Combining Genetic Algorithms with Memory Based Reasoning

John W. Sheppard® and Steven L. Salzberg
Department of Computer Science
The Johns Hopkins University
Baltimore, Maryland 21218
lastname@cs.jhu.edu

Abstract

Combining different machine learning algo-
rithms in the same system can produce ben-
efits above and beyond what either method
could achieve alone. This paper demon-
strates that genetic algorithms can be used
in conjunction with memory-based reasoning
to solve a difficult class of delayed reinforce-
ment learning problems that both methods
have trouble solving individually. This class
includes numerous important control prob-
lems that arise in robotics, planning, game
playing, and other areas. Qur experiments
demonstrate that by using one learning tech-
nique, genetic algorithms, as a bootstrapping
method for the second learning technique,
memory-based reasoning, we can create a sys-
tem that outperforms either method alone.
The resulting joint system learns to solve a
difficult reinforcement learning task with a
high degree of accuracy and with relatively
small memory requirements.

1 INTRODUCTION

When two people learn a task together, they can both
benefit from the different skills that each brings to
the table. The result is that both will learn better
than they would have on their own. Likewise, machine
learning methods should be able to work together to
learn how to solve problems. This paper describes how
a genetic algorithm and a memory-based learning al-
gorithm can work together to produce better solutions
than either method could produce by itself.

Delayed reinforcement learning problems involve an
agent that makes a sequence of decisions, or actions,
in an environment that provides feedback about those
decisions. The feedback about those actions might be

*Also ARINC, Inc., 2551 Riva Road, Annapolis, Mary-
land 21401, sheppard@arinc.com

considerably delayed, and this delay makes learning
much more difficult. A number of reinforcement learn-
ing algorithms have been developed specifically for this
family of problems, but little has been done evaluat-
ing the power of combining different types of learning
algorithms to these problems.

We began by considering a reinforcement learning
problem that involved one agent trying to pursue and
capture another. Earlier research showed that at least
one implementation of this task, known as evasive ma-
neuvers (Grefenstette et al. 1990), can be solved by a
genetic algorithm (GA). We first developed a memory-
based approach for the same task, and then made
the task substantially harder, in order to study the
limitations of both GAs and memory-based reason-
ing (MBR) methods on this class of problems. The
more complicated task, which is described further in
section 3, also resembles complicated planning tasks
in which an agent has to satisfy several goals at once
(Chapman 1987). Our study is an attempt to develop
a learning strategy that will improve the overall per-
formance of either MBR, GAs, or both.

As our experiments will show, we were successful at de-
veloping a method to solve our difficult reinforcement
learning task. The key idea behind our success was
the combined use of both a GA and MBR. We found
that the best learning agent first used a GA, and then
switched to MBR after reaching a certain performance
threshold. Our experiments demonstrate remarkable
improvement in the performance of MBR, both in
overall accuracy and in memory requirements, as a re-
sult of using these techniques. The combined system
also performed better than the GA alone, demonstrat-
ing how two learning algorithms working together can
outperform either method when used alone.

2 PREVIOUS WORK

The idea of using memory-based methods for delayed
reinforcement tasks has only very recently been con-
sidered by a small number of researchers. Atkeson



(1989) employed a memory-based technique to train
a robot arm to follow a prespecified trajectory. More
recently, Moore and Atkeson (1993) developed an al-
gorithm called “prioritized sweeping” in which “inter-
esting” examples in a @ table are the focus of up-
dating. In another study, Aha and Salzberg (1993)
used nearest-neighbor techniques to train a simulated
robot to catch a ball. In their study, they provided an
agent that knew the correct behavior for the robot, and
therefore provided corrected actions when the robot
made a mistake. This approach is typical in nearest-
neighbor applications that rely on determining “good”
actions before storing examples.

Genetic algorithms have also been applied to perform
delayed reinforcement problems. In addition to study-
ing the evasive maneuvers task, Grefenstette (1991)
applied his genetic algorithm system SAMUEL to
aerial dogfighting and target tracking (in a game of
cat and mouse).

One of the most popular approaches to reinforcement
learning has been using neural network learning al-
gorithms. For example, back-propagation has been
used to solve the cart and pole problem (Widrow
1987), in which a pole must be balanced vertically
on a wheeled cart. A similar algorithm was applied
to learning strategies for backing a truck into a load-
ing dock (Nguyen and Widrow 1989). Both of these
methods incorporated knowledge of the correct behav-
ior during training. In addition, Millan and Torras
(1992) demonstrated a technique for training a neu-
ral network using reinforcement learning in which the
control variables are permitted to vary continuously.
They addressed the problem of teaching a robot to
navigate around obstacles.

Finally, considerable research has been performed us-
ing a form of reinforcement learning called temporal
difference learning (Sutton 1988). Temporal difference
methods apply delayed reinforcement to a sequence of
actions to predict future reinforcement and appropri-
ate actions in performing the task. Specifically, predic-
tions are refined through a process of identifying dif-
ferences between the results of temporally successive
actions. Two popular temporal difference algorithms
are ACE/ASE (Barto et al. 1983, Barto et al. 1990)
and @-learning (Watkins 1989). The original work by
Barto et al. (1983) demonstrated that the cart and
pole problem could be solved using this method. Lin
(1991) applied @-learning to teach a robot to navigate
the halls of a classroom building and plug itself into a
wall socket to recharge its batteries.

3 DIFFERENTIAL GAMES AND
REINFORCEMENT LEARNING

Reinforcement learning (RL) is challenging in part be-
cause of the delay between taking an action and re-

ceiving a reward or penalty. Typically an agent takes
a long series of actions before the reward, so it is hard
to decide which of the actions were responsible for the
eventual payoff. An MBR approach must store ex-
periences, in the form of state-action pairs, for later
use. To make this work effectively for reinforcement
learning, we needed a method that would increase the
probability that a stored example was a good one; i.e.,
that the action associated with a stored state was cor-
rect. Because of this credit assignment problem, and
because of the difficulty of the tasks we designed, ini-
tial training is very difficult for MBR. In contrast, a
GA initially searches a wide variety of solutions, and
for the problems we studied tends to learn rapidly in
the early stages. These observations suggested the
two-phase approach that we adopted, in which we first
trained a GA, and then used it to provide exemplars

to MBR.

The class of RL problems studied here has also been
studied in the field of differential game theory. Differ-
ential game theory is an extension of traditional game
theory in which a game follows a sequence of actions
through a continuous state space to achieve some pay-
off (Isaacs 1963). This sequence can be modeled with
a set of differential equations which are analyzed to
determine optimal play by the players. We can also
interpret differential games to be an extension of opti-
mal control theory in which players’ positions develop
continuously in time, and where the goal is to opti-
mize competing control laws for the players (Friedman

1971).

One class of differential games is the pursuit game. A
pursuit game has two players, called the pursuer (P)
and the evader (E). The evader attempts to achieve an
objective, frequently just to escape from a fixed play-
ing arena, while the pursuer attempts to prevent the
evader from achieving that objective. Examples in-
clude such simple games as the children’s game called
“tag,” the popular video game PacMan, and much
more complicated predator-prey interactions in na-
ture. These examples illustrate the typical feature of
pursuit games that the pursuer and the evader have
different abilities: different speeds, different defense
mechanisms, and different sensing abilities. One exam-
ple of a genetic algorithm approach to pursuit games is
Grefenstette et al’s system using SAMUEL (Grefen-
stette et al. 1990), a 2-D simulation in which the pur-
suer represents a missile and the evader is an airplane.
This system’s success showed that GAs can solve re-
inforcement learning problems.

We initially implemented the same pursuit game as
Grefenstette et al, and later we extended it to make
it substantially more difficult. First, we added a
second pursuer. Unlike the single-pursuer problem,
the two-pursuer problem has no known optimal strat-
egy (Imado and Ishihara 1993). Second, we gave
the evader additional capabilities: in the one-pursuer



game, the evader only controls its turn angle at each
time step. Thus E basically zigzags back and forth
or makes a series of hard turns into the path of P to
escape. In the two-pursuer game, we gave E the abil-
ity to change its speed, and we also gave E a bag of
“smoke bombs,” which will for a limited time help to
hide E from the pursuers.

In our definition of the two-pursuer task, both pursuers
(P1 and P2) have identical maneuvering and sensing
abilities. They begin the game at random locations
on a fixed-radius circle centered on the evader, E. The
initial speeds of P1 and P2 are much greater than
the speed of E, but they lose speed as they maneuver.
They can regain speed by traveling straight ahead, but
they have limited fuel. If the speed of both P1 and P2
drops below a minimum threshold, then E can escape
and win the game. E also wins by successfully evading
the pursuers for 20 times steps. If the paths of either
P1 or P2 ever pass within a threshold range of E’s
path during the game, then E loses (i.e., the pursuer
will “grab” E). We use the term “game” to include
a complete simulation run, beginning with the initial
placements of all three players, and ending when E
either wins or loses.

When playing against one pursuer, the capabilities of
E are identical to the “aircraft” used by Grefenstette.
Against one pursuer, E controls only its turn angle,
which is sufficient to play the game very well. With
two pursuers P1 and P2 in the game, E has addi-
tional information about its opponents. The informa-
tion provided to E includes 13 features describing the
state of the game, including its own speed, the angle
of its previous turn, a game clock, the angle defined by
P1-E-P2, and the range difference between P1 and
P2. Tt also has eight features (or “sensors”) that mea-
sure P1 and P2 individually: speed, bearing, heading,
and distance. Bearing measures the position of the
pursuer relative to the direction that E is facing; e.g.,
if E is facing north and P1 is due east, then the bear-
ing would be 90 degrees. Heading is the angle between
E’s direction and the pursuer’s direction. When flee-
ing two pursuers, E has control over its speed and turn
angle at every time step, and it can also periodically re-
lease “smoke”; i.e., send a signal that introduces noise
into the sensor readings of P1 and P2.

4 USING MBR FOR EVASIVE
MANEUVERING

Memory-based reasoning is a classical approach to
machine learning and pattern recognition, most com-
monly in the form of a k-nearest neighbor algorithm
(k-NN), but it is rarely used for reactive control prob-
lems. We had to represent the pursuit game in a for-
mat amenable to MBR. We chose to let the state vari-
ables in the game correspond to features of an example,
and the actions taken by E correspond to classes. To

Percent Success

80

60
- poh o b B ‘W‘w}‘,\\
: | }A,“‘”“lwﬂ”’“’v\’\h"'L'\/M‘fw* w’w\’m‘w\/"yu‘, LRV e L g

»w e
20 |

One Pursuer -
Two Pursuers ——-—-

0

0 500 1000 1500 2000 o
Stored Games

Figure 1: Performance of K-NN.

be successful, a memory-based approach must have a
database full of correctly labeled examples. The diffi-
culty here, then, is how to determine the correct action
to store with each state.

To illustrate the problems that MBR has with the
two-player pursuit game, we briefly describe here some
findings of our earlier study (Sheppard and Salzberg
1993), which compared k-NN, GAs, and the temporal
difference algorithm called Q-learning (Watkins 1989).
In that study, we found that the MBR method, k-NN,
was by far the worst method in its performance on
this problem. While @-learning performed well, the
GA was superior to both of the other two methods.

For the initial experiments using k-nearest neighbors,
we varied k between 1 and 5 and determined that k = 1
yielded the best performance. Examples consisted of
randomly generated games that resulted in success for
E; thus we could assume that at least some of E’s
actions were correct. Figure 1 shows how well £-NN
performed (where k = 1) on a test suite of games other
than those used in training as the number of training
examples (games) increased. This figure indicates per-
formance averaged over 10 trials for E playing against
one pursuer and two pursuers. The accuracy at each
point in the graph was estimated by testing the MBR,
on 100 randomly generated games and recording the
number of successful evasions. Note that this figure
compares the performance between these two tasks
with respect to the number of games stored, where
a game contains up to 20 state-action pairs.

These experiments indicate that the problem of escap-
ing from a single pursuer is relatively easy to solve.
MBR was able to develop a set of examples that
was 95% successful after storing approximately 1,500
games, and it eventually reached almost perfect perfor-
mance. (The distance between P and E at the start
of the game guarantees that escape is always possi-
ble.) When E was given the task of learning how to
escape from two pursuers, however, the results were



disappointing. In fact, the MBR approach had diffi-
culty achieving a level of performance above 40%. This
demonstrates that the two pursuer problem is signifi-
cantly more difficult for memory-based reasoning.

One possible reason for the poor performance of k-NN
on the two pursuer task is the size of the search space.
For the one-pursuer problem, the state space contains
~ 7.5 x 10'° points, whereas for two pursuer evasion,
the state space has =~ 2.9 x 1033 points. The one-
pursuer game showed good performance after 5,700
games; to achieve similar coverage of the state space in
the two-pursuer game would require roughly 5.4 x 10?2
games. Another possible reason for MBR’s problems is
the presence of irrelevant attributes, which is known to
cause problems for nearest neighbor algorithms (Aha

and Kibler 1989, Salzberg 1991).

But the most likely reason for MBR/’s troubles, we con-
cluded, was that we were generating bad examples in
the early phases of the game. As stated above, MBR
needs to have the “correct” action, or something close
to it, stored with every state in memory. Our strat-
egy for collecting examples was to play random games
at first, and to store games in which E succeeded in
escaping. However, it seems clear that many of the ac-
tions taken in these random games will be incorrect; E
might escape because of one or two particularly good
actions, but a game lasts for 20 time steps, and all 20
state-action pairs are stored. Since our MBR approach
had no way (at first) to throw away examples, if it col-
lects many bad examples it could be forever stuck at a
low level of performance. This seemed to be what was
happening. As a result, we developed a two-phase ap-
proach in which we used a genetic algorithm to learn
in the early phase. The GA is explained next.

5 THE GENETIC ALGORITHM

Genetic algorithm implementations for games require,
first, a representation of the domain in terms of pro-
duction rules, which test some features of the domain
and then take an action (Booker et al. 1989, Hol-
land 1975). The state variables in a pursuit game are
primarily numeric variables measuring the relative po-
sitions and speeds of P and E, and the conclusion is
E’s decision about what action to take. In our GA, E
learned a set of rules, called a plan, that together told
E how to act in every state. A plan consists of 20 rules
of the form:

(lowy < state; < highy A.. . Alow, < state, < highy)

— (actiony, ..., actiony,)

Each clause on the left hand side compares a state
variable to a lower and upper bound. “Don’t care”
conditions can be generated by setting the correspond-
ing upper and lower range bounds to be maximal. We
associated a strength value with every rule, and a fit-
ness value with each plan. In our implementation, the

GA explored a population containing up to fifty plans.
The plan with the greatest fitness was chosen at the
end of each training run (i.e., generation).

The GA system contains two main components: an
inference system and a learning system. The inference
system consists of a rule matcher and a rule specializer.
The rule matcher examines the set of rules in a plan
to determine which rule to fire, and it selects the rule
or rules with the most matches. In the event of a tie,
it selects one of the tied rules using a random selection
scheme based on the strengths of the rules.

At the start of learning, all rules are maximally gen-
eral; 1.e., all the lower and upper bounds are set to the
minimum and maximum legal values. As a result, all
rules will match all states, and one rule will be selected
with probability proportional to its strength. All rule
strengths are initially equal as well. Following each
game, the GA generalizes or specializes the rules us-
ing a hill-climbing approach as follows.! The upper
and lower limits of the tests for each state variable are
modified according to:

bound; = bound; + B(state; — bound;)

where bound; represents one of the upper or lower
bounds of the rule that fired in state ¢, and 3 is the
learning rate (3 = 0.1 for this study). If variable X
in state ¢ had a value v within the bounds tested by
the rule, then the GA specializes the rule by shifting
both bounds towards v. On the other hand, if v is
outside the bounds, the nearer bound 1s adjusted to-
wards v thus generalizing the rule. Following a game
the strengths of the rules that fired are updated based
on the payoff received from the game, namely

1000
payolf = { 10t

Using this payoff function, rule strengths are updated
using the profit sharing plan described by Grefenstette
(1988). Plan fitness is calculated by running each plan
against a set of randomly generated games, and com-
puting the mean payoff for the set of tests.

if E evades the pursuers
if E loses the game at time ¢.

After each game, a rule is selected for mutation, using
fitness proportional selection (Goldberg 1989). Once
selected, the rule is mutated according to a fixed mu-
tation rate, and each clause or action of the rule is mu-
tated according to a fixed mutation probability. Mu-
tation results in the actions or bounds being changed
at random, keeping the ranges consistent (i.e., if the
lower bound 1s changed to be greater than the upper
bound, then the bounds are swapped). The mutated
rule then replaces the rule with the lowest strength
in the same plan. After selecting the rule to be mu-
tated, we decided whether to mutate the rule using a

"While not a part of the genetic algorithm itself, the
generalization and specialization operators are consistent
with Grefenstette’s implementation (Grefenstette et al.
1990).



100

80 / /\1//»//\/“
60

Percent Success

40 // P
20
/ One Pursuer —
S Two Pursuers --—--
0
0 5000 10000 15000 20000 25000
Games

Figure 2: Performance of the GA.

mutation rate of 0.01. Each clause within a rule was
considered for mutation with probability 0.1.

Crossover operates between plans. After each game,
two plans are selected for crossover using fitness pro-
portional selection, with a likelihood determined by
the crossover rate. The rules in these plans are sorted
by strength, and a new plan is generated by selecting
m best rules from one plan and (20 — m) best rules
from the other plan. The new plan replaces the least
fit plan in the population. Our crossover probability
was 0.8.

We show the results of the GA experiments in Figure 2.
As with MBR, the GA performs very well when faced
with one pursuer. In fact, it is able to achieve near
perfect performance after 15,000 games and very good
performance (above 90%) after only 5,000 games. Note
that the number of games is somewhat inflated for the
GA because it evaluates 50 plans during each gener-
ation, thus we counted one generation as 50 games.
In fact, the simulation ran for only 500 generations
(i.e., 25,000 games) in these experiments. As a fur-
ther basis for comparison, 500 generations for the GA
on the one-pursuer problem required 1.5 days on a
Sun SparcStation 2 (i.e., 16,667 games per day), while
5,700 games for MBR required 0.75 days (i.e., 7.600
games per day). For the two-pursuer problem, 500
GA generations used 3 days of CPU time (8,333 games
per day) and 140,000 games for MBR required 21 days
(6,667 games per day).

The most striking difference in performance between
MBR and the genetic algorithm is that the GA learned
excellent strategies for the two-pursuer problem, while
nearest neighbor did not. Indeed, the GA achieved
above 90% success after 16,000 games (320 genera-
tions) and continued to improve until it exceeded 95%
success. This led us to hypothesize that the GA could
provide a good source of examples for MBR.. Thus, the
GA became a “teacher” for MBR.

Percent Success

100 ' :”/;\’/“;"/“/ STNL e ===\~
80 ;‘F f\ /\/\/ \jnv y
60 AUK UA/\A
40
20 theta=0% 7
theta=50% -
0 thetg=90% -
0 2000 4000 6000 8000
Stored Games

Figure 3: Results of MBR Using the GA as a Teacher.

6 BOOTSTRAPPING MBR

Our bootstrapping idea requires that one algorithm
train on 1ts own for a time, and then communicate
what it has learned to a second algorithm. At that
point, the second algorithm takes over. Later, the first
algorithm can come back in. This alternation contin-
ues until the combined system reaches some asymp-
totic limit. Because the GA learned much better
for the two-pursuer game, we selected 1t as the first
learner, with MBR second. The communication or
“teaching” phase occurs as follows. First, we train the
GA until 1t reaches a performance threshold, 8. From
that point on, the combined system begins providing
test games to the GA. Whenever the GA succeeds, it
transmits up to 20 examples (one for each time step)
to MBR. After 100 test games, MBR is tested (to esti-
mate its performance) with an additional 100 random
games. The examples continue to accumulate as the
genetic algorithm learns the task.

The results of training MBR using GA as the teacher
on the two-pursuer task are shown in Figure 3. We call
this system GANN because it first uses a GA and then
uses a nearest-neighbor algorithm. All points shown
in the graph are the averages of 10 trials. The first
threshold was set to 0%, which meant that the GA
provided examples to MBR from the beginning of its
own training. The second threshold was set to 50%
to permit GA to achieve a level of success approxi-
mately equal to the best performance of MBR on its
own. Thus only plans that achieved at least 50% eva-
sion were allowed to transmit examples to MBR. Fi-
nally, the threshold was set at 90% to limit examples
for MBR to games in which a highly trained GA was
making the decisions for E.

When 6 = 0%, GANN almost immediately reaches a
level equal to the best performance of MBR on its own
(around 45%). From there, it improves somewhat er-
ratically but steadily until it reaches a performance



of approximately 97% success. The figure shows per-
formance plotted against the number of games stored.
Note that the number of games stored here is higher
than the number of games stored for MBR alone. If
we halt learning after 2,500 games (which is consis-
tent with the earlier MBR experiments), performance
would be in the 85% range, still an enormous improve-
ment over MBR’s performance, but not better than the
GA on its own.

When 6 = 50%, GANN starts performing at a very
high level (above 70%) and quickly exceeds 90% suc-
cess. After 2,500 games, GANN obtained a success
rate above 95%, with some individual trials (on ran-
dom sets of 100 games) achieving 100% success. In
addition, the learning curve is much smoother, indi-
cating that MBR, is probably not storing many “bad”
examples. This confirms in part our earlier hypothesis
that MBR’s fundamental problem was the storage of
bad examples. If it stores examples with bad actions,
it will take bad actions later, and its performance will
continue to be poor whenever a new state is similar to
one of those bad examples.

Finally, with # = 90%, GANN’s performance was al-
ways superb, exceeding the GA’s 90% success rate on
its very first stored game. GANN converged to near-
perfect performance with only 500 games. One strik-
ing observation was that GANN performed better than
the GA throughout its learning. For example, when
6 = 0%, GANN achieved 50-80% success while the
GA was still only achieving 2-10% success. Further,
GANN remained ahead of the GA throughout train-
ing. Even when 6 = 90%, GANN was able to achieve
98-100% evasion while the GA was still only achieving
around 95% evasion. Neither the GA nor MBR. were
able to obtain such a high success rate on their own,
after any number of trials.

6.1 OTHER TEACHING STRATEGIES

Little other research has addressed teaching strategies
for reinforcement learning problems. Omne approach
that was investigated was Barto’s ACE/ASE (Barto
et al. 1983). This differs from the bootstrapping
approach in that no feedback is provided to the GA
to modify its learning algorithm. Further, ACE/ASE
are both connectionist architectures whose weights are
modified based on reinforcement received from expe-
rience. In our model, only the GA learns from rein-
forcement. Another related teaching method is that
of Clouse and Utgoff (Clouse and Utgoff 1992), who
used ACE/ASE with a separate teacher. Their teacher
monitored the overall progress of the learning agent,
and “reset” the eligibility traces of the two learning ele-
ments when the performance failed to improve. It then
provided explicit actions from an external teacher (a
kind of oracle) to alter the direction of learning. No ex-
ternal oracle exists in our bootstrapping method, and
no modification of the learning process takes place.

In addition, Dorigo and Colombetti (1994) and Colom-
betti and Dorigo (1994) describe an approach to using
reinforcement learning in classifier systems to teach a
robot to approach and pursue a target. Their approach
uses a separate reinforcement program (RP) to moni-
tor the performance of the robot and provide feedback
on performance. Learning occurs through the stan-
dard genetic algorithm applied to the classifiers with
fitness determined by the RP.

6.2 REDUCING MEMORY SIZE

Our bootstrapping algorithm, GANN, performs well
when only a small number of examples are provided
by the GA, and it even outperforms its own teacher
(the GA) during training. We decided to take this
study one step further, and attempt to reduce the
size of the memory store during the MBR phase of
GANN. In the pattern recognition literature, a variety
of algorithms for doing this can be found under the
term “editing” nearest neighbors. However, because
MBR is not frequently applied to control tasks (ex-
cept within the context of reinforcement learning; see,
e.g., (Moore 1992) and (Schaal and Atkeson 1994)), we
were not able to find any editing methods specifically
tied to our type of problem. We therefore modified a
known editing algorithm for our problem. We call the
resulting system GANNE (GA plus nearest neighbor
plus editing).

Farly work by Wilson (Wilson 1972) showed that ex-
amples could be removed from a set used for classifi-
cation, and that simply editing would frequently im-
prove classification accuracy (in the same way that
pruning improves decision trees (Mingers 1989)). Wil-
son’s algorithm was to classify each example in a data
set with its own & nearest neighbors. Those points
that are incorrectly classified are deleted from the ex-
ample set, the idea being that such points probably
represent noise. Tomek (Tomek 1976) modified this
approach by taking a sample (> 1) of the data and
classifying the sample with the remaining examples.
Editing then proceeds as in Wilson editing. Ritter el
al. (1975) developed another editing method, which
differs from Wilson in that points that are correctly
classified are discarded. The Ritter method basically
keeps only points near the boundaries between classes,
and eliminates examples that are in the midst of a ho-
mogeneous region.

The editing approach we took combined the editing
procedure of Ritter et al. and the sampling idea of
Tomek. We began by selecting the smallest exam-
ple set that yielded near perfect success in the pur-
suit game. This set contained 1,700 examples. Next
we edited the examples by classifying each point using
the remaining points in the set. For this phase, we
used the b nearest neighbors. If a point was correctly
classified, we deleted it with probability 0.25. (This
probability was selected arbitrarily and was only used



Table 1: Results of Editing Examples.

Examples | Percent Success
397 96
216 94
118 94
66 92
41 89
21 86
11 83

to show the progression of performance as editing oc-
curred.) Prior to editing and after each pass through
the data, the example set was tested using MBR on
10,000 random games.

One complication in “classifying” the points for editing
was that the class was actually a 3-D vector of three
different actions, two of which were real-valued (turn
angle and speed) and one of which was binary (emit-
ting smoke). Tt was clear that an exact match would
be too strict a constraint. Therefore we specified a
range around each 3-vector within which the system
would consider two “classes” to be the same. In addi-
tion, the three values were normalized to equalize their
affect on this range measurement.

The results of running GANNE on the 1,700 examples
are summarized in Table 1. With as few as 11 exam-
ples, GANNE achieved better than 80% evasion, which
is substantially better than the best ever achieved by
MBR alone. With 21 examples (comparable in size to
a plan in the GA), GANNE was able to achieve 86%
evasion. Performance remained at a high level (greater
than 90% success) with only 66 examples. Thus it is
clear that a small, well chosen set of examples can yield
excellent performance on this difficult task.

7 DISCUSSION AND
CONCLUSIONS

The experiments reported here show that it is possible
to use genetic algorithms in conjunction with memory-
based reasoning to produce agents that perform well
on difficult delayed reinforcement learning problems.
The experiments also demonstrate clearly the power
of having a teacher or other source of good examples
for memory-based methods when applied to complex
control tasks. Without a reliable source of good ex-
amples, our memory-based method (k-NN) performed
very poorly at the two-pursuer game; but with the
good examples provided by the genetic algorithm, it
performed better than either the GA or MBR alone.
In addition, we found that editing the example set pro-
duced a relatively small set of examples that still play
the game extremely well.

It might be possible with careful editing to reduce the
size of memory even further. This question is related
to theoretical work by Salzberg et al. (1991) that stud-
ies the question of how to find a minimal-size training
set through the use of a “helpful teacher”, which ex-
plicitly provides very good examples. Such a helpful
teacher is similar to the oracle used by Clouse and
Utgoff (1992) except that it provides the theoretical
minimum number of examples from which to learn the
task.

Our current implementation only takes the first step
towards a truly combined learning system. Our system
has one algorithm starting the learning process, and
handing off to a second algorithm to continue. We
envision a more general architecture in which differ-
ent learning algorithms take turns learning, depending
on which one is learning most effectively at any given
time. Such an architecture should expand the capabil-
ities of learning algorithms as they tackle increasingly
difficult control problems.

Acknowledgments

We wish to thank David Aha, John Grefenstette, Di-
ana Gordon, and Sreerama Murthy for several helpful
comments and ideas. This material i1s based upon work
supported by the National Science foundation under

Grant Nos. IRI-9116843 and TRI-9223591.

References

D. Aha and D. Kibler. Noise-tolerant instance-based
learning algorithms. In Proceedings of 1JCAI-89,
pages 794-799, Detroit, MI, 1989. Morgan Kaufmann.

D. Aha and S. Salzberg. Learning to catch: Applying
nearest neighbor algorithms to dynamic control tasks.
In Proceedings of the Fourth International Workshop
on Al and Statistics, 1993.

C. Atkeson. Using local models to control movement.
In Neural Information Systems Conference, 1989.

L. Booker, D. Goldberg, and J. Holland. Classifier
systems and genetic algorithms. Artificial Intelligence,

40:235-282, 1989.

A. Barto, R. Sutton, and C. Anderson. Neuronlike
adaptive elements that can solve difficult learning con-
trol problems. IFEE Transactions on Systems, Man,
and Cybernetics, 13:835-846, 1983.

A. Barto, R. Sutton, and C. Watkins. Learning and
sequential decision making. In Gabriel and Moore, edi-
tors, Learning and Computational Neuroscience, Cam-

bridge, 1990. MIT Press.

D. Chapman. Planning for conjunctive goals. Artifi-

cial Intelligence, 32:333-377, 1987.

J. Clouse and P. Utgoff. A teaching method for re-
inforcement learning. In Proceedings of the Machine



Learning Conference, 1992.

M. Colombetti and M. Dorigo. Training agents to
perform sequential behavior. Adaptive Behavior, MIT
Press, 2(3):247-275, 1994.

M. Dorigo and M. Colombetti. Robot shaping: Devel-
oping autonomous agents through learning. Artificial

Intelligence, 71(2):321-370, 1994.

A. Friedman. Differential Games. Wiley Interscience,

New York, 1971.

D. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Read-
ing, Massachusetts, 1989.

J. Grefenstette. Credit assignment in rule discovery
systems based on genetic algorithms. Machine Learn-

ing, 3:225-245, 1988.

J. Grefenstette. Lamarckian learning in multi-agent
environments. In Proceedings of the Fourth Interna-
tional Conference of Genetic Algorithms, pages 303—
310. Morgan Kaufmann, 1991.

J. Grefenstette, C. Ramsey, and A. Schultz. Learning
sequential decision rules using simulation models and
competition. Machine Learning, 5:355-381, 1990.

J. Holland. Adaptation wn Natural and Artificial Sys-
tems. University of Michigan Press, Ann Arbor, Michi-
gan, 1975.

F. Imado and T. Ishihara. Pursuit-evasion geometry
analysis between two missiles and an aircraft. Com-
puters and Mathematics with Applications, 26(3):125—
139, 1993.

R. Isaacs. Differential games: A mathematical theory
with applications to warfare and other topics. Tech-
nical Report Research Contribution No. 1, Center for

Naval Analysis, Washington, DC, 1963.

L. Lin. Programming robots using reinforcement
learning and teaching. In Proceedings of the National
Conference on Artificial Intelligence, pages 781-786,
1991.

J. Millan and C. Torras. A reinforcement connection-
ist approach to robot path finding in non-maze-like
environments. Machine Learning, 8:363-395, 1992.

J. Mingers. An empirical comparison of pruning meth-
ods for decision tree induction. Machine Learning,

4(2):227-243, 1989.

A. Moore. Efficient Memory-Based Learnign for Robot
Control. PhD thesis; Cambridge University, Cam-
bridge, England, 1992.

A. Moore and C. Atkeson. Prioritized sweeping: Re-
inforcement learning with less data and less time. Ma-

chine Learning, 13:103-130, 1993.
D. Nguyen and B. Widrow. The truck backer-upper:

An example of self learning in neural networks. In
Proceedings of the International Joint Conference on
Neural Networks, volume 2, pages 357-363, 1989.

G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour. An
algorithm for a selective nearest neighbor decision rule.
IEEE Transactions on Information Theory, 21(6):665-
669, 1975.

S. Salzberg. Distance metrics for instance-based learn-
ing. In Methodologies for Intelligent Systems: 6th
International Symposium, ISMIS "91, pages 399-408,
1991.

S. Salzberg, A. Delcher, D. Heath, and S. Kasif. Learn-
ing with a helpful teacher. 1In Proceedings of the
Twelfth International Joint Conference on Artificial
Intelligence, pages 705-711, Sydney, Australia, August
1991. Morgan Kaufmann.

S. Schaal and C. Atkeson. Robot juggling: An imple-
mentation of memory-based learning. Control Systems
Magazine, February 1994.

J. Sheppard and S. Salzberg. Sequential decision
making: An empirical analysis of three learning al-
gorithms. Technical Report JHU-93/94-02, Dept. of
Computer Science, Johns Hopkins University, Balti-
more, Maryland, January 1993.

R. Sutton. Learning to predict by methods of temporal
differences. Machine Learning, 3:9-44, 1988.

I. Tomek. An experiment with the edited nearest-
neighbor rule. TEEE Transactions on Systems, Man,
and Cybernetics, SMC-6(6):448-452, June 1976.

C. Watkins. Learning with Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, England,
1989.

B. Widrow. The original adaptive neural net broom-
balancer. In International Symposium on Circuits and

Systems, pages 351-357, 1987.

D. Wilson. Asymptotic properties of nearest neighbor
rules using edited data. TEEE Transactions on Sys-
tems, Man, and Cybernetics, 2(3):408-421, July 1972.



