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Abstract—Automatically identifying the musical instruments
present in audio recordings is a complex and difficult task.
Although the focus has recently shifted to identifying instruments
in a polyphonic setting, the task of identifying solo instruments
has not been solved. Most empirical studies recognizing musical
instruments use only a single dataset in the experiments, despite
evidence that mapproaches do not generalize from one dataset
to another dataset. In this work, we present a method for data-
driven learning of spectral filters for use in feature extraction
from audio recordings of solo musical instruments and discuss
the extensibility of this approach to polyphonic mixtures of
instruments. We examine four datasets of musical instrument
sounds that have 13 instruments in common. We demonstrate
cross-dataset validation by showing that a feature extraction
scheme learned from one dataset can be used successfully for
feature extraction and classification on another dataset.
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retrieval, musical note separation, timbre

I. INTRODUCTION

Musical instrument recognition is an important research
task to the area of music information retrieval (MIR). Many
studies have explored recognizing individual musical instru-
ments in isolation. However, these approaches are often sen-
sitive to feature input and classification algorithms and do not
generalize between different datasets.

Livshin and Rodet demonstrated that many approaches
to musical instrument classification do not generalize from
one dataset to another [1]. Using five datasets and seven
instruments, the authors performed cross-dataset evaluations
and discovered accuracies of 20% to 60% when training on one
dataset and testing on another, despite classification results of
over 90% for any single dataset using cross-validation. This
indicates that the models learned on a single dataset tend
overfit and are not extensible to other datasets.

Recent work in the field has shifted to the more complex
case of identifying the instruments present in polyphonic
mixtures. This is a more difficult problem because the spectral
content of the constituent tones can overlap in time and
frequency. Most of the approaches developed to recognize
individual instruments are not scalable to the more complex
case of polyphonic instrument mixtures. [2].

In this paper, we propose a binary relevance feature extrac-
tion technique for identifying solo instruments that is designed
to be extensible to recognizing instruments in polyphonic
mixtures. We demonstrate a data-driven approach to learn
areas of prominent harmonics for each instrument and use
these resulting signatures to inform the feature extraction
stage, described in Section III. In Section IV, we describe
a feature set representing energy values extracted only from
these regions of prominence learned for each instrument. We
normalize the amplitude features by the amplitude of the
fundamental frequency, which better enables comparison of
features extracted from two different datasets. Using these
instrument-specific features, we evaluate this approach in a
series of binary relevance classification experiments. In Section
V, we validate our approach by showing the ability to use
an instrument’s signature learned from one dataset to extract
features from a different dataset. Lastly, we demonstrate the
generalizability of this approach using 13 musical instruments
and cross-validation across four different datasets.

II. RELATED WORK

For the task of recognizing isolated instrument tones,
researchers have attempted a variety of feature extraction
schemes (see [3] for a review) and classification algorithms
(see [4] for a review). For the more complicated task of
instrument recognition within polyphonic mixtures, there have
been several general approaches. The first general approach
considers the mixture as a whole, extracting general features
directly without attempting any source separation [5], [6], [7],
[8]. Many approaches require knowledge of the fundamental
frequency, onset time, and duration [6] — information that
will not be readily available for real-word data. Others require
training on every possible combination of instruments [5], [7],
an approach that is not extensible to unseen combinations
of instruments and is not feasible for a large number of
instruments.

The second approach to classifying mixtures is to adapt ex-
isting algorithms to perform multilabel classification directly.
Researchers have attempted a multilabel multi-layer perceptron
[9], [10], hidden Markov model [11], multilabel decision tree
[12], and multilabel k-nearest neighbor [12].

The third and most common approach is the estimation
of source separation and classification of the sounds individu-
ally. Approaches include matching single instrument templates



within a mixture [13], selecting features that minimize inter-
ference between sources [14], [15], and modeling a decompo-
sition of the signal mixtures [16]. Our approach is designed
for the estimation of source separation.

Many of these approaches have significant limitations, such
as the use of very few examples or the use of only hand-
picked instruments [14], [9], [17], low accuracy results [18],
[19], or inability to scale to a previously unseen instrument
combination [5], [7] (see [20] for a discussion). We know of
only one study [21] that addresses cross-dataset validation on
dataset with a single, non-comprehensive experiment.

III. LEARNING SPECTRAL FILTERS

In music the harmonic partials of individual tones are
interleaved in both the frequency and time domains. In some
cases, partials from multiple instruments will overlap, causing
destructive or constructive interference. This section describes
our data-driven approach to training instrument specific spec-
tral filters for use in feature extraction. Appendix A walks
through a detailed example of this procedure.

A. Signal Processing

First we transform the audio signals to the frequency do-
main using a Fast Fourier Transform (FFT) with a single time
window. The resulting amplitudes are scaled by 10-log 10 dB to
a power/frequency scale. Since the amplitudes of harmonics in
the higher frequencies fall off rapidly relative to the amplitude
of the fundamental, working with log amplitudes preserves the
importance of the harmonics relative to nearby frequencies.

B. Peak Extraction

For each instrument signal, we seek to extract the harmon-
ics in the spectra. To accomplish this, we establish a threshold
above the noise floor and identify any peaks whose amplitudes
exceed the threshold (see Figure 4 in Appendix A). We employ
a sliding frequency-dependent threshold proposed by [22] and
discussed in [23]. This approach permits identifying peaks as
significant to their local frequency neighborhood, allowing the
capture of significant peaks even in the higher frequency range.

Next, we identify the fundamental frequency fy in the sig-
nal. Since we examine signals containing only one instrument,
we assume the fundamental is the significant peak with the
lowest frequency. We extract the frequency location of this
peak within a localized window of 32 samples. Using a small
window allows capturing the maximum peak in the frequency
neighborhood, rather than a local maximum corresponding to
a side-lobe, such as those shown in Figure 1.

We extract any amplitude peaks that exceed the threshold
and note the frequency location of each peak. In this stage,
we are concerned with locating each significant peak relative
to fo. For each peak p in the signal, we save a ratio r
calculated as » = p + fy. We repeat this process for all
files for each instrument and save the ratios in a single-
dimension vector, with duplicate values allowed. By capturing
the ratio to fundamental rather than absolute frequency values,
we can normalize away the pitch of the note, allowing direct
comparisons between notes with different pitches.
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Fig. 1: Zoomed view of the fundamental frequency of a
Trumpet playing 265 Hz. The highest peak represents f, and
the other local peaks are side-lobes resulting from the FFT.

C. Clustering

We then cluster the vector of ratio data to learn the
locations of various harmonics important to each instrument.
We use the common k-means clustering algorithm [24] to
partition the set of ratios into a set of Gaussian clusters. For
each cluster, we note the mean and standard deviation and save
this set as the instrument’s spectral signature. This signature
is used to extract features for the classification experiments.

We begin with an initial k=10 clusters. Since musical
instruments contain a quasi-harmonic pattern of partials at near
integer ratios, we seed the initial k clusters with integer values
[2...k + 1], corresponding to the first ten overtones above
fo- We modify the traditional k-means to permit changing
the number of clusters as the algorithm progresses. At each
iteration, if the standard deviation exceeds 0.5, representing
half the distance between two harmonics, the cluster is split
into two different clusters. Likewise, if the means of two
clusters overlap by less than ¢ = 0.5, thy are combined into
one. This method yields a variable number of clusters for each
instrument and dataset (see Table I). Although the majority of
the ratios learned are near-integer ratios, many clusters learned
center around inharmonic ratios (e.g., ¢ = 11.57). Using these
clusters, we return a spectral signature for each instrument and
dataset. In the feature extraction stage of our experiments, the
instrument signature is applied as a spectral mask. Only the
spectral energy underneath the signature will be considered
for feature extraction while the rest of the spectral signal is
disregarded as noise.

IV. EXPERIMENTS

To evaluate our proposed feature extraction scheme, we
perform several classification experiments. In the first, we
show that an instrument signature learned from one dataset can
be used to extract features on another dataset. In the second,
we demonstrate cross-dataset validation by training our models
on one dataset and testing on another dataset.

A. Dataset Sources

For our experiments we select the set of 13 instruments
common to four different datasets, shown in Table II. The



TABLE I: List of number of clusters learned by instrument
and dataset.

Instrument MUMS MIS RWC PHO
FrenchHorn 29 60 54 88
Trumpet 47 26 44 83
Trombone 64 86 95 110
Tuba 55 120 71 87
Flute 13 38 87 106
Clarinet 39 107 56 82
AltoSaxophone 52 75 84 94
Oboe 30 43 39 30
Bassoon 82 86 96 100
Violin 52 100 71 56
Viola 59 80 72 120
Cello 87 86 102 102
Contrabass 94 100 94 108

TABLE II: List of 13 instruments common to the four datasets
and the number of examples in each dataset.

Family Instrument MUMS MIS RWC PHO
French Horn (FH) 37 55 327 531

Brass Trumpet (TR) 66 106 210 416
58 Trombone (TB) 36 82 286 748
Tuba (TU) 32 65 270 813

Flute (FL) 37 113 221 764

Clarinet (CL) 37 139 359 752

. Alto Sax (AS) 14 97 297 607
Woodwind | " 0B) 32 91 198 530
Bassoon (BS) 32 64 360 632

Violin (VN) 45 832 575 572

Viola (VA) 42 583 542 706

String Violoncello (VC) 47 658 565 743
Contrabass (CB) 44 617 551 766

Total 501 3502 4761 8580

McGill University Master Samples (MUMS) is a collection
of instrument samples, published on compact discs between
1987-1989 [25]. The University of Iowa Musical Instrument
Samples (MIS) dataset was created by the Electronic Music
Studios at the University of Iowa in 1997 [26]. The Real
World Computing (RWC) Music Database is a large-scale
music database created specifically for research purposes in
2003 by Japan’s National Institute of Advanced Industrial
Science and Technology [27]. The Philharmonia Orchestra
Sound Sample Collection (PHO) is collection of recordings of
various musical instruments created by London’s Philharmonia
Orchestra, freely available on their website [28].

The datasets range in size from small, containing a few
dozen examples of each instrument (MUMS, MIS), to large,
containing hundreds of examples of each instrument (RWC,
PHO). The datasets are CD quality sound or better, with the
exception of the PHO dataset which is in MP3 format.

B. Preprocessing

These datasets consist of musical instruments systemati-
cally playing chromatic scales. The MIS, RWC, and PHO
datasets contain examples at three different dynamic levels.
The smaller MUMS dataset contains examples only at a
medium (mezzo-forte) dynamic level. All original sound files
are downsampled to a 44.1 kHz sampling rate with 16-bit per
sample, and mixed down to a single channel waveform. For
the lower quality PHO dataset the audio was upsampled to the
aforementioned compact disc quality.

We used the SoX! audio tool to split the musical scales into
individual files, each containing a single musical note. Since
the frequency resolution of the FFT depends on the number
of input samples in the time domain [29], we set all files to
be one second in length. If the musical note is shorter than
one second, silence was added to lengthen the file. We did not
interpolate or repeat the signal to avoid creating any artificial
spectral artifacts. If the musical note sample is longer than one
second, the file was trimmed to one second. A fade-in and a
fade-out of 10 milliseconds each was imposed to eliminate any
discontinuities in the waveform resulting from the previous
step. For each instrument within each dataset, the audio files
were normalized in amplitude relative to loudest gain in any
single file. This process preserves the relative dynamic levels
between examples for each instrument within each dataset.

C. Feature Extraction

For each example, we first convert the sound file to spectral
domain using an FFT as described in Section III-A. For each
instrument and each dataset, we use the signatures learned in
Section III-C as spectral filters in order to extract amplitude
features for use in the classification experiments. For each
example, the fundamental frequency is identified as described
in Section III-B. Next, the instrument signature is applied to
the amplitude spectra as a spectral mask. Each cluster ¢ of the
signature has a mean ¢, and a standard deviation c,.

For each Gaussian cluster in the signature, we calculate a
window centered on the ratio corresponding to the cluster mean
and ranging plus and minus one standard deviation. The ratio is
calculated relative to f, and each window ranges ((c,—¢cx)- fo)
to ((cu +¢o) - fo). Within each cluster window, the maximum
amplitude is extracted as a feature. This is repeated for each
Gaussian cluster in the signature. In these experiments we
use the very simple feature of the maximum amplitude value
within each window. In future work, we will explore using
other more complex spectral features, such as those described
in [3]. As our goal in this work centers on demonstrating cross-
dataset validation, we avoid potentially overfitting individual
datasets by optimizing from a complex set of spectral features,
as is common in the literature, and instead demonstrate our
approach using a simple feature space.

Lastly, we normalized these amplitude values relative to
the amplitude of fy. Considering feature values relative to fj
allows us to compare notes played at different dynamic levels.
Furthermore, it also permits comparing notes between datasets,
helping to overcome differences caused by the recording pro-
cedures of the individual datasets. In other words, this allows
comparison of features extracted from the same instrument but
from different datasets. Appendix B walks through a detailed
example of this feature extraction procedure.

D. Experimental Design

Binary relevance (BR) classification is a common decom-
position approach to multilabel classification. In BR classi-
fication, a separate classifier is trained for each class label
and this binary classifier is responsible for determining if
the label as relevant or irrelevant to each example [30]. The
BR approach to multilabel classification is often the baseline
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against which other multilabel classification approaches are
compared experimentally [31]. Many approaches to multilabel
classification increase in complexity as the number of class
labels increase and are not scalable to a large number of labels.
BR classification, on the hand, scales linearly in the number
of models as the number of class labels increases. Another key
assumption in BR classification is the independence of class
labels. In many domains, multilabel data contains dependency
between labels and researchers are exploring approaches to
multilabel classification that can exploit dependencies between
class labels [32], [33].

In this work, we train a BR classifier for each musical
instrument that determines if that instrument is present or
not present in the signal. Although the experiments reported
in this work examine both training and testing on datasets
of solo instruments, our BR approach is designed to extend
naturally to multilabel classification, training on datasets con-
taining only solo instruments but permitting testing on signals
containing polyphonic mixtures. The is a key contribution
that differentiates our approach from other studies on solo
instrument classification. Compared to other approaches to
multilabel classification of polyphonic mixtures, such as [5],
our BR approach is extensible to new instruments, requiring
only solo examples of the new instruments for training.

To train and test our instrument-specific BR classifier, we
organize our datasets into binary datasets for each individual
instrument. For each instrument ¢, we create a dataset D;
in which 50% of the dataset are examples of instrument 4,
assigned the positive class label (+) . The other 50% of the
examples in the dataset are examples of other instruments, any
instrument —¢, which is assigned the negative class label (—).
To select examples for the negative class label, we randomly
select one of the other twelve instruments and randomly select
with replacement a sound example of the chosen instrument.
Each dataset D, contains an equal number of positive and neg-
ative class labels. Since the number of examples of instrument
¢ available differs between instruments and datasets, the total
size of each dataset D; is twice the value given in Table II.
For both positive and negative examples, features are extracted
using the cluster signature (see Section III-C) for the positive
instrument class.

Throughout this work, we use the terms self-classification
and cross-dataset classification to describe two different exper-
imental designs. For self-classification tasks, we train and test
on the same dataset, using a 10-fold cross-validation approach,
reporting the average of the results of the 10-folds. For the
cross-dataset classification tasks, we train one dataset and test
on a different dataset. In our signature validation experiments
(Section V-A), we the use self-classification paradigm. In the
cross-dataset experiments (Section V-B), we report the results
using the cross-dataset approach for all training and test set
combinations from the four datasets. For the case when the
training and test sets are the same, we use the self-classification
experimental design.

k-NN is a common non-parametric lazy learning algorithm
used for classification. For any unseen example, k-NN predicts
the class label by finding the k nearest examples from the
training set that minimize a distance metric. From that set
of k neighbors, the class label of the majority of neighbors
is assigned to unseen example [34]. Based on preliminary

TABLE III: Results of the signature validation experiments
showing the F-measure for each binary classifier (instrument)
for each dataset. Figures Illa — IIId report the results using
instrument signatures learned from each of the four different
datasets, respectively. The italicized results indicate the signa-
ture was learned from the same dataset that is tested.

(a) Signature learned from the MUMS dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.64 0.70 0.64 0.76
Trumpet 0.75 0.63 0.82 0.73
Trombone 0.51 0.58 0.67 0.64
Tuba 0.65 0.65 0.58 0.81
Flute 0.77 0.75 0.71 0.67
Clarinet 0.73 0.57 0.78 0.71
Alto Saxophone 0.53 0.61 0.61 0.93
Oboe 0.54 0.72 0.72 0.50
Bassoon 0.73 0.69 0.74 0.74
Violin 0.72 0.61 0.58 0.63
Viola 0.71 0.53 0.70 0.52
Cello 0.79 0.73 0.75 0.73
Contrabass 0.80 0.89 0.79 0.84

(b) Signature learned from the MIS dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.74 0.75 0.81 0.74
Trumpet 0.88 0.91 0.83 0.80
Trombone 0.72 0.74 0.72 0.68
Tuba 0.77 0.88 0.87 0.90
Flute 0.69 0.73 0.68 0.72
Clarinet 0.85 0.87 0.87 0.89
Alto Saxophone 0.75 0.79 0.76 0.75
Oboe 0.78 0.83 0.74 0.78
Bassoon 0.70 0.67 0.76 0.68
Violin 0.86 0.87 0.88 0.86
Viola 0.74 0.74 0.73 0.70
Cello 0.78 0.78 0.77 0.80
Contrabass 0.89 0.89 0.90 0.87

(c) Signature learned from the RWC dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.71 0.75 0.77 0.78
Trumpet 0.71 0.69 0.73 0.71
Trombone 0.75 0.76 0.76 0.74
Tuba 0.88 0.91 0.86 0.90
Flute 0.78 0.77 0.77 0.75
Clarinet 0.90 0.86 0.88 0.88
Alto Saxophone 0.75 0.78 0.74 0.77
Oboe 0.81 0.83 0.80 0.80
Bassoon 0.87 0.85 0.87 0.85
Violin 0.86 0.84 0.84 0.86
Viola 0.78 0.77 0.78 0.75
Cello 0.85 0.84 0.83 0.83
Contrabass 0.92 0.92 091 0.91

(d) Signature learned from the PHO dataset.

Instrument MUMS MIS RWC PHO
French Horn 0.81 0.79 0.80 0.80
Trumpet 0.76 0.78 0.76 0.77
Trombone 0.76 0.78 0.76 0.77
Tuba 0.91 0.92 0.89 0.90
Flute 0.80 0.87 0.84 0.82
Clarinet 0.91 0.87 0.89 0.87
Alto Saxophone 0.76 0.74 0.75 0.75
Oboe 0.89 0.38 0.88 0.87
Bassoon 0.87 0.86 0.86 0.85
Violin 0.82 0.85 0.85 0.82
Viola 0.82 0.81 0.83 0.82
Cello 0.83 0.82 0.80 0.80
Contrabass 0.90 0.90 0.92 0.90




testing, we use k = 7 in our experiments and the Euclidean
distance metric, commonly used with continuous variables. In
the information retrieval domain, the metric known as precision
is the fraction of retrieved examples that are relevant and the
metric recall is the fraction of all relevant documents retrieved.
To evaluate the performance of our experiments, we report the
F-measure, a weighted averaged of precision and recall.

V. RESULTS
A. Signature Validation

In this experiment, we explore the generalizability of our
feature extraction approach. We demonstrate that an instrument
signature learned from one dataset can be used for feature
extraction for the same instrument in a different dataset.
In these signature validation experiments, we use the self-
classification paradigm described in Section IV-D.

For each dataset, we consider the cluster signature learned
for each instrument. This signature informs the locations in
the signal of the features to extract. We apply this signature to
each of the other datasets and extract the relevant features. In
other words, we use the locations of the features learned for
one instrument in one dataset to extract the features for the
same instrument from another dataset.

In Table IIT we report the F-measure result of each binary
classifier. For most instruments and datasets, we show that a
signature learned from one dataset can be successfully applied
for feature extraction on another dataset. In numerous cases,
we found a higher accuracy when applying a signature from
one dataset to another dataset. For example, many of the
instrument signatures learned from the large, high quality RWC
dataset (Table Illc) produced a higher score than the self-
classification results of the RWC dataset itself. This result
strongly implies that our BR feature extraction technique
finds features that generalize an instrument’s musical timbre,
regardless of the dataset.

B. Cross-Dataset Validation

In the cross-dataset experiments, we examine the ability of
our approach to generalize between datasets. For each dataset,
we train a separate BR classifier for each instrument. We then
use this trained model to classify each of the other datasets.
When the training set and test same are the same, we use
the cross-validation approach described above. In Table IV we
report the F-measure result of each classifier.

In these experiments, we found that we are able to train on
features from one dataset and test on features extracted from
another dataset. As expected, we observe a reduced classifi-
cation accuracy for the cross-dataset experiments compared to
the self-classification experiments. However these results are
far more promising than the cross-dataset results reported in
[1], although, given the differing features and classification
algorithms, the results of the two approaches are not directly
comparable.

Nevertheless, we are able to classify using the cross-dataset
paradigm at rates well above chance for almost all datasets and
instruments. In our preliminary experiments, we observed that
setting a small value of k, such as k = 1 substantially increased
accuracy on the self-classification experiments but decreased

TABLE IV: Cross-dataset experiments showing the F-measure
for each binary classifier (instrument) for each dataset. The
column headers show the test dataset. The italicized values
indicate self-classification. All others values represent cross-
dataset classification.

(a) Classifier trained on the MUMS dataset

Instrument MUMS MIS RWC PHO
French Horn 0.66 0.65 0.59 0.59
Trumpet 0.79 0.67 0.65 0.59
Trombone 0.62 0.66 0.65 0.61
Tuba 0.69 0.50 0.66 0.71
Flute 0.78 0.73 0.72 0.63
Clarinet 0.81 0.75 0.78 0.8
Alto Saxophone 0.59 0.38 0.47 0.44
Oboe 0.68 0.67 0.68 0.71
Bassoon 0.77 0.72 0.70 0.68
Violin 0.73 0.58 0.67 0.67
Viola 0.68 0.63 0.66 0.65
Cello 0.78 0.62 0.77 0.63
Contrabass 0.83 0.74 0.84 0.77

(b) Classifier trained on the MIS dataset

Instrument MUMS MIS RWC PHO
French Horn 0.65 0.77 0.65 0.62
Trumpet 0.61 0.91 0.66 0.61
Trombone 0.65 0.74 0.69 0.68
Tuba 0.44 0.88 0.42 0.54
Flute 0.66 0.77 0.74 0.66
Clarinet 0.63 0.88 0.83 0.76
Alto Saxophone 0.66 0.81 0.64 0.55
Oboe 0.70 0.85 0.67 0.69
Bassoon 0.81 0.77 0.73 0.68
Violin 0.66 0.87 0.75 0.74
Viola 0.69 0.78 0.58 0.61
Cello 0.67 0.80 0.67 0.66
Contrabass 091 0.90 0.88 0.81

(¢) Classifier trained on the RWC dataset

Instrument MUMS MIS RWC PHO
French Horn 0.78 0.75 0.78 0.67
Trumpet 0.75 0.74 0.72 0.64
Trombone 0.78 0.74 0.76 0.72
Tuba 0.59 0.36 0.87 0.73
Flute 0.77 0.73 0.78 0.67
Clarinet 0.78 0.82 0.89 0.75
Alto Saxophone 0.78 0.75 0.79 0.53
Oboe 0.80 0.79 0.82 0.79
Bassoon 0.83 0.81 0.86 0.77
Violin 0.72 0.69 0.87 0.77
Viola 0.83 0.60 0.80 0.61
Cello 0.38 0.67 0.84 0.70
Contrabass 0.93 0.85 0.92 0.81

(d) Classifier trained on the PHO dataset

Instrument MUMS MIS RWC PHO
French Horn 0.70 0.65 0.66 0.82
Trumpet 0.62 0.83 0.68 0.79
Trombone 0.78 0.73 0.66 0.79
Tuba 0.86 0.67 0.83 0.91
Flute 0.49 0.74 0.68 0.85
Clarinet 0.85 0.80 0.79 0.88
Alto Saxophone 0.57 0.55 0.62 0.79
Oboe 0.76 0.76 0.81 0.88
Bassoon 0.70 0.73 0.77 0.87
Violin 0.78 0.66 0.75 0.84
Viola 0.68 0.63 0.65 0.84
Cello 0.74 0.63 0.76 0.83
Contrabass 0.90 0.87 0.87 0.91




accuracy on the cross-dataset experiments. This is an example
of overfitting to a specific dataset, which is a common problem
in the instrument classification literature. As we increased
the value of k, the self-classification results decreased as the
cross-dataset accuracy increased. In other words, comparing
an unknown example to the single nearest instance is useful
in the self-classification task, but more neighbors are required
to better generalize between instruments across datasets.

VI. DISCUSSION

We present an approach to feature extraction for classi-
fication of solo musical instruments. We examine four large
datasets each containing examples of 13 musical instruments in
common. We propose a data-driven learning approach to find
regions of spectral prominence for each musical instrument.
We use these spectral filters for extracting features from audio
recordings of solo instruments. Since we use a BR experi-
mental design, we need not use the same set of features for
each instrument class. Instead we use an instrument specific-
set of features for each BR classifier. We design this approach
specifically to be extensible to multilabel classification of
mixtures of multiple instruments.

First, we demonstrate that our BR feature extraction
scheme does generalize between datasets as we show that,
for each instrument, the important feature locations learned
in one dataset can be successfully used to extract features
from another dataset. This result implies that we are capturing
features relevant to the specific instrument’s timbre, rather than
features influenced by the recording procedures, such as the
microphone, amplitude levels, and other variations between
datasets. Secondly, we demonstrate cross-dataset validation by
showing that we can train an instrument-specific BR classifier
on one dataset, and test the model on another dataset.

In the musical instrument classification literature, most
approaches are heavily biased by the training set and cannot
be used to classify other datasets [1]. Cross-dataset validation
needs to be goal of any approach that hopes to eventually
generalize to real-world musical data. Our cross-dataset ex-
periments demonstrate an ability of our approach to provide
such a generalization.

VII. FUTURE WORK

In ongoing work, we extend this approach to multilabel
classification of polyphonic mixtures of instruments. For each
dataset, we train models using the approach described in this
paper. Using only recordings of solo instruments, we extract
partials, train the instrument signatures, extract amplitude
features, and train a BR classifier for each instrument.

Next, we create a dataset of polyphonic mixtures of instru-
ment by selecting two or more unique instruments at random
and mix them together. Given an audio signal containing a
mixture of unknown instruments to classify, we begin by
extracting significant spectral peaks that exceed our frequency-
dependent amplitude threshold. We must consider each of these
significant peaks as a potential fundamental frequency f; for
each possible musical instrument. Given an individual peak
and a hypothesis of a particular instrument ¢, we apply the
spectral signature of that instrument ¢ and extract amplitude
features in those locations, ignoring the rest of the signal. We

then query the BR classifier for a probability that instrument
¢ is contained in the mixture. We repeat this process for each
instrument hypothesis and significant peak and classify the
mixture as containing the set of instruments that returned the
highest probabilities.

APPENDIX A
SIGNATURE LEARNING EXAMPLE

This appendix walks through a detailed example of the
signature learning process described in Section III. We begin
with a single instrument, the Clarinet. Consider a sound file
of a Clarinet playing a single note, as shown in Figure 2. We
then transform the signal to the frequency domain using an
FFT, as shown in Figure 3.
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Fig. 2: Waveform of a Clarinet playing middle C (261 Hz)
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Fig. 3: Spectra of a Clarinet playing middle C (261 Hz)

The next step is to determine the variable-frequency noise
threshold as described in Section III-B and shown in Figure 4.
We consider any peak above this threshold to be a significant
peak. Among those significant peaks, we identify the funda-
mental frequency fj using the procedure described in Section
III-B. Our algorithm selects the lowest significant peak, the
leftmost peak shown in Figure 3.

After identifying the significant peak threshold, we extract
all the locations (in Hertz) corresponding to these peaks. Using
the frequency of fy, we calculate the ratio of the peak to the
fundamental. Observe that in the examples shown in Table V
there are several significant peaks centering around an integer
ratio value. Since we use a single one-second time window in
our FFT, we obtain a high frequency resolution and capture the
frequency fluctuation over the course of the one second sample.
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Fig. 4: Amplitude spectrum and threshold a Clarinet note

These values will contribute towards the standard deviation of
the signature clusters.

TABLE V: Examples of significant peaks of Clarinet note with
fo =446

frequency amplitude ratio
889.5 —68.88867246 1.994
890.0 —65.80878555 1.996
891.5 —67.97254256 1.999
892.5 —74.96824454 2.001
893.0 —74.00520015 2.002
893.5 —73.05548783 2.003
894.0 —71.43471702 2.004
13335 —58.82644509 2.990
1334.0 —57.31556185 2.991
1334.5 —55.70385473 2.992
1335.0 —44.85334492 2.993
1335.5 —40.94094168 2.994
1338.5 —49.02662269 3.001
1340.0 —52.91051806 3.004

. etc.

We repeat this procedure for all other Clarinet sound files
in the dataset, such as the simplified examples shown in
Table VI. Next, we flatten all these values into a single one-
dimensional vector, retaining any duplicate values. At this
stage, we do not use any amplitude information but only the
ratios corresponding to the frequency locations of the peaks.
The energy of the peaks are used in the feature extraction
stage of the classification experiments, as described in Section
IV-C. For now, we are concerned with learning where to look
for significant spectral energy.

TABLE VI: Examples of the ratios extracted from several
different Clarinet notes

2.00, 2.99, 4.01, 4.99, 6.03

2.00, 2.97, 3.06, 3.98, 4.95, 5.04, 5.94, 6.07, 6.94, 7.07, 7.92, 8.07, 9.88
2.04, 2.05, 3.04, 3.07, 3.09, 4.05, 4.07, 4.09, 4.12, 5.08, 5.10, 5.12, 5.15
2.00, 2.99, 3.97, 4.97, 5.09, 5.93, 6.96, 7.10, 7.98, 8.98, 9.98, 11.00, 13.13
2.00, 3.01, 3.98, 5.01, 6.01, 6.98

1.97, 2.00, 2.97, 3.01, 3.95, 3.98, 4.01, 5.01, 5.93, 5.97, 6.01

2.00, 3.01, 4.01, 4.98, 6.02, 7.03, 7.98

1.98, 2.03, 3.01, 3.07, 4.01, 4.07, 4.98, 5.04, 5.10, 6.02, 6.11, 7.01

... etc.

Next we apply the k-means clustering algorithm on the
set of ratio values as described in Section III-C. We then
extract the resulting k clusters as the signature for the Clarinet.
Each cluster returns a mean x and standard deviation o, which

TABLE VII: Example clusters learned for the Clarinet

p={2.003, 3.000, 4.006, 4.997, 5.998, 6.988, 7.988, 8.981, 9.984, 10.976 ...}
o= {0.026, 0.037, 0.046, 0.055, 0.056, 0.058, 0.059, 0.064, 0.064, 0.070 ...}

we use as window centered on the ratio plus and minus one
standard deviation. A larger standard deviation indicates more
fluctuation in frequency over the duration of the sound file.
For example, the signatures of string instruments, such as
the Violin, contain on average a larger standard deviations
than other instruments. This corresponds to the natural pitch
fluctuation, or vibrato, of the instrument.

We repeat this procedure for every instrument and for each
of the datasets. We learn a unique spectral signature for each
instrument and each dataset.

APPENDIX B
FEATURE EXTRACTION EXAMPLE

In this example, we walk through the procedure of ex-
tracting features for the classification experiments. For a given
instrument hypothesis, using the instrument’s learned spec-
tral signature, we extract amplitude features only in regions
masked by the spectral filter.
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(a) Clarinet playing C (265 Hz) with signature (dashed)
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(b) Clarinet playing A (440 Hz) with signature (dashed)

Fig. 5: Examples of signature applied to two different notes

For each example, and for each instrument hypothesis, we
use the spectral signature to extract the maximum amplitude



within the window of j; 0 for each i cluster in the spectral
signature. For example,

fo is 446.0 Hz
u1 = 2.003
o1 = 0.026

Calculate window [881.742,904.934]
Extract maximum amplitude in window: —65.81 at 8§90.0 Hz

This is repeated for all clusters in the signatures (see
Table I) and the resulting amplitude values are converted to
ratio to the fundamental’s amplitude and stored as features, as
described in Section I'V-C.

Examples of a Clarinet signature applied to the spectra of
two Clarinet notes is shown in Figure 5. Since the signatures
capture the locations relative to the fy;, we can apply the
instrument’s signature to any note, regardless of the pitch.
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