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Abstract—An important aspect of social networks is the
discovery and partitioning of the complex graphs into dense
sub-networks referred to as communities. The goal of such
partitioning is to find groups who have similar attributes or
behaviors. In the realm of politics, it is possible to group
individuals with similar political behavior by analyzing cam-
paign finance records. In this paper we use fuzzy hierarchical
spectral clustering to find communities with campaign finance
networks. Multiple experiments were performed using varying
edge weighting, number and type of communities, as well as
analyzing multiple different years of voting data. The results
show that using the full hierarchy of community assignments for
legislators is highly predictive of voting behavior in the US House
of Representatives and Senate.

Index Terms—social network, campaign finance, fuzzy cluster-
ing

I. INTRODUCTION

Based on data from the National Institute on Money in
Politics1, contributions to candidates and committees in 2016
reached $5.5 billion for federal elections and $3.6 billion
for state level politics. Roughly $1.7 billion were for federal
House and Senate candidates. Approximately half of the
federal legislative money came from only 1.6% of the donors.
State level politics tell a similar tale where approximately
12% of donors gave 95% of the total money. An important
question is how money may impact legislators and legislation.
One apparent benefit to donating to a politician is that it
provides access. While there is no clear evidence that political
donations directly influence legislation, those who donate can
more easily get their legislators to listen (1).

Based on an economic game theory model, contribution lim-
its reduced aggregate contributions (2). A lobbyist targeting a
politician who prefers the same policies does not need to spend
as much as it is impossible for an opposing lobbyist to spend
enough in opposition. Another model shows how legislators
may elect to adopt policy choices based on how interest groups
donate (3). This money can have an impact even without the
expectation of quid pro quo. Akey notes most large campaign
donations come from areas where political opinion does not
necessarily reflect a majority of the population (4). Changes
in legislative committees can also impact donations as groups
focus on short term access (5).

1Based on numbers provided by www.followthemoney.org

We focus our analysis of campaign contributions through
social networks. Social networks have shown up in other fields
such as genetics (6), neuroscience (7), and many more. Some
prior work on social-political networks looks at social interac-
tion and its effect on political participation (8; 9). Other work
showed donations follow a preferential attachment network,
showing how shares of a donor pool can affect the probability
of gaining more donors (10). Gubernatorial data showed self
financing a campaign is not as effective as getting external
funds when tested against the results of elections (11). Prior
work used community assignments and identifying features of
the edges of the network to provide context to the communities
(12). Association rule mining on the transactions provided
frequent patterns and rules within each community, showing
how underlying transactions differed between communities.

Bonica used campaign finance records to create an ideo-
logical estimate for both donors as well as candidates (13).
Common-space campaign finance score (CFscore) has the
advantage of applying to both types of entities, where prior
research focused solely on legislators or recipients. CFscores
were calculated using correspondence analysis over the set
of donations to recipients. The first step calculated the federal
ideal points. Those values were used as bridges to state data to
inform the ideological ideal points for state level candidates
and recipients. Results yielded similar ideological measures
to prior work and from which accurate voting records for
legislators could be predicted.

The goal of finding communities is to locate shared areas
of possible influence. Hierarchical communities can assist
in that they highlight differences between communities at
multiple levels. In our work, we use a hierarchical fuzzy
spectral clustering algorithm for social networks to find com-
munities within contribution networks. Instead of correspon-
dence analysis, we use the entire donation network and find
community structure. A concrete result can be obtained by
using communities to predict behavior. Within this paper, the
communities are used directly to predict voting behavior of
legislators in the House of Representatives and Senate of
the United States government. Hierarchical communities were
shown to be more robust than non-hierarchical clustering,
while providing additional context to the communities over
eigenvectors.



II. BACKGROUND

Community discovery is a much researched topic in so-
cial networks. Crisp communities comprised much of the
early work wherein groups of nodes only belong to a single
community (14; 15; 16; 17). A limitation of early clustering
techniques is that they did not handle non-convex clusters
well. K-means clustering, as an example, is biased towards
spherical clusters. Spectral clustering is one alternative since
it is relatively easy to implement and it can find non-convex
clusters (18; 19).

Early approaches limited nodes to belong to a single
community. However, people can belong to more than one
community at a time. Some methods also do not account for
sub-groups within a community. Such sub-groups can consist
of smaller groups of individuals within a larger community
forming a hierarchy of communities. There are more recent
approaches that attempt to improve on the older algorithms
by allowing fuzzy clusters as well as creating a hierarchical
structure for the communities (20; 21; 22; 23; 24; 25). The
work presented in this paper may be of benefit to socio-
political research. The fuzzy community values found at each
hierarchy may help determine if there are specific groups who
are having a strong impact.

A. Spectral Clustering

Spectral graph partitioning methods already existed that
relied on repeatedly cutting a network into smaller partitions
(16). The second eigenvector of a graph’s Laplacian could be
used to find an approximation of an optimal partition based on
the sign of the entries in the vector. Each new partition would
then be divided by isolating its nodes and performing the split
again. Spectral clustering instead uses the top k eigenvectors
of the Laplacian of an affinity matrix instead of doing an
iterative split. This calculation is a common complaint of users
of spectral clustering as it can be costly for large datasets.
Approximation algorithms can help as not all eigenvectors are
necessary for the calculation (26).

Consider points within a set of data S = {s1, . . . , sn} ∈ Rl.
Affinity matrix A is created by

aij = exp
(
−‖si − sj‖2 /2σ2

)
where σ is a parameter to control how quickly affinity drops
off as the distance increases. In the case of networks, the
adjacency matrix can be used as the affinity matrix. Using the
adjacency matrix, spectral clustering proceeds by performing
the following steps.

1) Define D as a diagonal matrix where dii =
∑
j aij and

dij = 0 for all i 6= j.
2) Construct Laplacian L = D−1/2AD−1/2.
3) Find the k largest eigenvectors of L as x1,x2, . . . ,xk.
4) Form matrix X = [x1,x2, . . . ,xk] by stacking eigenvec-

tors in columns.
5) Form matrix Y by normalizing each row in X to have

unit length.

6) Cluster Y using a clustering algorithm, typically K-
means.

A common method for doing the final clustering is to use
K-means (27).

B. Fuzzy c-Means

Crisp clustering is not always ideal, and fuzzy clusters can
be an improvement. A common method is to use fuzzy c-
means clustering (FCM) (28; 29). Like K-means, FCM begins
by identifying the number of clusters. Initial coefficients of
belonging to each cluster are assigned randomly to each data
point wi, j. Like K-means, FCM then proceeds by repeating
two steps. The centroid for each cluster is calculated using
ck =

∑
s wk(s)ms/

∑
s wk(s)m where m determines the

amount of fuzzy overlap between the clusters. A higher value
results in fuzzier clusters. The assignments are then updated
with the new centroids using

wij =
1∑

k

(
‖si−cj‖2
‖si−ck‖2

) 2
m−1

until the algorithm converges or the maximum number of
iterations is reached. The resulting weights and centroids
define the discovered fuzzy clusters.

C. Random Forests

For the purposes of this research, once the data is separated
into clusters, or communities, that information is used to
predict behavior of the members of the network. By combining
the cluster data with voting history, the goal is to predict
behavior. Decision trees perform classification by generating
a tree from repeatedly splitting training data based on testing
features (30). The appeal of most decision trees are they are
simple to create and also simple to interpret. However, one
issue decision trees can have is that they overfit the data.

Random forests were created as an ensemble method to
avoid overfitting and increase generalization (31), (32) using
use an ensemble of decision trees that each vote on the
predicted class. Each of the decision trees uses a bootstrap
aggregated (bagged) sample of the dataset. The bagged method
samples with replacement from the original data to create an
equal sized dataset for training, resulting in approximately 1

3
of the data being left out for each tree. Each tree randomly
selects a subset of the features for splitting at each point.
The criteria for choosing a feature and value to partition the
data can vary greatly. Common techniques utilizes information
theory to determine partitions. Iterative Dichotomizer 3 (ID3)
is one well known decision tree algorithm which uses entropy
and information gain (33). Consider a set of classes c ∈ C.
For these classes, the entropy of any partition of the data D
is defined as

H (D) =
∑
c∈C
−p (c) log2 p (c)

where p (c) is a proportion of the data with class c, or

p (c) =
|dc ∈ D|
|D|

.



ID3 works by selecting the test t that maximizes the informa-
tion gained when partitioning the data into sets Dt using

H (D)−
∑
Dt

p (Dt)H (Dt) .

Since the entropy of D is fixed for dataset D, this is equivalent
to minimizing the entropy of partitions Dt. Beginning with the
root of the tree, the attribute maximizing information gain is
selected to partition the data. The same procedure is applied
to the resulting partitions until a stopping criteria is met.

Another method for determining how to split data at each
point is Gini impurity, which is used in the Classification and
Regression Tree (CART) algorithm (30). The principle behind
this metric is to minimize the impurity at each split. The
impurity is defined by the probability of a data point being
associated with the wrong class when randomly assigning
a class to each member in the partition based on the class
distribution (34). If the partition contains only one class, then
the impurity would be zero as the class distribution would
allow only that class. The measure is worst when there is
an even split of classes in the partition. More formally, the
probability of misclassification is defined as

φ = 1−
n∑
j=1

(p (cj |t))2

where p (cj | t) is the probability of assigning the incorrect
class based on the class distribution in partition t.

D. DW-NOMINATE
The classification task of predicting votes requires a repre-

sentation of socio-economic factors of legislation. Prior work
analyzes ideological estimates of legislators and the bills upon
which they vote. A widely known tool is DW-NOMINATE:
dynamic, weighted, nominal three-step estimation (35), (36).
DW-NOMINATE is built upon the idea of a random utility
model where legislator i’s utility for an outcome (Yea) on a
bill j is given by Uyij = uyij+εyij where uyij is a utility function
and εyij is a random error (37). Early DW-NOMINATE work
was based on a normal distribution utility function. The utility
of a legislator’s choice of voting Yea or Nay is centered around
an estimated ideal point. The more distant an option is to a
legislator’s ideology, the less utility is gained by voting for
that option. As examples, the authors’ refer to the concepts of
alienation and indifference. Alienation represents where the
set of choices are far removed from the ideal point but on the
same side of the ideological space. Indifference is where the
choices are far away but on either side of the space, as in a
moderate politician faced with voting for two extremes, one
on each side of the political spectrum.

Encapsulating this information requires determining the
ideal points of legislation and legislators. DW-NOMINATE
does so by maximizing a likelihood function based around the
probability of a legislator’s choices regarding bills. The utility
of a legislator i voting Yea in the kth dimension is defined by

uyij = β exp

(
−1

2

s∑
k=1

wk(dyijk)2

)

where (dyijk)2 is the squared distance of legislator i to a Yea
outcome in dimension k, wk are salience weights, and β is
an adjustment for overall noise, which is proportional to the
variance of the error distribution. From this, the probability
of voting Yea in the normal utility model is based upon the
relative utilities of voting Yea or Nay. Using those values, this
can be written as

P yij = P
(
uyij > unij

)
= P

(
εnij − ε

y
ij < uyij − u

n
ij

)
P yij = Φ

[
uyij − u

n
ij

]
In the normal model, this is given by

P yij = Φ
[
β
{
ûyij − û

n
ij

}]
.

where

ûτij = exp

(
−1

2

s∑
k=1

wk(dτijk)2

)
Using these equations, the model is estimated by maximiz-

ing the likelihood as defined by

L =

p∏
i=1

q∏
j=1

∏
τ∈{y,n}

(P τij)
Cτij

where τ is an index for choices Yea and Nay, P τij is the
probability of voting τ as defined above, and Cτij = 1 if the
actual choice was τ and zero otherwise. In learning the model,
Rosenthal and Poole estimated a single parameter at a time,
holding the others fixed. The authors claim two dimensions
worked well in practice.

The result of the model gives estimates of ideal points for
both legislator and legislation in two dimensions. In practice,
the first of the two dimensions is considered to correspond
to a liberal and conservative economic spectrum. The second
dimension corresponds to social issues. In the experiments
below, the estimates of legislation are used in order to show the
expressive power of the communities discovered in campaign
finance networks. The discovered communities perform well
in predicting votes in those two dimensions without explicitly
using the legislators’ ideal points as determined in the model.

III. DATA & APPROACH

The donation data is provided by Bonica and Stanford’s
Social Science Data Collection (38; 13). Contributions are
given in two year election cycles spanning 1979 through
2012.2 While accompanying donor data is sparse, recipient
data includes information such as the state, district, seat, party,
and other pertinent information regarding a candidate running
for office. Unique identifiers were assigned to the candidates
and donors across states and years. Candidates are attached
via a separate identifier to legislative voting data provided by
Voteview (39). This legislative data provides two estimated
DW-NOMINATE measures of the socioeconomic space of
legislation (36). We use these socioeconomic values, along
with the community assignments, to generate a classifier to
determine voting behavior in the legislature.

2The dataset has been updated to include more recent years after originally
downloading the data; however, we continue to use the 1979–2012 subset.



A. Data Preprocessing

The Stanford dataset uses two separate identifiers for can-
didates and donors. Using them separately would cause du-
plication of nodes in the network as an individual in the
network may both donate and receive money. The candidate
(or recipient) data includes the donor identifier so that it is
possible to bridge the two nodes and create a single unique
identifier. This new identifier is used to populate the nodes
and edges in the induced social network.

Some restrictions are applied to types of edges used to create
the networks. Loans and similar records are removed from
consideration as they do not necessarily indicate support of a
candidate. The list of transaction types kept are as follows: 10,
11, 12, 13, 15, 15C, 15E, 15F, 15I, 15J, 15L, 15PD, 15S, 15T,
15Z, 18G, 18H, 18J, 18K, 18S, and 18U. An initial network
is created out of all donations where edge aij =

∑
amt is the

sum of all transactions between entities i and j. Following the
procedure outlined in prior work using this data, any node i
with degree di = 1 is removed from the network. The largest
connected component of the remaining network is then used
as the network of contributions. Using all years from 1979
to 2012, the resulting network consists of over 5.26 million
nodes and 29.85 million edges.

Each node in the network is attached to the voting data by
use of the ICPSR id (Inter-university Consortium for Political
and Social Research). The voting data includes 9.2 million
observations of ‘Yea’ or ‘Nay’ votes on various bills from
the years 1979 through 2012. Each bill also contains two
features that are the spatial estimates of the socioeconomic
measure: DW-NOMINATE midpoints mid1 and mid2. These
are the ideological estimates generated from the voting be-
havior of legislatures as given by Voteview. The final voting
dataset is created by combining the discovered communities
assignments, the DW-NOMINATE ideological scores, and the
predictive class variable of ’Yea’ or ’Nay’.

B. Network Community Assignment

The entire process of performing the prediction requires two
primary steps. First is hierarchical fuzzy spectral clustering
on the campaign contributions network in order to find the
community assignments for the legislators (40). These values
are then attached to the corresponding entries in roll call data.

Finding fuzzy clusters uses prior spectral clustering work
in (18; 41; 40). Clustering is performed on the adjacency
matrix A corresponding to data matrix D for cluster numbers
K = 2, 3, . . . , k − 1, k, as shown in Algorithm 1. Using the
adjacency matrix A and the number of communities desired k,
find the Laplacian L. The top k eigenvalues of the Laplacian
are calculated, where k = c, the number of communities to be
found. In practice, the eigenvectors are calculated once using
the largest number of communities desired max (k). These
k eigenvectors then become the columns for matrix X. After
normalizing each row to form a new data point, fuzzy c-means
clustering (FCM) is used on the rows of X to obtain U. This
n × k matrix U contains the community assignments where
Ui,j is the assignment of i to community j.

Algorithm 1 Fuzzy Spectral Clustering
1: function FSC(A, k)
2: D← {di =

∑n
1 aij}

3: L = D−1/2AD−1/2

4: V = eigenvectors(L, k)
5: for all vi ∈ V do
6: for all vij ∈ vi do
7: xij = vij

8: for all rows xi ∈ X do
9: xi = xi/ ‖xi‖

10: U = FCM (X, k)

Algorithm 2 Hierarchical Generation
1: function HFSC(A, k)
2: for i = 2 to k do
3: Ci = FSC (A, i)

4: for all Ci,m ∈ Ci : i > 2 do
5: for all Ci−1,n ∈ Ci−1 do
6: si,m,n = sim (Ci,m,Ci−1,n)

The process is repeated with a varying k corresponding to
the number of clusters in each hierarchical level. Each level
is connected to its previous by calculating the fuzzy Jaccard
similarity measure of two communities Ci and Cj given by

sim (Ci,Cj) =
∑

e∈Ci∪Cj

min
(
cei , c

e
j

)
max

(
cei , c

e
j

)
where cei the community assignment of element e in commu-
nity Ci, or 0 if e is not in the set. In Algorithm 2, si,m,n
is the similarity between child community m at level i and a
possible parent community n at i − 1. The above procedure
gives fuzzy cluster values for varying k which can be used in
additional analysis.

At the top level of a hierarchy is the entire network. Level
two splits the network into two overlapping communities. At
each increasing level one more community is added. There are
two important sets of community assignment values within
the tree. Ti includes all assignments up to level i in the
tree. Li is defined only by those assignments on level i
itself. These communities are used to predict new behavior of
the actors within the network, specifically legislative voting.
Classification relies on additional data provided by Voteview
in the form of socio-economic estimates of bills and voting
records of United States legislators (36). The resulting dataset
contains a record for each recorded vote in the legislature.
Each record also contains the fuzzy assignment values for
that legislator and the two DW-NOMINATE dimensions for
the bill being voted upon. Each record also has the class to
be predicted: a ‘Yea’ or ‘Nay’ vote.

IV. EXPERIMENTAL DESIGN

The experiments were performed with Python implementa-
tions of the eigen-decomposition, fuzzy c-means, and random



forests. An approximate eigen-solver was used to find the
eigenvectors of the network to obtain only the vectors and
values of interest. A value of m = 10 for fuzzy c-means
was used to find the clusters. This was set to ensure highly
fuzzy communities instead of closer to crisp clusters. In this
experiment, communities are found for k ∈ [2, 12]. Early
experiments using random forests showed the community
features were not equally expressive when trying to predict
votes and limiting the number of features available during a
split to

√
(nfeatures) resulted in poor performance. Thus, the

algorithms were allowed to use any feature when determining
how to perform a split. The random forests use the Gini im-
purity metric when performing splits. During training for each
random forest, the class weights were inversely proportional
to the number of instances of that class. The final parameter
to note is that the random forest used 50 trees.

Three different primary experiments were performed to
investigate properties of the data: different weighting of the
network edges, using all data combined and individual years
separately, and varying community types and numbers. All
experiments were evaluated using 10-fold cross-validation.

A. Edge Weighting

Three different edge weighting schemes were tested. The
first used 1 to indicate an edge between two entities in the
network regardless of the donation amounts. The second used
base-10 logarithm of total contributions between two entities
as aij = log10 (amount), with a minimum value of 1. Finally,
the raw amount aij = amount of total donations between
two entities was used, again with a minimum value of 1.
By analyzing these measures, we can infer the impact of
connectivity versus donation on predicting voting behavior.

B. All vs Yearly Data

Along with the edge weighting, a test is performed to
compare the results of testing the entire dataset against indi-
vidual cycles. The full network utilized the entirety of the data
from all available years. Separate networks were also created
for each individual 2-year cycle from 1979 through 2012 as
provided in the data. This created 17 different networks. The
sizes of the networks greatly increase over time due to the
increase in the amount of money in politics. After performing
the same processing step for each cycle, the number of nodes
ranged from approximately 34 thousand in 1980 to 1.4 million
in 2012. Similarly, the number of edges ranged from 169
thousand in 1980 to 6.2 million in 2012.

C. Communities

Three different applications of the spectral clustering were
applied. The first of these methods used a single level of the
hierarchical tree (shown in figures as FCM-L). This represents
the process of using the best single performing clustering as
would be typical in many techniques. The second included all
parents of the level in question, effectively pruning anything
further down the tree (shown in figures as FCM-A). Finally,
the eigenvectors themselves were used directly in performing

prediction (shown in figures as EV). This was chosen as a
baseline to show any loss in predictive power.

V. RESULTS AND DISCUSSION

Fig. 1 shows the results of predicting votes over the entire
set of data. For just the adjacency matrix, performance began
by middling but improved until about k = 10 communities. At
this point, the performance of the single level (FCM-L) began
to drop. However, the eigenvector (EV) and full tree (FCM-
T) held steady due to not losing the information provided by
fewer communities.

Raw contributions show almost all of the predictive power
of this schema is held within the first few levels of communi-
ties. The large donations appear to dominate the community
analysis at that stage, and additional communities do not
provide much in additional predictive ability. This can be
shown in that after k = 7, the performance of the single
level drops rapidly. Unlike the other two, scaled contributions
performed poorly at first for this particular set of data. As
shown by EV, this was not due to the performance of FCM,
but integral to the structure of the network. As the tree grew the
performance improved and matched the other two weightings.

Using votes by year showed additional evidence of polariza-
tion within the legislature. Beginning with 1980, the accuracy
of prediction was low. Accuracy increased over time, hitting
a peak in 2010 with votes being predicted at roughly 94%
for each of the weighting methods. This fell to ∼ 90% in
2012, which was more in line with 2008. The performance of
the differing number of communities also flattened over time,
implying fewer communities needed to define splits.

A. Communities

Increasing the number of communities improved classifi-
cation accuracy of the vector (EV) and whole tree models
(FCM-T), as shown in Fig. 1. Both of these showed consistent
performance where more features helped with only small
deviations. This was not true when using single levels (FCM-
L). In two weighting schemes, the accuracy increased with
the number of communities until a certain point at which it
sharply fell. It is expected that as the number of communities
grow in the scaled weighting, a similar pattern will hold and
the accuracy will begin to drop.

As a more extreme example, consider the results from the
experiments using only data in 1998 from Fig. 2. While the
performance of FCM-L was consistent in the case of raw
contributions, the performance in both the adjacency matrix
and the scaled values were highly erratic. For certain numbers
of communities the accuracy improved to nearly match that
of EV and FCM-T. However, since both EV and FCM-T have
access to the entirety of the data up to that point, those two
methods are far more robust to those changes. Due to these
issues, the selection of k for FCM-L is critically important
when using discovered communities to inform predictions.

Another notable difference between FCM-L and FCM-T can
be seen in the behavior in the low number of communities.
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Figure 1. Experimental results for differing communities using all years of data.
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Figure 2. Experimental results for differing communities using only 1998 data vs all data.

Moving down the hierarchy, the performance of FCM-L de-
creased for k = 3 and k = 4 for both the adjacency and
scaled weights. However, despite using those same values from
the hierarchy of community assignments, the performance of
FCM-T increased during that period. This shows that FCM-
T is more robust to individually poor community assignments
and that the combination of data from the levels is more useful.

In general, the best performance was obtained using the
eigenvectors directly. This was not always the case, however,
especially for small numbers k of communities. FCM-T was
typically comparable in performance and did not suffer the
same issues as FCM-L. EV was more easily computable due
to fewer features required. With EV, k indicates the number

of eigenvectors to use. For FCM-T, the entire tree structure
is used up to the level with k communities. This results in
k (k − 1) /2 features. This increase in the number of features,
along with the large amount of voting data, resulted in FCM-
T taking longer to compute models than EV. Interpretability
is an important factor in the selection and use of models,
and FCM-T has the benefit of being easier to interpret.
Two vectors representing two different entities does not have
meaning out of the larger context. However, two lists of
community assignments for those same entities can be more
easily interpreted for anyone using these data or methods.



B. Edge Weighting

Raw values outperformed the other two measures. Out of the
possible comparisons, raw weighting was better statistically
than the adjacency matrix 53.1% of the time and better than
scaled 50.8% of the time. Adjacency was better than raw
34.3% of the time and scaled was better than raw 36.9%
of the time. From these results, The best communities for
predicting votes were more often those generated by large, raw
dollar amounts. This impact is small, however. Even though
the different weights had an impact in any individual test,
overall they were quite similar in their performance.

C. All vs Yearly Data

A little more information was necessary in order to compare
the models learned from all of the data to those trained on two
year cycles. When calculating the performance of the all-data
models, the accuracy of each individual year was calculated
as well as that of the entire dataset. This shows the results of
prediction in a specific cycle that can then be compared with
the model trained only on that cycle. The notable result from
this is that using all of the data at once did not typically do
better than using data in a specific year. Instead, out of the
different comparisons, the models built from individual cycle
data were statistically better in 91.7% cases. Fig. 2 shows this
trend from examples of these experiments.

The results of the experiments show another issue related
to polarization of the legislature. This can be seen from two
different aspects of the results from individual cycles. First,
the overall accuracy of prediction increased over time. This
hit a peak in year 2010, though it was still quite high in the
following 2012 cycle. Additionally, the impact of the number
of communities is less pronounced in those later years. The
result is nearly a flat line for all the experiments in later years.
This is true even for FCM-L, which mostly stops behaving as
in prior years where there are peaks and valleys in performance
based on the number of communities.

VI. CONCLUSION

As shown, fuzzy hierarchical spectral clustering is effective
in predicting voting behavior of legislators based on campaign
finance records. The results show using the full hierarchy
improves classification performance relative to a single level
in the tree while also showing less volatility in predictive
power. The full hierarchy also performs similarly to using
eigenvectors directly while providing more context for those
who use the data. While different weightings of the edges
had an impact on the results of the predictions, overall the
best performing weighting was based on raw dollar amounts.
However, both the adjacency matrix and scaled weights were
promising. The results also again highlight the growing issue
of partisanship within the legislature, where communities
become more accurate in more recent years.

Future work includes improving the temporal analysis and
creation of communities as they change over time–both in
the communities and how those changing communities may
indicate shifts in ideology over time. Additional analysis could

better examine groups who differ in their type of donations
beyond ideology. These datasets could also be augmented
with additional lobbying or expenditure data to improve the
definition of the network. We are also looking to use use deep
neural networks to analyze the social network to allow for
improvements to the speed of the experiments by making use
of better approximations as well as GPU processing.
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