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Abstract—Discovery and partitioning of complex graphs such
as social networks into communities can be useful for analyzing
behavior of individuals in the network. Spectral clustering is
one useful tool for performing this clustering, but it suffers
from scalability and generalizability to new data. In this paper
we introduce an approximate orthogonal spectral autoencoder.
We apply this model to a political campaign contribution social
network to show its effectiveness on out-of-sample embedding
for clustering and classification. The resulting embedding is used
with hierarchical fuzzy spectral clustering to show embedding
generalization for a behavioral prediction problem for nodes in
the social network.

I. INTRODUCTION

Complex networks, or graphs, are a large and growing

area of important research. Social networks are a type of

graph that are generated from interactions among members of

some population. These networks are used in many different

fields such as genetics, neuroscience, collaboration networks,

Internet groups, animal social behavior, and many more.

At their core, networks or graphs consist of points or

vertices that are connected by edges. In many real-world

networks, these edges are not distributed evenly throughout the

graph, but instead there are groups of vertices that tend to have

more connections among themselves than connections to the

rest of the network [1]. These groups are commonly referred

to as communities. Community detection is an important

method for simplifying complex systems that can be difficult

to analyze as a whole. Large scale graphs like social networks

are one area where this analysis can provide interpretability,

discover patterns in behavior, or find missing relationships.

Much of the early research in community analysis has

focused on communities where vertices are assumed to belong

to only a single community. This approach results in what

is called a crisp community assignment [2, 3]. A popular

algorithm for crisp community discovery is spectral clustering

since it is relatively easy to implement and can find non-

convex clusters [4, 5]. However, there is a limitation with

restricting vertices in this way since for many social networks,

it is possible for a vertex to belong to multiple communities.

Another limitation in some methods is that they do not

account for sub-groups within a community. Such sub-groups

can consist of smaller groups of individuals within a larger

community, forming a hierarchy of communities. Military,

business, familial, and political hierarchies are all examples

of hierarchies where smaller groups combine to create a

larger group. There are more recent approaches that attempt

to improve on older algorithms by allowing fuzzy clusters as

well as creating a hierarchical structure [6, 7, 8, 9].

In this paper, we examine approximate methods for finding

encodings for social networks. We develop two mini-batch

spectral embedding methods using an orthogonal spectral

autoencoder (OSAE). The first applies an orthogonal constraint

and loss on the encoding layer in addition to a reconstruction

error. The second adds an approximate spectral decomposition

by creating a smaller sampled Laplacian and performing

eigenvector decomposition on that Laplacian. This adds a loss

term for the difference between the orthonormal encoding and

the top-k eigenvectors of the approximate Laplacian.

Fuzzy c-means clusters are used as community assignments

for entities within the social network. For example purposes,

we use federal campaign finance networks and voting history

for the legislators within the graph. Each legislator is assigned

to their communities based on the results from fuzzy c-
means. Then those community assignments are used as an

ideological approximation and combined with the voting data

to generate a classifier for voting behavior. The results of these

experiments show that the network embeddings are effective

in predicting behavior of actors within the social network and

are comparable in performance to computing a full hierarchical

spectral decomposition of the graph.

II. MOTIVATION

Based on data from the National Institute on Money in

Politics1, contributions to candidates and committees in 2016

reached $5.5 billion for federal elections and $3.70 billion for

state level politics. For federal House and Senate candidates,

donations reached roughly $1.7 billion. The majority of that

money comes from a relatively small number of donors; there

were only 11,479 donors who gave $10,000 or more. The

amount from this group was over $804 million, nearly half the

total amount. The remaining half came from roughly 708,000

entities. With such sums, the question of how such money may

impact legislators and legislation is an important one.

It has been shown that a benefit to donating to a politician is

that it provides access to that politician. While there is no clear

evidence that standard political donations directly influence

1Based on numbers provided by https://www.followthemoney.org. Note that
the first author is a former employee of this organization.
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legislation, one experiment used a political organization at-

tempting to arrange meetings with legislators and constituents

who had previously donated and showed that those who donate

can more easily get their legislators to listen to them [10].

Whether or not they revealed if the attendees had donated

was decided randomly, allowing a better analysis on how

donations impact access. From their results, only 2.4% of

the offices arranged meetings when only told the attendees

were constituents. However, 12.5% arranged meetings for

attendees who were donors. Of those meetings, only 5.5%

of the constituents met with a senior staffer, compared with

18.8% for donor attendees.

Another model shows how legislators may elect to adopt

certain policy choices based on how interest groups donate

[11]. Notably, even without the expectation of quid pro quo,

this money can have an impact based on their temporal model.

Since incumbents need to raise money for reelection, their

knowledge of interest group donations can bias policy choices

even in cases where the interest group has donated to the

opposition. Some improvement can be made to these models

since they do not fully capture the group behavior of donations.

III. NETWORK COMMUNITIES

We define a network, or graph, as G = (V,E) where V is

a set of vertices, or nodes, in the graph.. E is a set of edges

connecting the vertices of the graph. Edge eij ∈ E defines

a connection between vertices vi, vj ∈ V. For the purposes

of this work, edges are considered to be undirected and some

measure of affinity between vertices is associated with each

edge. The degree di of vertex vi is the sum of the edges

connected to that vertex, i.e.

di =

n∑
j=1

eij .

Most real-world networks have been found to have structural

properties that help inform or assist in learning useful knowl-

edge concerning the entities within the network. Usually, such

real-world graphs are not regularly structured like a lattice, i.e.,

the connections between vertices in the graph are not evenly

distributed throughout the graph. Instead, there are substruc-

tures within the graph where vertices in that group have a

higher proportion of edges connected to other members of that

group than with members of other groups. These substructures

are commonly called communities. We define a community

Ci ⊂ V as a subset of vertices. Using a simple definition of

community structure, nodes within a community should have

a high proportion of in-group edges compared with the rest

of the network. Examples of networks that have community

structure can be drawn from social [12], biological [13], gene

expression [14], and many other types of networks [15]. Since

the communities can represent fundamental properties of the

network, their discovery is important for understanding the

nature of the networks [1, 16].

IV. GRAPH-BASED CLUSTERING

Given the foundation covered in the previous section, our

task becomes discovering communities within a graph. Note

that there is already a wealth of research on finding commu-

nities. Some initial work focused on crisp partitioning of the

network into non-overlapping, non-hierarchical communities

[1, 3]. In this domain, a crisp partition is one where a vertex

can only be a member of a single community. Thus, if vi ∈ Cj ,

then vi /∈ Ck, ∀Ck : k �= j. A variety of approaches have

been developed for finding communities in networks [2, 17],

and one popular method is spectral clustering [4, 18]. These

have proved popular for their ease of implementation, and for

their ability to handle non-convex clusters.

To best represent the communities, organizing the vertices

into clusters should satisfy two important realities of many

social networks: cluster overlap and hierarchy. For the first,

nodes within the network may belong to multiple communities.

Much like in human social groups, an individual may belong

to more than one community or have multiple affiliations, thus

suggesting applying a fuzzy extension to community detection

[19]. Hierarchy is another important component of some

social networks wherein smaller communities can combine

into larger ones. Military, business, and political hierarchies

are all examples of hierarchies where individual smaller groups

combine to create a larger group.

To find fuzzy communities, a variety of approaches have

been presented. Palla uses a clique percolation method to find

adjacent cliques with overlapping nodes [8]. Other methods

use fuzzy modularity and simulated annealing or other tech-

niques to find relevant partitions [7, 20, 21]. Fuzzy c-means

is another possibility for determining fuzzy clusters and has

been used to find hierarchies of clusters [6, 9]. The approach

presented here differs in its use of spectral clustering and

spectral characterization to create a top-down algorithm for

finding hierarchical fuzzy clusters.

It is well known that K-means clustering does not handle

non-convex clusters well. This is because the results of K-

means clustering are biased towards spherical clusters centered

on the found centroids. Spectral clustering is a popular alter-

native that can handle non-convex clusters due to its focus

on graph topology [4]. Spectral graph partitioning methods

already existed that relied on repeatedly cutting a network into

smaller partitions [1], where it had been shown that the second

eigenvector of a graph’s Laplacian could be used to find an

approximation of an optimal partition, typically by the sign

of the entries in the vector. Each new partition would then be

divided by isolating its nodes and performing the split again.

Instead, spectral clustering uses the top k eigenvectors of the

Laplacian instead of doing an iterative split [4].

The fuzzy spectral clustering algorithm starts by calculating

the Laplacian matrix Lsym. Then the top-k eigenvectors,

correspond to the k smallest eigenvalues for the normalized

symmetric Laplacian, are calculated from Lsym [4, 19, 22, 23].

These eigenvectors are oriented as the columns of matrix X.

After normalizing each row of X, fuzzy c-means is used to
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Algorithm 1 Fuzzy Spectral Clustering

1: function FSC(A, k)

2: D ← {di =
∑n

1 aij}
3: Lsym = In×n −D−1/2AD−1/2

4: Z = eigs(L, k) � Top-k eigenvectors.

5: X = [z1, . . . , zk]
6: for all row xi ∈ X do
7: xij = xij/ ‖xi‖ ∀xij ∈ xi � Normalize rows.

8: end for
9: U = FCM (X) � Fuzzy c-means.

10: return U
11: end function

Algorithm 2 Hierarchical Generation

1: function HFSC(A, k)

2: for i = 2 to k do
3: Ci = FSC (A, i)
4: end for
5: for all Ci,m ∈ Ci : 3 ≤ i < k do
6: Pi,m,n = argmaxJf (Ci,m, Ci−1,n)
7: end for
8: end function

find the cluster assignments U for each of the vertices.

To obtain hierarchical structure, the process is repeated

by varying k corresponding to the number of clusters in

each hierarchical level, as shown in Algorithm 2. In practice,

calculating the eigenvectors can be performed once with the

largest k and reused in subsequent iterations of clustering.

The communities are calculated for each level using FSC

to create a set of communities at hierarchical level i. Each

community in level i is connected to its previous by calculating

the fuzzy Jaccard similarity measure Jf of the communities.

Jf (Ci,Cj) between two fuzzy communities Ci and Cj :

Jf (Ci,Cj) =

∑
uk∈C1∪C2

min (C1,i, C2,i)

max (C1,i, C2,i)
.

The results give similarity measures for the smaller clusters

that can be used to assign each cluster to its best matching

parent. In practice, the possible parent of a child that has the

highest similarity is selected as the parent of the community.

V. POLITICAL NETWORKS

We construct the political social networks used in our

experiments from campaign finance datasets. This data in-

cludes transactions where individuals, businesses, or other

organizations make donations to political groups. These groups

can be candidates, politicians, or political committees and form

the vertices in the network. The donations to the political

groups correspond to the edges in the network.

The dataset of political contributions is provided by Bonica

and Stanford’s Social Science Data Collection [24, 25]. As

provided, the Stanford dataset uses two separate identifiers

for candidates and donors. Using them separately would cause

duplication of nodes in the network since an individual may

both donate and receive money. To address this, the candidate

(or recipient) data include the donor id so that it is possible to

bridge the two separate ids and create a single unique identifier

for an entity. This new identifier is used to populate the edges

in the induced social network.

Recent work by Bonica [25] created an ideological estimate

for both donors as well as candidates. In his work, contribu-

tions are assumed to represent evaluations of a candidate’s

ideology, and donors would be more likely to donate to those

who share ideology. The resulting common-space campaign

finance score (CFscore) has the advantage of applying to

both types of entities, where prior research focused solely on

legislators or recipients.

Calculating the CFScore for federal contribution data begins

by creating an n×m contingency matrix R. The rows of R
map to contributors while the columns map to recipients. Each

entry rij ∈ R contains a sum of the contributions from i to

j. From this matrix, each entry is converted into an integer in

the range [1, 50] by dividing rij by 100 and capping the result

to 50. This value is standardized further by dividing each rij
by

∑
i

∑
j rij . From this matrix, singular value decomposition

(SVD) is performed to obtain K = Dr
− 1

2 (R − rc�)Dc
− 1

2

where r and c are vectors of the row and column sums of

R. Additionally, Dr and Dc are diagonal matrices where the

values of r and c are placed on the diagonal. From this,

ideal points can then be estimated using θ = UDc
− 1

2 for

contributors and δ = VDr
− 1

2 for recipients. Then U gives

the left eigenvectors of KK�, and Dr is a diagonal matrix

of singular values. Furthermore, V is made up of the right

eigenvectors of K�K. For state data, these federal ideal points

are used as bridge observations in an iterative procedure that

estimates contributor and recipient CFScores across states.

Using the direct contributions, an initial network is created

out of all the donations where the edge is weighted as

aij = amount, and amount is the sum of all donations or

receipts between entities i and j. In addition, any node i with

degree di = 1 is removed from the network since it lacks

sufficient data to be associated with a community. The largest

connected component of the remaining network is then used

as the network of contributions. Removed nodes were few and

represented smaller graphs of just a few entities isolated from

all others. Thanks to the work by Bonica and Voteview, there

is information tying the donations to federal legislators with

their voting history dating back to 1980 [24, 26].

Using the communities discovered from the campaign fi-

nance dataset, we examined whether it was possible to gener-

alize the community assignments to predict voting behavior in

the legislature based on estimated ideological score of the bills

themselves. To do so, we merged the community assignment

features with the voting data and implemented random forest

classifiers to predict Yea or Nay votes. As one way to see if

donation amounts affect voting, multiple weighting schemes

were tested for the connections between donors and recipients.

In addition to just adjacency, we found communities based on

weighted networks using a logarithmic scale as well as the
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raw donation sums.

VI. APPROXIMATE SPECTRAL CLUSTERING

As mentioned, since spectral clustering on large datasets

has high space and time complexity, there have been sev-

eral approximation methods for spectral clustering developed.

Nyström approximation is one such algorithm used to calculate

the eigenvector decomposition [27], which has been adapted

for use in spectral clustering [28].

In the fast spectral clustering algorithm proposed by Choro-

manska et al. (Algorithm 3), the process begins by selecting

l columns sampled uniformly without replacement from the

affinity matrix. Those sampled columns form the matrix Â.

In the algorithm, Â ← A (:,L) is a sampling operation where

: is the set of all elements and L are the indices of the

sampled columns. Two diagonal matrices D and Δ are created

based on the row sums of Â. An approximate Laplacian Ĉ
is calculated using the two diagonal matrices and the sampled

columns. A sampling of the rows of Ĉ using the indices of the

sampled columns is used to create W. Then the best r-rank

approximation is taken of W (usually using SVD) to obtain

approximate eigenvectors given by Û. The remainder of the

procedure is the same as standard spectral clustering where the

column matrix containing the eigenvectors is row normalized

followed by clustering the resulting matrix.

Similar work regarding Nyström approximations was done

by Pourkamali-Anaraki [29]. In this work the author treats a

sample of the data as landmarks. These landmarks are drawn

from the exact eigenvector decomposition as calculated from

the data. A linear transformation from the landmark set to the

full set is applied to approximate the spectral embedding of

the original data.

Our approach involves training an autoencoder to recover

the approximate spectral decomposition. One relevant example

for work with autoencoders is that of mini-batch spectral

clustering [30]. As the authors note, calculating the Laplacian

of a dataset as well as the associated spectrum can require

O(n2) in storage for the Laplacian, and O(n3) time to

calculate the spectral decomposition. The primary motivation

is to calculate the spectrum of the Laplacian by finding the

principal eigenvectors Z without the direct calculation. They

note this can be reworked to optimize the following trace

problem

argmin

{
Tr

(
−1

2
Z�LZ

)}
: Z�Z = I.

Specifically, they note that the orthonormality constraint

causes W to lie on a Stiefel manifold. The Riemannian

gradient on this manifold is H =
(
I−WW�)G. This

allows some theoretical guarantees that a stochastic gradient

optimization will converge. In the case of this work, the

authors use the normalized Laplacian L = D−
1
2AD−

1
2 . In

this form, the top-k eigenvectors are those from the largest k
eigenvalues.

Traditionally, spectral clustering algorithms cluster over an

entire dataset. However, there is an out-of-sample issue where

Algorithm 3 Fast Spectral Clustering

1: function FASTSPECTRALCLUSTERING(A, k, l, r)

2: L ←indices of l sampled columns

3: Â ← A (:,L)

4: D ∈ R
n×n : Dij = δ [i = j] 1/

√∑l
j=1 Âij

5: Δ ∈ R
l×l : Dij = δ [i = j] 1/

√∑l
j=1 Âij

6: Ĉ ← Î−
√

l
nD× Â×Δ

7: W ← Ĉ (L, :)
8: Wr ← best r-rank approximation to W

9: Σ̃ = n
l ΣWr

and Ũ =
√

l
nĈ

10: Y = ∀iXij/ ‖Xi‖
11: return U ← K-means(Y)
12: end function

new data requires a full recalculation instead of an easily

performed transformation. A possible solution to this issue

is to use a neural network to find a transformation f (x)
mapping a data point to a corresponding row of an eigenvector

decomposition. Using the top-k eigenvectors, the goal is to

find f(x) = zi where z ∈ R
k. Prior work has applied

this idea with a stacked autoencoder [31]. This method is

a two-step procedure wherein the initial step is to train the

network to encode the graphs using the autoencoder. Once the

autoencoder is trained over the input data, the decoder portion

is removed and the encoder is fine-tuned to learn the mapping

from the input to the eigenvectors.

Deep embedded clustering attempts simultaneously to learn

the set of cluster centers in the feature space along with the

parameters that map the data points into the reduced feature

space [32]. Xie et al.’s algorithm alternates between updating

the network parameters and updating the cluster centers. Using

a kernel derived from the Student’s t-distribution to calculate

similarity between the embedded points and the cluster centers,

a Kullback-Leibler divergence loss function is used for a

selected target distribution. Note that these descriptions only

cover a small fraction of the work being performed in this field.

For example, there are many different techniques using neural

networks for clustering [33, 34] or improving the out of sample

clustering performance using embedding [35, 36, 37, 38].

VII. ORTHOGONAL SPECTRAL AUTOENCODER

Our approach allows for out-of-sample clustering as well

as limiting the size of the Laplacian needed to calculate the

eigenvectors such that l 	 n. The primary framework for

the orthogonal spectral autoencoder is a deep undercomplete

autoencoder. In this architecture, there are multiple hidden

layers between the input and output. The encoding layer is

termed undercomplete since the dimension of this layer is

smaller than the input layer. This structure can be useful in

performing feature extraction and dimensionality reduction

on the data. In general, this type of autoencoder uses a

reconstruction loss based on the distance from values of the

input and output, commonly mean squared error.

1162



Figure 1: Structure of the Orthogonal Spectral Autoencoder

Figure 1 depicts the general structure of the orthogonal

spectral autoencoder. Our additions to this framework include

another layer between the encoder and decoder that orthog-

onalizes the output of the encoding layer E by using QR

decomposition, where E = QR. There are two additional

components to the loss function that penalize the encoding

layers that are not orthogonal, in addition to approximating

the eigenvectors of a sampled Laplacian.

Each of the hidden layers within the network are linear

layers that apply the function y = w�H+ β where w is the

weight vector, H is the input to the layer, and β is an additive

bias. The output of each hidden layer uses the SELU activation

function defined as

SELU (y) = s · (max (0, y) + min (0, α · (exp (y)− 1))) .

For our autoencoders, we use k < b, where k is the max-

imum number of clusters and the dimension of the encoding

layer, and b is the size of the batch. Therefore, the matrix

generated by the autoencoder at the final encoding layer is

E ∈ R
b×k. Then Q is a matrix such that the columns are

orthogonal. Since AR−1 = Q, the inverse R−1 is saved

within the QR Orthogonalization layer during each training

step. The output of the QR Orthogonalization layer becomes

Z = ER−1. During evaluation, the last calculated R−1 is

used to project the results of the encoding layer.

The loss function for OSAE comprises three parts. The

first is the reconstruction error on the input data (LossR). In

addition, there is a separate orthogonality loss (LossO), and a

spectral loss (LossS). Total loss is then given by

Loss = LossR + LossO + LossS .

Reconstruction loss, LossR, is the mean squared error of the

batch input Ab and the output of decoder portion of the

autoencoder A′b,

LossR = MSE (Ab,A
′
b) =

1

n

n∑
i=1

(ai − a′i)
2

where Ab = A [I, :] and I are the indices of the minibatch

input.

LossO is the orthogonalization loss and is defined as the

mean absolute error of the identity matrix Ik and the product

of the transpose of E with itself. By definition, if E is column

orthogonal, then E�E = Ik, so

Losso =
1

n2

k∑
i=1

k∑
j=1

∣∣Ikij − êij
∣∣

where Ê = E�E.

The spectral loss is calculated by using the orthogonal

output of the QR decomposition layer and an estimate of the

Laplacian L. Since the input of the graph is a sparse adjacency

matrix, slicing the matrix such that it contains only the rows

and columns of the indices I of minibatch Ab would result in

a mostly empty matrix. Instead, we use a pairwise Laplacian

similarity measure

KL (Ab,Ab) = exp

(−‖ab,x − ab,y‖
σ

)

where σ is the bandwidth for each pair of rows x and y in

Ab. In the experiments given later we use σ = 2. The pairwise

Laplacian similarity KL ∈ R
k×k yields a new affinity matrix

AL
b for minibatch Ab. Using the pairwise Laplacian similarity,

we calculate the normalized symmetric Laplacian of AL
b as

Lsym = I−D−
1
2AL

b D
− 1

2

where D is a diagonal matrix, dii =
∑k

j=1 âij , and âij is

element i, j in AL
b . The next step calculates the k eigenvectors

corresponding to the smallest eigenvalues of Lsym for AL
b .

Matrix Z′ is constructed by the top-k eigenvectors as given by

the eigen decomposition eigs (Lsym, k). With this matrix, the

spectral loss can be calculated as the mean absolute error of the

approximate eigenvectors and the orthogonalized encoding,

LossS =
1

n

b∑
i=1

k∑
j=1

∣∣Zij − Z′ij
∣∣

For every training epoch, we sample b rows from the

adjacency matrix A. For a single batch, the rows of A are

sampled uniformly without replacement to create minibatch

Ab. At the next epoch, a new batch is sampled in the same

manner. We repeat this procedure until reaching the maximum

number of training epochs. Future work may involve biasing

the sampling to cover more training examples, or sampling

without replacement to ensure no samples are repeated until

all are covered.

The final trained network is then used to cluster the data.

Using the orthogonal encoder portion of the network, the

output of the QR decomposition layer (Z) is used as the n×k
embedding for the graph. Much like in spectral clustering, we

normalize each row of Z as

z�i =
zi√∑k
j=1 z

2
ij

.

The normalized rows of Z are used as the data points for

fuzzy c-means clustering. The resulting U from FCM are
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the fuzzy cluster assignments for the embedding. As before,

it is possible to use the embedding for hierarchical spectral

clustering as well. Since the spectral loss imposes an ordering

on the columns of the output based on the ordering of the

approximate spectral decomposition, we can use the ordered

columns of Z similarly as the top-k′ for clusters k′ < k.

VIII. PREDICTION USING OSAE GRAPH EMBEDDING

We ran several experiments to test the efficacy of using

orthogonal spectral autoencoders for vote prediction. The gen-

eral procedure for performing the clustering is as follows. A

weighted graph adjacency matrix is used as input to the neural

network. Each element aij in A is scaled logarithmically by

a′ij = log (
∑

aij) where aij is the value of a donation between

nodes i and j in the graph.

For each year of data, we kept the structure and procedure

of training the autoencoder the same. The only exception to

this is that the input and output dimensions must change for

each cycle to fit the different data. No other hyperparameters

were changed between runs. All runs were done with a mini-

batch size of b = 128. Based on the results from the clustering

on the previous results, we set k = 8 as the maximum number

of clusters, and thus the dimension of the encoding layer. Each

network was trained over 500 epochs.

The effectiveness of the graph embedding for predicting

future behavior was tested for each 2-year cycle separately. In

each cycle, a random forest was trained to predict if a legislator

would vote Yea or Nay based on their community assignments

and the ideological estimate of the bill in question. A sample

of 200, 000 votes was drawn from the relevant set of Yea and

Nay votes for that two-year cycle. The random forest was

constructed with an ensemble of 50 trees. As we are more

interested in the relative performance, the random forests were

not optimized or pruned.

The first experiment listed in the results is a baseline for

comparison. Multiple trials were performed using the spectral

decomposition with fuzzy hierarchical spectral clustering. In

each trial, the spectral decomposition with k = 8 clusters

calculated for each of the networks in the even (election) years

1980, 1982, . . . , 2012. For each of those years, we used three

separate feature sets to predict behavior of the community

members. The three separate feature sets are 1) the row

normalized top-k eigenvectors of the normalized symmetric

Laplacian Lsym, 2) the hierarchical fuzzy c-means community

assignments for each k = 2, . . . , 8, and 3) the CFScore

ideological estimates. This was done to add more context to

the relative performance of the algorithms.

Each of the features was assigned to the individual nodes

within the graph. These features were then attached to the vot-

ing history that pairs legislators within the graph to bills. Each

bill has its own ideological estimate from DW-NOMINATE

[39] that gives an estimate of the policy position of each bill.

These values are generated by solving a utility model that

attempts to maximize the obtained utility of voting Yea or Nay

on a bill by a legislator. The closer a bill’s ideology matches

a legislator’s ideology, the higher utility is obtained by voting

Figure 2: Vote Prediction using Spectral Embedding

Yea. The authors claim two dimensions for ideology worked

well in practice. One dimension corresponded to an economic

spectrum, and the other dimension to social issues.

The next experiments tested the efficacy of the embeddings

for an orthogonal autoencoder and OSAE. Each network was

trained for 500 epochs, where every epoch sampled a mini-

batch from the adjacency matrix and used stochastic gradient

descent to update the weights. The row normalized graph

embedding Z was then used in the calculation of the features

assigned to each legislator in the campaign finance network.

As before, we analyzed the results of different treatments

of the graph embedding: embedding itself, fuzzy c-means

clustering, and hierarchical fuzzy spectral clustering. For all

the following experiments, trials were repeated 10 times to get

the average performance of each experiment. We analyzed the

results of training the encoders for each cycle of the data.

The results of vote prediction on the spectral embedding of

Z are shown in Figure 2. In general OSAE outperforms OAE

in predicting behaviors among the legislators. The average

performance per cycle of using the exact eigenvectors directly

in prediction are also shown as a baseline.

Performing hierarchical fuzzy spectral clustering on the

graph embeddings yields the results shown in Figure 3. The

out-of-bag accuracy results for this classifier show it is not

quite as effective as using the spectral embeddings themselves,

though the results are still very close. This is similar to

results from earlier experiments where HFSC was similar in

effectiveness to using eigenvectors directly.

Figure 4 shows the results of the vote classification when

using fuzzy c-means to cluster the spectral embedding at

k = 8. As before, the embeddings of OSAE outperformed

those of OAE, though not always to a significant degree. For

2010 where OAE had better out-of-bag accuracy in the random

forest, it was not statistically significantly better than OSAE

based on a Student’s t-test. Still, this shows that the orthogo-

nalization in OAE is useful in finding a network embedding
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Figure 3: Vote Prediction using HFSC of Spectral Embedding

Figure 4: Vote Prediction using Fuzzy C-Means of Spectral

Embedding

for predicting behavior of the communities. These results help

highlight that predictions using HFSC are quite close to the

performance of the spectral embeddings themselves and can

outperform using FCM clustering.

IX. CONCLUSION

The orthogonal spectral autoencoder neural network allows

embedding a graph into a lower dimensional space. Results

show the orthogonal spectral loss function is effective at

obtaining a graph embedding that is useful in predicting

behavior of the individuals in the graph. The results of our

experiments show performance comparable to the full, exact

spectral decomposition. Based on these results, this avenue

appears promising for refinement. There are many areas where

improvements may be possible, either in modifying the struc-

ture of the autoencoder or additional hyperparameter tuning.

Additional experiments will also be performed in the future

to generalize the results to more datasets.

The introduction of the Orthogonal Spectral Autoencoder,

in particular, opens many avenues for new research. As sug-

gested, additional research in hyperparameter and structure

tuning may yield a better approximation without further mod-

ifications to the underlying algorithm. Additions to the neural

network architecture, such as graph convolutional networks,

could tag the communities via embedding the node and

edge heterogeneous information. These graph convolutional

networks could also be used in a recurrent network to capture

the dynamic properties of the social networks.
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