) o (Tn)

Tj Tn

Fig. 1. Diagnostic BN with virtual evidence, from [1], (© IEEE 2022, used with 
permission).
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Perrault et al. showed how to encode a fault tree as a CTBN 
[19]. To parameterize fault nodes, we use an intensity matrix 
for fault F corresponding to:

 QF

f f

f f

=
−

−













λ λ

µ µ
 (6)

where λ f  is the failure rate of the fault and µ f  is the repair rate. If 
we assume interior nodes all have two children, each requires two 
CIMs. For the AND nodes, the intensity matrices correspond to:

 QX Pa X

X X

| ( ) ,=
−









λ λ
0 0

 (7)

when F Pa XX ( )( ) = 1 (all ones) and

 QX Pa X
X Pa X X Pa X

| ( )
| ( ) | ( )

,=
−











0 0

µ µ
 (8)

when F Pa XX ( )( ) = 0 (not all ones). On the other hand, for OR 
nodes, the intensity matrices correspond to

 QX Pa X
X Pa X X Pa X

| ( )
| ( ) | ( )

,=
−











0 0

µ µ
 (9)

when F Pa XX ( )( ) = 0 (all zeroes) and

 QX Pa X

X Pa X X Pa X

| ( )
| ( ) | ( )

,=
− −









λ λ

0 0
 (10)

when F Pa XX ( )( ) = 1 (not all zeroes).

Mitigation Strategies
When employing a risk-based approach to PHM (rPHM), 
the intention is to be proactive in mitigating risks. This is 
captured by implementing condition-based maintenance 
strategies that perform system support prior to system fail-
ure, mitigating potential effects of a failure occurring. This 
has the advantage of also providing alternative means for 
evaluating effectiveness in terms of the relationship be-
tween support costs and mission success arising from the 
application of risk mitigation strategies. Within the context 
CTBNs, mitigation strategies can be added directly as model 
components.

To incorporate mitigation strategies, we use a CTBN that 
incorporates decision nodes. Perreault referred to the resulting 
model as a Continuous-Time Decision Network (CTDN) [18]. 
A CTDN has two additional types of vertices—decision verti-
ces (supporting the implementation of a mitigation strategy) 
and utility vertices (tied to performance functions). A deci-
sion node in a CTDN is a node with no parents whose state 
is known at all times, defining a local trajectory over full tra-
jectory σ X . The states in σ X  must conform to a (possibly 
empty) constraint set which defines the set of possible states 
that may be assigned over all time intervals t ts e, ). Thus, a de-
cision vertex is a CTBN vertex where the state is predefined 
over the given time interval, forcing a particular child CIM to 
be activated.

EL

PW1 PW2

LossOfPower

LossOfPowerTrainLossOfElectrical

LossOfVehicle

LossOfCrew

LossOfChassis

LossOfChassis

AL BR WT AX SU TR

PR IG AI FU

LossOfEngine CO

BR WT AX SU

Fig. 2. Sample Fault Tree, from [1], [18] (© IEEE 2022, used with permission).
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An example mitigation strategy for Fig. 2 is shown in Fig. 3. 
Here, two different power sources are available to power a ve-
hicle. The “PWR-Sw” decision node switches between PWR1 
and PWR2 based on the health of the two power sources by de-
fining a CIM for the AND node conditioned on the state of the 
decision node and the power nodes.

Performance Functions
In a CTDN, utility nodes are included via performance func-
tions [20]. Utility nodes are used to compare the quality of 
provided mitigation strategies. Performance functions are 
represented by another vertex in the network; however, this 
vertex does not have a CIM associated with it. Rather, the ver-
tex depends upon one or more CTMP vertices and defines a 

function based on trajectories defined over those CTMPs. Let 
σ [ ]Y   be a trajectory defined over a set of variables Y X⊂  and 
let t t Ys e t, ,  be a set of observations over these CTMPs. The 
performance function for Y can then be defined as:

 f f

t t Y

Y t t Y

s e t

s e t

σ( ) = ∑ ( )
, ,

, , . (11)

This idea can be extended to include “factored” utility func-
tions [21].

The rPHM Process
Now that we have described the model, we outline the pro-
cess for rPHM. For this discussion, we use the diagram in 
Fig. 4. Note that this process does not employ on-board 
health monitoring but depends on information collected 
from a test program set (TPS) on an automatic test system 
(ATS). The intent is to collect data for fault isolation and to 
establish health state for the unit under test (UUT). Based 
on health state, risk assessments can be made based on fail-
ure progression and mitigation/maintenance strategies 
assessed while the UUT is under maintenance.

At the start of the rPHM process is the UUT. At this point, 
the UUT has been pulled from the system and sent to be tested. 
The UUT is tested on an ATS, such as the US Navy’s eCASS 
system, and faults are isolated. Once fault isolation is com-
plete, the UUT is repaired and re-tested to determine if it can 
be returned to service. Following return to service testing, test 
results are captured, perhaps in standard form [22], and pro-
vided to a separate diagnostic engine based on a BN derived 
from a D-matrix. These test results are furnished as virtual ev-
idence to the BN to provide a means to estimate and quantify 
uncertainty of the UUT health state.

PWR-Sw

PWR1 PWR2

Fig. 3. Simple mitigation of power loss, from [1], (© IEEE 2022, used with 
permission).

Tester Health State

TPS Output

Test
Results

Risk Assessment Mitigation

UUT

T
n

T
j

F1 Fi Fd

T1

o (T1) o (Tj) o (Tn)

Tj Tn

EL

PW1 PW2

LossOfPower

LossOfPowerTrainLossOfElectrical

LossOfVehicle

LossOfCrew

LossOfChassis

LossOfChassis

AL BR WT AX SU TR

PR IG AI FU

LossOfEngine CO

BR WT AX SU

PWR-Sw

PWR1 PWR2

Fig. 4. A probabilistic risk-based PHM process, from [1], (© IEEE 2022, used with permission).
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Once health state is determined, resulting information can 
be provided to the CTDN that assesses potential hazards and 
mitigation strategies. A default mode where no mitigation is 
performed can be used for baseline performance using util-
ity nodes in the CTDN. If utility is deemed too low, alternative 
mitigation strategies are tested to assess changes in utility. If 
determined that additional maintenance is warranted, infor-
mation can be provided to technicians to take action, re-test, 
and re-assess health and failure progression.

Benchmarking Sampling versus Exact 
Inference for CTBNs
A computational bottleneck in implementing these models 
for large systems is conducting inference in the CTBN mod-
els. Algorithms for efficient inference with BNs exist, so they 
are not considered in this part of the discussion. Conducting 
exact inference in CTBNs involves two steps. The first step 
“amalgamates” the network into a single CTMP, whose tran-
sition intensity matrix has row/column size equal to the total 
number of states in the system [5]. The second “query step” in-
volves computing a matrix exponential for the amalgamated 
intensity matrix and a subsequent matrix-vector product [5]. 
Hence, computation time is largely driven by the total num-
ber of states in the system, where the size of the amalgamated 
matrix is exponential in the number of state variables. In fact, 
it has been proven that, in general, inference in CTBNs is in-
tractable [23].

Given the general intractability of exact inference, approx-
imate methods are required. In approximate sample-based 
inference, one generates trajectories through repeated sampling 
from exponential and multinomial distributions where param-
eters come from the defined CTBN [5]. Querying the network 
at a given time is done by computing the proportion of trajecto-
ries in a particular state at that time. When querying all states of 
the network at a given time, computational complexity is again 

dominated by the number of system states. However, one ad-
vantage of sample-based inference is that generation of samples 
and computing proportions over the samples are perfectly par-
allelizable. Hence, one can leverage hardware for conducting 
approximate inference on larger systems.

However, knowing how many samples one should take is 
a difficult task. To understand this problem better, we empir-
ically investigate how approximate inferences are affected by 
sample sizes and properties of the network. We use average 
KL-divergence integrated across time to measure goodness 
of our approximation (denoted as IAKL). For discrete prob-
ability distributions P and Q, KL-divergence of Q from P is 
defined as:

 D P Q P i
P i

Q i
KL

i

| .( ) = ( ) ( )
( )









∑ log  (12)

We compute average KL-divergence over the network at 
time t as:

 
1

| |X
D P x t P x t

x X

KL

∈
∑ ( )( ) ′ ( )( )( )|  (13)

where P x t( )( ) is the true probability of state x at time t and 
′ ( )( )P x t  is our approximation. Since this is defined for each 

t, we obtain average KL-divergence curves over our domain, 
and then reduce these curves via integration (i.e., IAKL).

In our experiments, we consider network structure as a pa-
rameter. The structures we consider are chain, ring, star, random 
binary-tree, random directed, and random directed-acyclic net-
works with given network size. See Fig. 5 for an illustration of 
these networks. They are networks (or subnetworks) that can 
each occur in the PHM process. For example, the chain network 
can represent a Go/NoGo chain, the ring network can represent 
a test/retest OK scenario, the star network represents a “many-
causes” model, and the binary tree model can represent our fault 
tree example provided previously.

Network Size, 
Network Type & 
Network Parameters
In our experiments, all nodes 
have two states and priors 
over those states are spec-
ified as P 0 0 99 0 01( ) = { }. , . .  
In our first experiment, 
CIMs are parameterized 
with λ f = 1 0.  and µ f = 10 0.  
(see (6)) and we vary the 
size of the network from 
2 to 8, network type (Fig. 
5 ) ,  a n d  s a m p l e  s i z e s 
n = …{ }1000 2000 30000, , ,  .  
We conducted 10 inde-
pendent replicates of each 
experiment. In our second 
experiment, we vary para-
meters of our CIMs with 

Chain

Binary Tree

Ring Star

B

D

CA

B

D

CA
B

D

D E

C

A

C

A

B

Directed Graph

A

CB

D

Directed Acyclic Graph

A

CB

D

Fig. 5. Network types considered for experiments.
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µ f ∈{ }1 2 3 4 5 10 20, , , , , , , holding all other parameters at pre-
viously specified values for the chain network.

With this experimental setup, we plot the log(IAKL) aver-
aged across the 10 replicates against log(n) for each network 
size and two representative network types (Fig. 6a and Fig. 
6b) and for varying CIM parameters (Fig. 6c). Notice aver-
age log(IAKL) and log(n) follows a linear relationship with a 
slope of approximately −1. Hence, a factor increase in sample 
size leads to a factor decrease in average approximation er-
ror of predictions. Surprisingly, we see no effect from network 
size and little effect from network type and varying CIM pa-
rameters (only differences in variability). This would be good 
news and a further argument to use sampling-based methods 
over exact methods for larger networks. However, we caution 
against extrapolating these results to larger networks or pa-
rameters outside the range investigated in these experiments 
since relationships that appear linear at one scale may appear 
quadratic (or worse) at another.

We also fit repeated measures regression models for 
each of these two experiments for log(IAKL) as a function 
of log(n) with varying intercepts and provide an ANOVA ta-
ble in  Table 1, estimated coefficients in Table 2 and estimated 
random effects in Table 3. Each of the variables (log of the 
number of samples, network type, and node size) have “sig-
nificant” p-values (at an α = 0 05.  significance threshold). 
However, investigating the coefficient table, we see that this 
is largely being driven by large sample sizes, and the effects 
from network type and node size are not large enough to be 
of practical significance. We also see the relationship with the 
log of the number of samples is almost exactly –1. In our sec-
ond experiment, we saw similar results to this. That is, we 
observed no practical significance associated with varying 
CIM parameters and a slope of –1 associated with the log of 
the sample size. We omit these tables for the sake of brevity.

Overall, these experiments suggest that for small networks 
(up to 1024 states) and steady-state probabilities not too close 
to the boundary (between 0.1 and 0.99), average approxi-
mation error decreases by a factor for each factor increase in 

sample size. Thus, average accuracy on the order of 10 7−  would 
require a sample size somewhere on the order of 107 to 108. 
Note, it may still be appropriate to use exact inference when 
network size is small and desired accuracy is high.

Summary
We have described an approach to risk-based PHM which 
combines BNs for diagnostics and CTBNs for prognostics. 

Chain Network Star Network Chain Network - Varying CIM Parm
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Fig. 6. Average log(IAKL) plotted against log(n) for (a) Chain and (b) Star networks in first experiment and for (c) Chain with varying CIM parameters in the second 
experiment.

Table 1 – ANOVA results from first experiment

DF SSE MSE F-value

log(n) 1 8585.1 8585.1 65693.60

networktype 5 72.6 14.5 111.18

nodesize 1 60.5 60.5 463.10

Table 2 – Estimated coefficients from first  
experiment

Coefficients Std. Error

(Intercept) –0.621869 0.039405

log(n) –0.987208 0.003852

networktypeRBT –0.071483 0.011156

networktypeRDAG 0.107251 0.011156

networktypeRDG –0.0788877 0.011156

networktypeRing –0.033228 0.011156

networktypeStar –0.134366 0.011156

nodesize 0.034652 0.001610

Table 3 – Estimated random effects from first 
experiment

Groups Name Variance Std. Dev.

rep (Intercept) 0.0735 0.2711

Residual 0.0594 0.2437

Number of observations: 12600, groups: rep, 420
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This approach establishes a new way of looking at the larger 
PHM problem where the focus is on managing risks asso-
ciated with emerging faults in a system. By employing this 
perspective, the risk-based PHM approach also offers an 
alternative method for assessing PHM performance by fo-
cusing on probability of successful operation rather than 
life-cycle cost from associated repair efforts. As a means 
of implementing this approach, the output of a diagnostic 
model serves as the prior distribution for a CTBN that mod-
els hazard progression in a system. In taking this approach, 
we have utilized two previously developed tools, namely 
SAPPHIRE (for diagnostics BNs), developed with support 
of the US Navy, and CHARM (for prognostics CTBNs), de-
veloped with support from NASA. We have illustrated 
computational benefits of using approximate inference with 
the prognostic CTBNs as a way of mitigating the computa-
tional complexity that results from such an approach. As part 
of an ongoing effort with support from the US Navy, the two 
systems are being combined into a single system for prognos-
tics and diagnostics using the modeling approach described 
in this work.
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