
Combining Genetic Algorithms with Memory Based Reasoning

John W� Sheppard� and Steven L� Salzberg
Department of Computer Science
The Johns Hopkins University
Baltimore� Maryland �����

lastname�cs�jhu�edu

Abstract

Combining di�erent machine learning algo�
rithms in the same system can produce ben�
e�ts above and beyond what either method
could achieve alone� This paper demon�
strates that genetic algorithms can be used
in conjunction with memory�based reasoning
to solve a di	cult class of delayed reinforce�
ment learning problems that both methods
have trouble solving individually� This class
includes numerous important control prob�
lems that arise in robotics� planning� game
playing� and other areas� Our experiments
demonstrate that by using one learning tech�
nique� genetic algorithms� as a bootstrapping
method for the second learning technique�
memory�based reasoning� we can create a sys�
tem that outperforms either method alone�
The resulting joint system learns to solve a
di	cult reinforcement learning task with a
high degree of accuracy and with relatively
small memory requirements�

� INTRODUCTION

When two people learn a task together� they can both
bene�t from the di�erent skills that each brings to
the table� The result is that both will learn better
than they would have on their own� Likewise� machine
learning methods should be able to work together to
learn how to solve problems� This paper describes how
a genetic algorithm and a memory�based learning al�
gorithm can work together to produce better solutions
than either method could produce by itself�

Delayed reinforcement learning problems involve an
agent that makes a sequence of decisions� or actions�
in an environment that provides feedback about those
decisions� The feedback about those actions might be

�Also ARINC� Inc�� ���� Riva Road� Annapolis� Mary�
land ������ sheppard�arinc�com

considerably delayed� and this delay makes learning
much more di	cult� A number of reinforcement learn�
ing algorithms have been developed speci�cally for this
family of problems� but little has been done evaluat�
ing the power of combining di�erent types of learning
algorithms to these problems�

We began by considering a reinforcement learning
problem that involved one agent trying to pursue and
capture another� Earlier research showed that at least
one implementation of this task� known as evasive ma�
neuvers 
Grefenstette et al� ����
� can be solved by a
genetic algorithm 
GA
� We �rst developed a memory�
based approach for the same task� and then made
the task substantially harder� in order to study the
limitations of both GAs and memory�based reason�
ing 
MBR
 methods on this class of problems� The
more complicated task� which is described further in
section �� also resembles complicated planning tasks
in which an agent has to satisfy several goals at once

Chapman ����
� Our study is an attempt to develop
a learning strategy that will improve the overall per�
formance of either MBR� GAs� or both�

As our experiments will show� we were successful at de�
veloping a method to solve our di	cult reinforcement
learning task� The key idea behind our success was
the combined use of both a GA and MBR� We found
that the best learning agent �rst used a GA� and then
switched to MBR after reaching a certain performance
threshold� Our experiments demonstrate remarkable
improvement in the performance of MBR� both in
overall accuracy and in memory requirements� as a re�
sult of using these techniques� The combined system
also performed better than the GA alone� demonstrat�
ing how two learning algorithms working together can
outperform either method when used alone�

� PREVIOUS WORK

The idea of using memory�based methods for delayed
reinforcement tasks has only very recently been con�
sidered by a small number of researchers� Atkeson




����
 employed a memory�based technique to train
a robot arm to follow a prespeci�ed trajectory� More
recently� Moore and Atkeson 
����
 developed an al�
gorithm called �prioritized sweeping� in which �inter�
esting� examples in a Q table are the focus of up�
dating� In another study� Aha and Salzberg 
����

used nearest�neighbor techniques to train a simulated
robot to catch a ball� In their study� they provided an
agent that knew the correct behavior for the robot� and
therefore provided corrected actions when the robot
made a mistake� This approach is typical in nearest�
neighbor applications that rely on determining �good�
actions before storing examples�

Genetic algorithms have also been applied to perform
delayed reinforcement problems� In addition to study�
ing the evasive maneuvers task� Grefenstette 
����

applied his genetic algorithm system SAMUEL to
aerial dog�ghting and target tracking 
in a game of
cat and mouse
�

One of the most popular approaches to reinforcement
learning has been using neural network learning al�
gorithms� For example� back�propagation has been
used to solve the cart and pole problem 
Widrow
����
� in which a pole must be balanced vertically
on a wheeled cart� A similar algorithm was applied
to learning strategies for backing a truck into a load�
ing dock 
Nguyen and Widrow ����
� Both of these
methods incorporated knowledge of the correct behav�
ior during training� In addition� Millan and Torras

����
 demonstrated a technique for training a neu�
ral network using reinforcement learning in which the
control variables are permitted to vary continuously�
They addressed the problem of teaching a robot to
navigate around obstacles�

Finally� considerable research has been performed us�
ing a form of reinforcement learning called temporal
di�erence learning 
Sutton ����
� Temporal di�erence
methods apply delayed reinforcement to a sequence of
actions to predict future reinforcement and appropri�
ate actions in performing the task� Speci�cally� predic�
tions are re�ned through a process of identifying dif�
ferences between the results of temporally successive
actions� Two popular temporal di�erence algorithms
are ACE�ASE 
Barto et al� ����� Barto et al� ����

and Q�learning 
Watkins ����
� The original work by
Barto et al� 
����
 demonstrated that the cart and
pole problem could be solved using this method� Lin

����
 applied Q�learning to teach a robot to navigate
the halls of a classroom building and plug itself into a
wall socket to recharge its batteries�

� DIFFERENTIAL GAMES AND

REINFORCEMENT LEARNING

Reinforcement learning 
RL
 is challenging in part be�
cause of the delay between taking an action and re�

ceiving a reward or penalty� Typically an agent takes
a long series of actions before the reward� so it is hard
to decide which of the actions were responsible for the
eventual payo�� An MBR approach must store ex�
periences� in the form of state�action pairs� for later
use� To make this work e�ectively for reinforcement
learning� we needed a method that would increase the
probability that a stored example was a good one� i�e��
that the action associated with a stored state was cor�
rect� Because of this credit assignment problem� and
because of the di	culty of the tasks we designed� ini�
tial training is very di	cult for MBR� In contrast� a
GA initially searches a wide variety of solutions� and
for the problems we studied tends to learn rapidly in
the early stages� These observations suggested the
two�phase approach that we adopted� in which we �rst
trained a GA� and then used it to provide exemplars
to MBR�

The class of RL problems studied here has also been
studied in the �eld of di�erential game theory� Di�er�
ential game theory is an extension of traditional game
theory in which a game follows a sequence of actions
through a continuous state space to achieve some pay�
o� 
Isaacs ����
� This sequence can be modeled with
a set of di�erential equations which are analyzed to
determine optimal play by the players� We can also
interpret di�erential games to be an extension of opti�
mal control theory in which players� positions develop
continuously in time� and where the goal is to opti�
mize competing control laws for the players 
Friedman
����
�

One class of di�erential games is the pursuit game� A
pursuit game has two players� called the pursuer 
P

and the evader 
E
� The evader attempts to achieve an
objective� frequently just to escape from a �xed play�
ing arena� while the pursuer attempts to prevent the
evader from achieving that objective� Examples in�
clude such simple games as the children�s game called
�tag�� the popular video game PacMan� and much
more complicated predator�prey interactions in na�
ture� These examples illustrate the typical feature of
pursuit games that the pursuer and the evader have
di�erent abilities� di�erent speeds� di�erent defense
mechanisms� and di�erent sensing abilities� One exam�
ple of a genetic algorithm approach to pursuit games is
Grefenstette et al��s system using SAMUEL 
Grefen�
stette et al� ����
� a ��D simulation in which the pur�
suer represents a missile and the evader is an airplane�
This system�s success showed that GAs can solve re�
inforcement learning problems�

We initially implemented the same pursuit game as
Grefenstette et al�� and later we extended it to make
it substantially more di	cult� First� we added a
second pursuer� Unlike the single�pursuer problem�
the two�pursuer problem has no known optimal strat�
egy 
Imado and Ishihara ����
� Second� we gave
the evader additional capabilities� in the one�pursuer



game� the evader only controls its turn angle at each
time step� Thus E basically zigzags back and forth
or makes a series of hard turns into the path of P to
escape� In the two�pursuer game� we gave E the abil�
ity to change its speed� and we also gave E a bag of
�smoke bombs�� which will for a limited time help to
hide E from the pursuers�

In our de�nition of the two�pursuer task� both pursuers

P� and P�
 have identical maneuvering and sensing
abilities� They begin the game at random locations
on a �xed�radius circle centered on the evader� E� The
initial speeds of P� and P� are much greater than
the speed of E� but they lose speed as they maneuver�
They can regain speed by traveling straight ahead� but
they have limited fuel� If the speed of both P� and P�
drops below a minimum threshold� then E can escape
and win the game� E also wins by successfully evading
the pursuers for �� times steps� If the paths of either
P� or P� ever pass within a threshold range of E�s
path during the game� then E loses 
i�e�� the pursuer
will �grab� E
� We use the term �game� to include
a complete simulation run� beginning with the initial
placements of all three players� and ending when E
either wins or loses�

When playing against one pursuer� the capabilities of
E are identical to the �aircraft� used by Grefenstette�
Against one pursuer� E controls only its turn angle�
which is su	cient to play the game very well� With
two pursuers P� and P� in the game� E has addi�
tional information about its opponents� The informa�
tion provided to E includes �� features describing the
state of the game� including its own speed� the angle
of its previous turn� a game clock� the angle de�ned by
P��E�P�� and the range di�erence between P� and
P�� It also has eight features 
or �sensors�
 that mea�
sure P� and P� individually� speed� bearing� heading�
and distance� Bearing measures the position of the
pursuer relative to the direction that E is facing� e�g��
if E is facing north and P� is due east� then the bear�
ing would be �� degrees� Heading is the angle between
E�s direction and the pursuer�s direction� When �ee�
ing two pursuers� E has control over its speed and turn
angle at every time step� and it can also periodically re�
lease �smoke�� i�e�� send a signal that introduces noise
into the sensor readings of P� and P��

� USING MBR FOR EVASIVE

MANEUVERING

Memory�based reasoning is a classical approach to
machine learning and pattern recognition� most com�
monly in the form of a k�nearest neighbor algorithm

k�NN
� but it is rarely used for reactive control prob�
lems� We had to represent the pursuit game in a for�
mat amenable to MBR� We chose to let the state vari�
ables in the game correspond to features of an example�
and the actions taken by E correspond to classes� To

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Pe
rc

en
t S

uc
ce

ss

Stored Games

One Pursuer
Two Pursuers

Figure �� Performance of K�NN�

be successful� a memory�based approach must have a
database full of correctly labeled examples� The di	�
culty here� then� is how to determine the correct action
to store with each state�

To illustrate the problems that MBR has with the
two�player pursuit game� we brie�y describe here some
�ndings of our earlier study 
Sheppard and Salzberg
����
� which compared k�NN� GAs� and the temporal
di�erence algorithm called Q�learning 
Watkins ����
�
In that study� we found that the MBR method� k�NN�
was by far the worst method in its performance on
this problem� While Q�learning performed well� the
GA was superior to both of the other two methods�

For the initial experiments using k�nearest neighbors�
we varied k between � and � and determined that k � �
yielded the best performance� Examples consisted of
randomly generated games that resulted in success for
E� thus we could assume that at least some of E�s
actions were correct� Figure � shows how well k�NN
performed 
where k � �
 on a test suite of games other
than those used in training as the number of training
examples 
games
 increased� This �gure indicates per�
formance averaged over �� trials for E playing against
one pursuer and two pursuers� The accuracy at each
point in the graph was estimated by testing the MBR
on ��� randomly generated games and recording the
number of successful evasions� Note that this �gure
compares the performance between these two tasks
with respect to the number of games stored� where
a game contains up to �� state�action pairs�

These experiments indicate that the problem of escap�
ing from a single pursuer is relatively easy to solve�
MBR was able to develop a set of examples that
was ��� successful after storing approximately �����
games� and it eventually reached almost perfect perfor�
mance� 
The distance between P and E at the start
of the game guarantees that escape is always possi�
ble�
 When E was given the task of learning how to
escape from two pursuers� however� the results were



disappointing� In fact� the MBR approach had di	�
culty achieving a level of performance above ���� This
demonstrates that the two pursuer problem is signi��
cantly more di	cult for memory�based reasoning�

One possible reason for the poor performance of k�NN
on the two pursuer task is the size of the search space�
For the one�pursuer problem� the state space contains
� ���� ���� points� whereas for two pursuer evasion�
the state space has � ��� � ���� points� The one�
pursuer game showed good performance after �����
games� to achieve similar coverage of the state space in
the two�pursuer game would require roughly ��������

games� Another possible reason for MBR�s problems is
the presence of irrelevant attributes� which is known to
cause problems for nearest neighbor algorithms 
Aha
and Kibler ����� Salzberg ����
�

But the most likely reason for MBR�s troubles� we con�
cluded� was that we were generating bad examples in
the early phases of the game� As stated above� MBR
needs to have the �correct� action� or something close
to it� stored with every state in memory� Our strat�
egy for collecting examples was to play random games
at �rst� and to store games in which E succeeded in
escaping� However� it seems clear that many of the ac�
tions taken in these random games will be incorrect� E
might escape because of one or two particularly good
actions� but a game lasts for �� time steps� and all ��
state�action pairs are stored� Since our MBR approach
had no way 
at �rst
 to throw away examples� if it col�
lects many bad examples it could be forever stuck at a
low level of performance� This seemed to be what was
happening� As a result� we developed a two�phase ap�
proach in which we used a genetic algorithm to learn
in the early phase� The GA is explained next�

� THE GENETIC ALGORITHM

Genetic algorithm implementations for games require�
�rst� a representation of the domain in terms of pro�
duction rules� which test some features of the domain
and then take an action 
Booker et al� ����� Hol�
land ����
� The state variables in a pursuit game are
primarily numeric variables measuring the relative po�
sitions and speeds of P and E� and the conclusion is
E�s decision about what action to take� In our GA� E
learned a set of rules� called a plan� that together told
E how to act in every state� A plan consists of �� rules
of the form�


low� � state� � high�� � � �� lown � staten � highn


� 
action�� � � � � actionm


Each clause on the left hand side compares a state
variable to a lower and upper bound� �Don�t care�
conditions can be generated by setting the correspond�
ing upper and lower range bounds to be maximal� We
associated a strength value with every rule� and a �t�
ness value with each plan� In our implementation� the

GA explored a population containing up to �fty plans�
The plan with the greatest �tness was chosen at the
end of each training run 
i�e�� generation
�

The GA system contains two main components� an
inference system and a learning system� The inference
system consists of a rule matcher and a rule specializer�
The rule matcher examines the set of rules in a plan
to determine which rule to �re� and it selects the rule
or rules with the most matches� In the event of a tie�
it selects one of the tied rules using a random selection
scheme based on the strengths of the rules�

At the start of learning� all rules are maximally gen�
eral� i�e�� all the lower and upper bounds are set to the
minimum and maximum legal values� As a result� all
rules will match all states� and one rule will be selected
with probability proportional to its strength� All rule
strengths are initially equal as well� Following each
game� the GA generalizes or specializes the rules us�
ing a hill�climbing approach as follows�� The upper
and lower limits of the tests for each state variable are
modi�ed according to�

boundi � boundi � �
statei � boundi


where boundi represents one of the upper or lower
bounds of the rule that �red in state i� and � is the
learning rate 
� � ��� for this study
� If variable X
in state i had a value v within the bounds tested by
the rule� then the GA specializes the rule by shifting
both bounds towards v� On the other hand� if v is
outside the bounds� the nearer bound is adjusted to�
wards v thus generalizing the rule� Following a game
the strengths of the rules that �red are updated based
on the payo� received from the game� namely

payo� �

�
���� if E evades the pursuers
��t if E loses the game at time t�

Using this payo� function� rule strengths are updated
using the pro�t sharing plan described by Grefenstette

����
� Plan �tness is calculated by running each plan
against a set of randomly generated games� and com�
puting the mean payo� for the set of tests�

After each game� a rule is selected for mutation� using
�tness proportional selection 
Goldberg ����
� Once
selected� the rule is mutated according to a �xed mu�
tation rate� and each clause or action of the rule is mu�
tated according to a �xed mutation probability� Mu�
tation results in the actions or bounds being changed
at random� keeping the ranges consistent 
i�e�� if the
lower bound is changed to be greater than the upper
bound� then the bounds are swapped
� The mutated
rule then replaces the rule with the lowest strength
in the same plan� After selecting the rule to be mu�
tated� we decided whether to mutate the rule using a

�While not a part of the genetic algorithm itself� the
generalization and specialization operators are consistent
with Grefenstette	s implementation 
Grefenstette et al�

������



0

20

40

60

80

100

0 5000 10000 15000 20000 25000

Pe
rc

en
t S

uc
ce

ss

Games

One Pursuer
Two Pursuers

Figure �� Performance of the GA�

mutation rate of ����� Each clause within a rule was
considered for mutation with probability ����

Crossover operates between plans� After each game�
two plans are selected for crossover using �tness pro�
portional selection� with a likelihood determined by
the crossover rate� The rules in these plans are sorted
by strength� and a new plan is generated by selecting
m best rules from one plan and 
�� � m
 best rules
from the other plan� The new plan replaces the least
�t plan in the population� Our crossover probability
was ����

We show the results of the GA experiments in Figure ��
As with MBR� the GA performs very well when faced
with one pursuer� In fact� it is able to achieve near
perfect performance after ������ games and very good
performance 
above ���
 after only ����� games� Note
that the number of games is somewhat in�ated for the
GA because it evaluates �� plans during each gener�
ation� thus we counted one generation as �� games�
In fact� the simulation ran for only ��� generations

i�e�� ������ games
 in these experiments� As a fur�
ther basis for comparison� ��� generations for the GA
on the one�pursuer problem required ��� days on a
Sun SparcStation � 
i�e�� ������ games per day
� while
����� games for MBR required ���� days 
i�e�� �����
games per day
� For the two�pursuer problem� ���
GA generations used � days of CPU time 
����� games
per day
 and ������� games for MBR required �� days

����� games per day
�

The most striking di�erence in performance between
MBR and the genetic algorithm is that the GA learned
excellent strategies for the two�pursuer problem� while
nearest neighbor did not� Indeed� the GA achieved
above ��� success after ������ games 
��� genera�
tions
 and continued to improve until it exceeded ���
success� This led us to hypothesize that the GA could
provide a good source of examples for MBR� Thus� the
GA became a �teacher� for MBR�

0

20

40

60

80

100

0 2000 4000 6000 8000

Pe
rc

en
t S

uc
ce

ss

Stored Games

theta=0%
theta=50%
theta=90%

Figure �� Results of MBR Using the GA as a Teacher�

� BOOTSTRAPPING MBR

Our bootstrapping idea requires that one algorithm
train on its own for a time� and then communicate
what it has learned to a second algorithm� At that
point� the second algorithm takes over� Later� the �rst
algorithm can come back in� This alternation contin�
ues until the combined system reaches some asymp�
totic limit� Because the GA learned much better
for the two�pursuer game� we selected it as the �rst
learner� with MBR second� The communication or
�teaching� phase occurs as follows� First� we train the
GA until it reaches a performance threshold� �� From
that point on� the combined system begins providing
test games to the GA� Whenever the GA succeeds� it
transmits up to �� examples 
one for each time step

to MBR� After ��� test games� MBR is tested 
to esti�
mate its performance
 with an additional ��� random
games� The examples continue to accumulate as the
genetic algorithm learns the task�

The results of training MBR using GA as the teacher
on the two�pursuer task are shown in Figure �� We call
this system GANN because it �rst uses a GA and then
uses a nearest�neighbor algorithm� All points shown
in the graph are the averages of �� trials� The �rst
threshold was set to ��� which meant that the GA
provided examples to MBR from the beginning of its
own training� The second threshold was set to ���
to permit GA to achieve a level of success approxi�
mately equal to the best performance of MBR on its
own� Thus only plans that achieved at least ��� eva�
sion were allowed to transmit examples to MBR� Fi�
nally� the threshold was set at ��� to limit examples
for MBR to games in which a highly trained GA was
making the decisions for E�

When � � ��� GANN almost immediately reaches a
level equal to the best performance of MBR on its own

around ���
� From there� it improves somewhat er�
ratically but steadily until it reaches a performance



of approximately ��� success� The �gure shows per�
formance plotted against the number of games stored�
Note that the number of games stored here is higher
than the number of games stored for MBR alone� If
we halt learning after ����� games 
which is consis�
tent with the earlier MBR experiments
� performance
would be in the ��� range� still an enormous improve�
ment over MBR�s performance� but not better than the
GA on its own�

When � � ���� GANN starts performing at a very
high level 
above ���
 and quickly exceeds ��� suc�
cess� After ����� games� GANN obtained a success
rate above ���� with some individual trials 
on ran�
dom sets of ��� games
 achieving ���� success� In
addition� the learning curve is much smoother� indi�
cating that MBR is probably not storing many �bad�
examples� This con�rms in part our earlier hypothesis
that MBR�s fundamental problem was the storage of
bad examples� If it stores examples with bad actions�
it will take bad actions later� and its performance will
continue to be poor whenever a new state is similar to
one of those bad examples�

Finally� with � � ���� GANN�s performance was al�
ways superb� exceeding the GA�s ��� success rate on
its very �rst stored game� GANN converged to near�
perfect performance with only ��� games� One strik�
ing observation was that GANN performed better than
the GA throughout its learning� For example� when
� � ��� GANN achieved ������ success while the
GA was still only achieving ����� success� Further�
GANN remained ahead of the GA throughout train�
ing� Even when � � ���� GANN was able to achieve
������� evasion while the GA was still only achieving
around ��� evasion� Neither the GA nor MBR were
able to obtain such a high success rate on their own�
after any number of trials�

��� OTHER TEACHING STRATEGIES

Little other research has addressed teaching strategies
for reinforcement learning problems� One approach
that was investigated was Barto�s ACE�ASE 
Barto
et al� ����
� This di�ers from the bootstrapping
approach in that no feedback is provided to the GA
to modify its learning algorithm� Further� ACE�ASE
are both connectionist architectures whose weights are
modi�ed based on reinforcement received from expe�
rience� In our model� only the GA learns from rein�
forcement� Another related teaching method is that
of Clouse and Utgo� 
Clouse and Utgo� ����
� who
used ACE�ASE with a separate teacher� Their teacher
monitored the overall progress of the learning agent�
and �reset� the eligibility traces of the two learning ele�
ments when the performance failed to improve� It then
provided explicit actions from an external teacher 
a
kind of oracle
 to alter the direction of learning� No ex�
ternal oracle exists in our bootstrapping method� and
no modi�cation of the learning process takes place�

In addition� Dorigo and Colombetti 
����
 and Colom�
betti and Dorigo 
����
 describe an approach to using
reinforcement learning in classi�er systems to teach a
robot to approach and pursue a target� Their approach
uses a separate reinforcement program 
RP
 to moni�
tor the performance of the robot and provide feedback
on performance� Learning occurs through the stan�
dard genetic algorithm applied to the classi�ers with
�tness determined by the RP�

��� REDUCING MEMORY SIZE

Our bootstrapping algorithm� GANN� performs well
when only a small number of examples are provided
by the GA� and it even outperforms its own teacher

the GA
 during training� We decided to take this
study one step further� and attempt to reduce the
size of the memory store during the MBR phase of
GANN� In the pattern recognition literature� a variety
of algorithms for doing this can be found under the
term �editing� nearest neighbors� However� because
MBR is not frequently applied to control tasks 
ex�
cept within the context of reinforcement learning� see�
e�g�� 
Moore ����
 and 
Schaal and Atkeson ����

� we
were not able to �nd any editing methods speci�cally
tied to our type of problem� We therefore modi�ed a
known editing algorithm for our problem� We call the
resulting system GANNE 
GA plus nearest neighbor
plus editing
�

Early work by Wilson 
Wilson ����
 showed that ex�
amples could be removed from a set used for classi��
cation� and that simply editing would frequently im�
prove classi�cation accuracy 
in the same way that
pruning improves decision trees 
Mingers ����

� Wil�
son�s algorithm was to classify each example in a data
set with its own k nearest neighbors� Those points
that are incorrectly classi�ed are deleted from the ex�
ample set� the idea being that such points probably
represent noise� Tomek 
Tomek ����
 modi�ed this
approach by taking a sample 
� �
 of the data and
classifying the sample with the remaining examples�
Editing then proceeds as in Wilson editing� Ritter et
al� 
����
 developed another editing method� which
di�ers from Wilson in that points that are correctly
classi�ed are discarded� The Ritter method basically
keeps only points near the boundaries between classes�
and eliminates examples that are in the midst of a ho�
mogeneous region�

The editing approach we took combined the editing
procedure of Ritter et al� and the sampling idea of
Tomek� We began by selecting the smallest exam�
ple set that yielded near perfect success in the pur�
suit game� This set contained ����� examples� Next
we edited the examples by classifying each point using
the remaining points in the set� For this phase� we
used the � nearest neighbors� If a point was correctly
classi�ed� we deleted it with probability ����� 
This
probability was selected arbitrarily and was only used



Table �� Results of Editing Examples�

Examples Percent Success
��� ��
��� ��
��� ��
�� ��
�� ��
�� ��
�� ��

to show the progression of performance as editing oc�
curred�
 Prior to editing and after each pass through
the data� the example set was tested using MBR on
������ random games�

One complication in �classifying� the points for editing
was that the class was actually a ��D vector of three
di�erent actions� two of which were real�valued 
turn
angle and speed
 and one of which was binary 
emit�
ting smoke
� It was clear that an exact match would
be too strict a constraint� Therefore we speci�ed a
range around each ��vector within which the system
would consider two �classes� to be the same� In addi�
tion� the three values were normalized to equalize their
a�ect on this range measurement�

The results of running GANNE on the ����� examples
are summarized in Table �� With as few as �� exam�
ples� GANNE achieved better than ��� evasion� which
is substantially better than the best ever achieved by
MBR alone� With �� examples 
comparable in size to
a plan in the GA
� GANNE was able to achieve ���
evasion� Performance remained at a high level 
greater
than ��� success
 with only �� examples� Thus it is
clear that a small� well chosen set of examples can yield
excellent performance on this di	cult task�

� DISCUSSION AND

CONCLUSIONS

The experiments reported here show that it is possible
to use genetic algorithms in conjunction with memory�
based reasoning to produce agents that perform well
on di	cult delayed reinforcement learning problems�
The experiments also demonstrate clearly the power
of having a teacher or other source of good examples
for memory�based methods when applied to complex
control tasks� Without a reliable source of good ex�
amples� our memory�based method 
k�NN
 performed
very poorly at the two�pursuer game� but with the
good examples provided by the genetic algorithm� it
performed better than either the GA or MBR alone�
In addition� we found that editing the example set pro�
duced a relatively small set of examples that still play
the game extremely well�

It might be possible with careful editing to reduce the
size of memory even further� This question is related
to theoretical work by Salzberg et al� 
����
 that stud�
ies the question of how to �nd a minimal�size training
set through the use of a �helpful teacher�� which ex�
plicitly provides very good examples� Such a helpful
teacher is similar to the oracle used by Clouse and
Utgo� 
����
 except that it provides the theoretical
minimumnumber of examples from which to learn the
task�

Our current implementation only takes the �rst step
towards a truly combined learning system� Our system
has one algorithm starting the learning process� and
handing o� to a second algorithm to continue� We
envision a more general architecture in which di�er�
ent learning algorithms take turns learning� depending
on which one is learning most e�ectively at any given
time� Such an architecture should expand the capabil�
ities of learning algorithms as they tackle increasingly
di	cult control problems�

Acknowledgments

We wish to thank David Aha� John Grefenstette� Di�
ana Gordon� and Sreerama Murthy for several helpful
comments and ideas� This material is based upon work
supported by the National Science foundation under
Grant Nos� IRI�������� and IRI���������

References

D� Aha and D� Kibler� Noise�tolerant instance�based
learning algorithms� In Proceedings of IJCAI����
pages �������� Detroit� MI� ����� Morgan Kaufmann�

D� Aha and S� Salzberg� Learning to catch� Applying
nearest neighbor algorithms to dynamic control tasks�
In Proceedings of the Fourth International Workshop
on AI and Statistics� �����

C� Atkeson� Using local models to control movement�
In Neural Information Systems Conference� �����

L� Booker� D� Goldberg� and J� Holland� Classi�er
systems and genetic algorithms� Arti�cial Intelligence�
����������� �����

A� Barto� R� Sutton� and C� Anderson� Neuronlike
adaptive elements that can solve di	cult learning con�
trol problems� IEEE Transactions on Systems� Man�
and Cybernetics� ����������� �����

A� Barto� R� Sutton� and C� Watkins� Learning and
sequential decision making� In Gabriel and Moore� edi�
tors� Learning and Computational Neuroscience� Cam�
bridge� ����� MIT Press�

D� Chapman� Planning for conjunctive goals� Arti��
cial Intelligence� ����������� �����

J� Clouse and P� Utgo�� A teaching method for re�
inforcement learning� In Proceedings of the Machine



Learning Conference� �����

M� Colombetti and M� Dorigo� Training agents to
perform sequential behavior� Adaptive Behavior� MIT
Press� �
�
��������� �����

M� Dorigo and M� Colombetti� Robot shaping� Devel�
oping autonomous agents through learning� Arti�cial
Intelligence� ��
�
��������� �����

A� Friedman� Di�erential Games� Wiley Interscience�
New York� �����

D� Goldberg� Genetic Algorithms in Search� Optimiza�
tion� and Machine Learning� Addison�Wesley� Read�
ing� Massachusetts� �����

J� Grefenstette� Credit assignment in rule discovery
systems based on genetic algorithms� Machine Learn�
ing� ���������� �����

J� Grefenstette� Lamarckian learning in multi�agent
environments� In Proceedings of the Fourth Interna�
tional Conference of Genetic Algorithms� pages ����
���� Morgan Kaufmann� �����

J� Grefenstette� C� Ramsey� and A� Schultz� Learning
sequential decision rules using simulation models and
competition� Machine Learning� ���������� �����

J� Holland� Adaptation in Natural and Arti�cial Sys�
tems� University of Michigan Press� Ann Arbor� Michi�
gan� �����

F� Imado and T� Ishihara� Pursuit�evasion geometry
analysis between two missiles and an aircraft� Com�
puters and Mathematics with Applications� ��
�
�����
���� �����

R� Isaacs� Di�erential games� A mathematical theory
with applications to warfare and other topics� Tech�
nical Report Research Contribution No� �� Center for
Naval Analysis� Washington� DC� �����

L� Lin� Programming robots using reinforcement
learning and teaching� In Proceedings of the National
Conference on Arti�cial Intelligence� pages ��������
�����

J� Millan and C� Torras� A reinforcement connection�
ist approach to robot path �nding in non�maze�like
environments� Machine Learning� ���������� �����

J� Mingers� An empirical comparison of pruning meth�
ods for decision tree induction� Machine Learning�
�
�
��������� �����

A� Moore� E�cient Memory�Based Learnign for Robot
Control� PhD thesis� Cambridge University� Cam�
bridge� England� �����

A� Moore and C� Atkeson� Prioritized sweeping� Re�
inforcement learning with less data and less time� Ma�
chine Learning� ����������� �����

D� Nguyen and B� Widrow� The truck backer�upper�

An example of self learning in neural networks� In
Proceedings of the International Joint Conference on
Neural Networks� volume �� pages �������� �����

G� Ritter� H�Woodru�� S� Lowry� and T� Isenhour� An
algorithm for a selective nearest neighbor decision rule�
IEEE Transactions on Information Theory� ��
�
�����
���� �����

S� Salzberg� Distance metrics for instance�based learn�
ing� In Methodologies for Intelligent Systems� 	th
International Symposium� ISMIS 
��� pages ��������
�����

S� Salzberg� A� Delcher� D� Heath� and S� Kasif� Learn�
ing with a helpful teacher� In Proceedings of the
Twelfth International Joint Conference on Arti�cial
Intelligence� pages �������� Sydney� Australia� August
����� Morgan Kaufmann�

S� Schaal and C� Atkeson� Robot juggling� An imple�
mentation of memory�based learning� Control Systems
Magazine� February �����

J� Sheppard and S� Salzberg� Sequential decision
making� An empirical analysis of three learning al�
gorithms� Technical Report JHU���������� Dept� of
Computer Science� Johns Hopkins University� Balti�
more� Maryland� January �����

R� Sutton� Learning to predict by methods of temporal
di�erences� Machine Learning� ������� �����

I� Tomek� An experiment with the edited nearest�
neighbor rule� IEEE Transactions on Systems� Man�
and Cybernetics� SMC��
�
��������� June �����

C� Watkins� Learning with Delayed Rewards� PhD
thesis� Cambridge University� Cambridge� England�
�����

B� Widrow� The original adaptive neural net broom�
balancer� In International Symposium on Circuits and
Systems� pages �������� �����

D� Wilson� Asymptotic properties of nearest neighbor
rules using edited data� IEEE Transactions on Sys�
tems� Man� and Cybernetics� �
�
��������� July �����


