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Abstract—Community detection plays a pivotal role in social
network analysis by partitioning networks into cohesive groups
of vertices with dense intra-group connections and sparse inter-
group connections. In this paper, we utilized a scholarly social
network based on researchers’ topic similarity derived from
their publication metadata to identify interdisciplinary research
communities. As topics often form a hierarchy, we hypothesize
that the constructed scholarly network will exhibit hierarchical
community structures. Therefore, we explore the efficacy of two
prominent community detection algorithms, Louvain and Spec-
tral clustering, known for their capacity to detect hierarchical
community structures within networks. While both algorithms
demonstrate this capability, the original Louvain algorithm is
susceptible to the resolution limit problem due to its reliance on
the modularity measure. To address this limitation, we propose
the nested hierarchical Louvain algorithm, which iteratively
partitions the network based on previously identified subgraphs,
and we find that the bias towards large communities is mitigated.
To evaluate the hierarchy produced by each of the algorithms,
we employ the Cophenetic Correlation Coefficient (CPCC), a
metric commonly used in hierarchical clustering evaluations
but less frequently utilized in hierarchical community analysis.
We argue that CPCC can be a useful measure to identify
the presence of implicit hierarchical community structure in
social networks when it is not explicitly available from domain
knowledge while also further mitigating the inherent bias present
in using modularity as a metric. Experimental results, conducted
on both synthetic networks and the scholarly social network,
demonstrate that the nested hierarchical Louvain algorithm, as
well as Spectral Clustering, successfully identifies more finely
structured hierarchical communities, offering greater depth in
the dendrogram compared to the basic Louvain algorithm.

Index Terms—Social Networks, Hierarchical Community De-
tection, Clustering, Topic Models

I. INTRODUCTION

Community detection is a fundamental task in social net-
work analysis to understand the underlying organization and
functional units within networks, offering insights into various
complex systems such as social networks, biological networks,
and technological networks [1]–[4]. One crucial aspect of
community detection is the presence of hierarchical structures
within networks where smaller communities form subsets of
larger ones, leading to a multi-level hierarchy similar to the
branches of a tree. While traditional community detection
algorithms excel at identifying a single layer of communities,
they often fail to capture the hierarchical structures inherent

in many real-world networks. They are essential in network
analysis for a deeper understanding of the network structure
by exploring the hierarchical relationships from different gran-
ularity within complex systems.

For our analysis of real-world networks, we constructed
a scholarly social network based on researchers’ topic sim-
ilarity derived from their publication metadata. We did not
consider direct relationships like co-authorship and citations to
promote the detection of interdisciplinary communities within
the scholarly network. We assume that the topic-based network
will exhibit hierarchical community structure, given that topics
often follow a hierarchical pattern of specific terms nested
under more abstract, related terms.

Modularity is a popular measure for assessing the quality
of partitions or communities within networks [5]. However,
modularity-based methods like Louvain often suffer from the
resolution limit problem, where they tend to merge smaller
communities into larger ones, which can obscure fine-grained
hierarchical structures within networks. To mitigate this bias
towards the modularity measure, we propose the nested hi-
erarchical Louvain algorithm that follows a divisive cluster-
ing approach by iteratively partitioning the network based
on previously identified subgraphs. This iterative partitioning
on the subgraph changes the scale of the resolution limit
resulting in finer-tuned, smaller communities and mitigating
the bias towards large communities. Subsequently, we devised
a Spectral clustering algorithm that utilizes the Hierarchical
Agglomerative Clustering approach to identify hierarchical
structures within networks to asses the hierarchical partitioning
obtained from different algorithms.

To assess the hierarchical structures identified by different
algorithms, we utilized the Cophenetic Correlation coefficient
(CPCC), a statistical measure that evaluates how well the
dendrogram produced by the clustering algorithm preserves
the pairwise distances between original data points. Since
CPCC is typically used to assess hierarchical clustering al-
gorithms, we adapted its application to evaluate hierarchical
community structures in our study. We hypothesize that the
hierarchical community structure obtained from the nested
hierarchical Louvain and Spectral Clustering will offer a more
finely detailed hierarchical perspective compared to the results
obtained from the original Louvain algorithm.



II. RELATED WORK

Interdisciplinary community detection helps to determine
potential connections and interactions between different fields
of study. This knowledge is important for identifying potential
collaborators, improving resource allocation, and enhancing
the overall impact of research. However, this area has not
gained much attention in the literature. Most community
detection methods focus on using direct relationships, such as
co-authorship and citations, to construct the network, limiting
the detection of cross-disciplinary communities [6], [7]. Araki
et al. [8] proposed a recommender system for interdisciplinary
collaboration using research content similarity, claiming to be
the first to address this issue. In addition, we hypothesize that
content topics should follow a hierarchical structure, where
hierarchical community detection on the content-based schol-
arly network would allow for an interdisciplinary community
structure with different levels of granularity.

Detecting hierarchical structures poses several challenges
due to different factors such as network size, density, and
the inherent ambiguity in defining hierarchical boundaries.
The Louvain algorithm, proposed by Blondel et al. [9], is
an agglomerative community detection algorithm capable of
providing hierarchical structures. While effective for identify-
ing communities in large graphs, Louvain’s hierarchy often
fails to capture deeper, multi-level hierarchies due to the res-
olution limit problem in optimizing modularity [10]. Another
algorithm for detecting hierarchical structures is Hierarchical
InfoMap, introduced by Rosvall et al. [11], which recursively
partitions the network based on information flow. However, it
relies on heuristics and may be sensitive to parameter choices.

Spectral clustering has been proposed as a method for
identifying hierarchical structures. White et al. [12] introduced
two spectral clustering approaches aimed at optimizing the
modularity function. They achieved this by employing the k-
means algorithm to select the best k value that maximizes
the modularity. However, while these algorithms generate
partitions based on varying k values, they do not offer a
dendrogram. Subsequently, Wahl et al. [13] proposed an over-
lapping hierarchical spectral algorithm. They utilized fuzzy
c-means for detecting overlapping communities and employed
Jaccard similarity to map parent-child relationships in the
dendrogram. Despite these advancements, the computational
cost of finding network partitions for all potential k values
can be challenging for large graphs.

Bhowmick et al. [14] proposed a hierarchical Louvain
method for high-quality and scalable network embedding,
where they utilize the Louvain algorithm recursively on the
already detected communities to obtain sub-communities that
are used later for efficient network embedding. While their
method is similar to the nested hierarchical Louvain algorithm
we present here, they used their approach only for network
embedding and did not consider how well the network was
partitioned across the nested levels. In this study, we adopted
the Cophenetic Correlation Coefficient (CPCC) as a metric to
evaluate hierarchical community structure.

III. DATASET

For the construction of a topic similarity-based scholarly
social network, we accessed OpenAlex 1 [15], an open-
source platform providing worldwide data on researchers
and academics. Initially, we compiled information on 326
current researchers from our school database, including their
names, departments, and college affiliations. Subsequently, we
retrieved the publication histories of these researchers from
OpenAlex spanning from 2004 to 2023, filtering them by spe-
cific researchers’ names and affiliations. Although OpenAlex
provides various publication details such as titles, abstracts,
publication dates, venues, and citations, for our topic-based
similarity network, we focused solely on the publication
titles and abstracts, which were combined to create individual
documents. Among the 326 researchers, we gathered a total
of 9, 659 publication contents from OpenAlex, averaging 29
publications per researcher, with a maximum of 179 pub-
lications and a minimum of 4. Finally, we employed the
publication contents to compute the topic-based similarity
between researchers using topic modeling, as further detailed
in Section V-A.

We hypothesize that building a network based on topic
similarity will naturally lead to hierarchical structures, as
topics tend to organize themselves into broader categories
or concepts. For example, in a scholarly network, we expect
to observe lower-level communities centered around specific
topics like machine learning and artificial intelligence, which
are likely subtopics within a broader community focusing
on computer science, and subsequently, within even broader
communities related to general scientific topics. Additionally,
we created synthetic networks to simulate real-world schol-
arly networks (details in section V-B), allowing for in-depth
analysis of hierarchical community detection algorithms.

IV. METHODOLOGY

To uncover hierarchical community structures within
content-based social networks, we employed three distinct
algorithms. The first is a method we developed for hierarchi-
cal community detection based on Spectral Clustering [16],
followed by the standard Louvain algorithm, introduced by
Blondel et al. [9]. Additionally, we developed a variant of
the Louvain algorithm, called the nested hierarchical Louvain
algorithm. This approach adopts a top-down recursive strategy
to generate hierarchical community structures within networks.
Subsequently, we utilized the Cophenetic Correlation Coeffi-
cient (CPCC) metric [17] to evaluate and compare the hier-
archies produced by the various algorithms. We used CPCC
rather than modularity since the latter would be biased in favor
of Louvain because it is the objective function optimized by
Louvain.

A. Spectral Clustering

Spectral clustering [16] is a popular method used in machine
learning and data analytics to partition data points into distinct

1https://openalex.org/



clusters. The key idea behind spectral clustering is to represent
the data points in a graph structure and analyze the graph’s
spectral properties. In spectral graph theory, the spectral prop-
erties of the graph are derived from the eigendecomposition
of some representation of a matrix associated with the graph
[18]. From a graph perspective, the matrix could be either
the graph adjacency matrix or the graph Laplacian matrix, the
latter being the most popular.

The graph Laplacian matrix L is computed as

L = D−A

where A is the adjacency matrix and D represents the degree
matrix. The degree matrix D is a diagonal matrix such that
dii = the degree of vertex i and dij = 0 for i ̸= j. The above
Laplacian matrix is unnormalized, and vertices with large
degrees may dominate, which is not always desirable with
graphs of various sizes and densities. Therefore, a symmetric
normalized Laplacian matrix, denoted as Lsym is often used
instead:

Lsym = D− 1
2LD− 1

2

where L is the unnormalized Laplacian matrix, and again D
is the degree matrix.

Spectral analysis on the graph Laplacian matrix reveals
some interesting properties. Since the Laplacian is symmetric
and positive-semidefinite, the eigenvalues can tell us about the
connectedness of the graph structure. For example, the number
of 0 eigenvalues corresponds to the number of connected
components in the graph. Next, the second smallest eigen-
value, known as the algebraic connectivity, quantifies how
well-connected the graph is. A higher algebraic connectivity
indicates a graph with better connectivity. Following this, the
eigenvectors corresponding to the k smallest eigenvalues of
the Laplacian can be used for spectral encoding, representing
the graph’s structure in a lower-dimensional vector space.
Subsequently, various clustering algorithms such as k-means
clustering [19] can be applied to this low-dimensional vector
space to unveil community structures.

However, as we are interested in detecting hierarchical
community structure, we utilized Hierarchical Agglomerative
Clustering (HAC) [20]. HAC starts with each data point
forming its own cluster and then iteratively merges the closest
clusters until either all the data points fall into a single cluster
or a termination condition is met. For finding the distance be-
tween clusters, the algorithm typically uses a linkage criterion.
For example, Single Linkage computes the distance between
the closest points of the two clusters being merged, while
Complete linkage computes the distance between the furthest
points of the two clusters being merged. For community
detection, these points represent vertices belonging to the same
community. For a more in-depth exploration of graph spectral
properties, please refer to [21].

B. Louvain Algorithm

The Louvain algorithm [9] (or just Louvain), is a greedy
community detection algorithm that partitions the network

Algorithm 1 Louvain Algorithm

1: Initialization:
2: for each node i do
3: Assign i to its own community
4: end for
5: while changes in modularity are significant do
6: for each node i do
7: for each neighbor community c of i do
8: Move i to community c
9: Calculate the change in modularity (∆Q)

10: end for
11: Move i to the community yielding the max ∆Q
12: end for
13: Record Community history to a dendrogram
14: Merge communities to form a new network
15: end while
16: Output: final aggregated network, dendrogram

resulting in a modularity score that is maximized. Modularity
[5] is a widely used metric for assessing community quality
without any ground truth labels. The score is based on the
intuition that communities have more internal edges than one
would expect when compared to a random network. Here,
a random network would be one constructed with the same
number of vertices and edges but connecting vertices randomly
following the same degree distribution of the original network.
To summarize, the modularity score compares the actual
number of edges within communities to the expected number
of such edges in a null model (random graph), defined as

Q =
1

2m

n∑
i=1

n∑
j=1

[(
aij −

didj
2m

)
× δ(ci, cj)

]
where aij ∈ A represents an edge in the adjacency matrix,
m = |E| is the number of edges, di is the degree of vertex
vi, ci is the community assignment of vertex vi, and δ(ci, cj)
is the Kronecker delta function, which equals 1 if ci and cj
represents the same community or 0 otherwise.
Q can range from −1 to +1. A value close to +1 indicates

a strong community structure, while values close to 0 suggest
a weak or non-existent community structure. A negative value,
on the other hand, indicates that the partition is worse than a
random assignment of vertices to a community.

The main idea behind Louvain is to find communities
efficiently by locally optimizing the modularity. This local
optimization process makes the algorithm computationally fast
and well-suited for analyzing large-scale networks [22], [23].
Moreover, the algorithm follows an agglomerative (bottom-
up) approach, enabling it to produce a hierarchical community
structure, which is particularly useful for exploring community
structures at different levels of detail.

Algorithm 1 shows the pseudocode for the Louvain al-
gorithm where lines 2–4 initialize the vertices into their
own communities and lines 6–12 show the local modularity
optimization phase. At line 13 we record the locally formed



communities into a dendrogram, and line 14 is the community
aggregation phase. The while loop at line 5 repeatedly runs
the two phases until no further gain in modularity is possible.
Finally, the algorithm returns the community assignment of
the last aggregated network as the best partition with the
dendrogram structure.

Although Louvain works well for uncovering hidden struc-
tures in large and complex networks, it is not without limita-
tions. One of the most important limitations is the resolution
limit problem [10], [24]–[26]. The problem implies that, by
prioritizing modularity optimization, the algorithm investigates
possible network partitions at a broader level, potentially over-
looking modules smaller than a certain scale. The resolution
limit of modularity is not restricted to specific network archi-
tectures but arises solely from comparing the interconnectivity
of communities to the total number of network links available.

The Modularity equation can be rewritten as follows:

Q =
∑
ck∈C

∑
vi∈ck

∑
vj∈ck

[(
aij
2m
− didj

4m2

)]
where C represents the set of communities, and the modularity
score is the sum of the number of detected communities
and the value of each term. Therefore, finding the maximal
modularity is equivalent to looking for the ideal tradeoff
between the number of terms in the sum. However, an increase
in the number of communities does not always guarantee
an increase in the modularity score. Increasing the number
of communities makes the community size smaller, resulting
in fewer links inside each community. This reduction in
internal links decreases the fraction of links within each
community. Consequently, this can lead to a poorer modularity
score overall. Therefore, for some number of communities,
the modularity score has a “peak” value, and due to the
organization of the mathematics, it often favors larger commu-
nities by merging smaller communities. However, in real-world
networks, the actual community structures of the network
may be heterogeneous in size, especially in large networks,
so algorithms maximizing modularity may suffer from the
resolution limit problem. According to Fortunato et al. [10],
Louvain fails to detect communities of size

√
4m or smaller

where m is the total number of edges in the network.

C. Nested Hierarchical Louvain

The hierarchical structure constructed by the base Louvain
algorithm follows a bottom-up approach, which begins by
placing all vertices in separate communities. Then, it merges
vertices or communities with their neighboring communities
as long as it improves modularity. Due to the resolution limit
problem, smaller communities in this step are often merged
together into larger communities. Therefore, the hierarchy or
the dendrogram produced by the base Louvain algorithm is
often shallow and fails to capture the fine-grained hierarchical
structure of the network.

To address the resolution limit problem in the hierarchy
captured by the base Louvain algorithm, we devised a top-
down hierarchical approach that sits on top of the base

Algorithm 2 Hierarchical Louvain

1: function HIERARCHICALLOUVAIN(G)
2: partitions← LOUVAIN(G)
3: if sizeof(partitions) ≤ 1 then
4: make partition leaf of parent partitions
5: else
6: for each community in partitions do
7: make community child of parent partitions
8: HIERARCHICALLOUVAIN(G[community])
9: end for

10: end if
11: end function

Louvain. We call it the nested hierarchical Louvain algorithm
where we follow a generalized top-down (divisive) approach
for hierarchical clustering [27].

In the Nested Hierarchical Louvain (NH-Louvain) method,
we begin with all the vertices in the same community. Then for
the divisive step, we use the base Louvain algorithm to deter-
mine the first level of network partitions. Then, we recursively
apply the Louvain algorithm only on the partitions obtained
in the previous step until reaching a stopping criterion. For
the stopping criterion, it could be when the partitions lead to
a single vertex or a single community with possibly a clique.
The process ultimately creates a dendrogram where the leaves
are either single communities or single vertices.

The way NH-Louvain hierarchy addresses the resolution
limit problem is by using base Louvain recursively on the
partitions obtained in the previous level. As discussed before,
modularity optimization relies on the total number of links
or edges present in the network for which it fails to detect
any communities of size equal to or smaller than

√
4m (m

being the total number of edges). However, in the nested
Louvain hierarchy, as Louvain is applied to the previous
partition, we are effectively reducing the total number of
links in the subpartitions, thus reducing the resolution limit as
compared to the total network. This forces the original Louvain
method to provide smaller communities at that level. This
way, the hierarchy produced by the nested Louvain would be
able to provide more depth and fine-structured communities,
increasing the granularity of the whole network partitions.

Algorithm 2 shows the pseudocode of the NH-Louvain
algorithm. The algorithm takes the whole network G as input
and runs base Louvain to find an initial partition at line
2. In line 3, it checks for the base condition or stopping
criterion for the recursive call by checking if the partitions
obtained from Louvain are single partitions or empty. If the
condition is satisfied then it makes it a leaf node at the parent
community and terminates at line 4. If the base condition is not
satisfied, then for each community in the partition, it makes
that community a child of the parent community and calls the
recursive function with a subgraph induced by the vertices that
belong to that community, effectively shrinking the size of the
original network (lines 6–8). Finally, the dendrogram with the
hierarchical relationships of the partitions is returned.



D. Cophenetic Correlation Coefficient

The Cophenetic Correlation Coefficient (CPCC) is a popular
metric for evaluating hierarchical clustering in an unsuper-
vised setting [17], [28]. It is a measure used to evaluate
the goodness-of-fit of a hierarchical clustering solution to
the original data by quantifying the similarity between the
pairwise distances among data points and the distances in the
dendrogram produced by the hierarchical clustering algorithm.
However, it has not received much attention in evaluating
hierarchical community structures in the context of community
detection in social networks.

To compute CPCC, first, we need to obtain the Cophe-
netic Distance Matrix from the dendrogram obtained from a
hierarchical community detection algorithm. Each vertex in
the dendrogram represents a community at that level. The
cophenetic distance between two vertices in the dendrogram
is the distance or height of the lowest common ancestor
vertex where the two vertices are first merged together into
a community. Then, the cophenetic distance matrix contains
the cophenetic distances of all pairwise vertices in the network
obtained from the dendrogram.

Next, we need to compute the pairwise distance matrix
for the original data points. As we are constructing networks
based on content data, we get an undirected weighted graph
where the weights represent the strength of the connection
between two vertices. Therefore, for the similarity matrix of
the original data points, we can utilize the adjacency matrix of
the constructed graph. Let us assume, A denotes the adjacency
matrix of the graph with aij denoting the edge weight between
vertices vi and vj . Let ∆ denote the cophenetic distance
matrix with δi,j being the cophenetic distance of vertices
vi and vj . Then, the CPCC between these two matrices is
calculated using the Pearson correlation coefficient as

CPCC =

∑
i<j(aij − Ā)2

∑
i<j(δij − ∆̄)2√∑

i<j(aij − Ā)(δij − ∆̄)

where Ā and ∆̄ represent the mean of the adjacency matrix
and the cophenetic distance matrix respectively. The CPCC
values range from −1 to 1 with 1 indicating a perfect fit
between the dendrogram and adjacency matrix, 0 indicating
no correlation between the dendrogram and adjacency matrix,
and −1 indicating perfect negative correlation.

V. EXPERIMENTAL DESIGN

To evaluate and compare our two hierarchical community
detection methods with the original Louvain method, we ex-
amined the scholarly social network with several synthetically
generated networks. The synthetic networks are constructed
using known block structures to simulate networks similar to
the content-based scholarly network.

A. Scholarly Network

To construct the network, we followed a procedure similar to
the one described in [29]. First, we used title and abstract data
obtained from OpenAlex to build a topic model, specifically

Latent Dirichlet Allocation (LDA) [30] with Gibbs sampling
for parameter estimation [31], to obtain the latent topics from
the publication corpus. Next, we calculated the topic probabil-
ity distribution of each researcher from the trained LDA model.
Then, to connect each researcher in the constructed network,
we applied the Jensen-Shannon divergence (JSD) metric [32]
to estimate the topic similarity between the researchers. The
JSD value ranges between 0 and 1, with 0 indicating maximum
similarities and 1 indicating complete dissimilarities. There-
fore, we used (1 − JSD) as edge weights, where a weight
close to 1 signifies strong topic-based similarity between the
two researchers.

Constructing the scholarly social network based on topic-
based similarity results in a fully connected network, wherein
every vertex connects to every other vertex, and consistently
yields a value greater than zero. Despite the network being
weighted, the dense graph formed poses challenges for com-
munity detection. To address this, we pruned edges whose
weights fell below a given threshold Θ while ensuring the
resulting network remained connected (i.e., with only one
connected component). In the fully connected graph with a
threshold value of 0 (i.e., no edges pruned), the number of
edges amounts to 52, 975. With a threshold of 0.2, the edge
count reduces to 5, 535 without causing any disconnected
components in the initial graph. Consequently, we considered
two versions of the network: one with a threshold of 0 (i.e.,
without edge pruning) and another with a threshold of 0.2 (i.e.,
with edge pruning).

Spectral clustering for hierarchical community detection
requires some hyperparameters to be defined, such as the
similarity metric, the linkage criterion for merging the clusters,
and the number of eigenvectors corresponding to the k smallest
eigenvalues. After experimenting with several different op-
tions, we found the cosine similarity metric to work best.
For the linkage criterion, we tested single, complete, average,
and Ward linkage, and complete linkage was found to work
the best. For the number of eigenvectors, we used the CPCC
metric to select the k eigenvectors.

When computing CPCC for Spectral hierarchical commu-
nity detection, we can get two baseline similarity matrices,
the first based on the original pairwise topic-based similarity
stored in the graph adjacency matrix, and the second being the
pairwise distance matrix from the eigendecomposition of the
normalized graph Laplacian used to encode the graph struc-
ture. Figure 1 shows the CPCC values for different numbers
of eigenvectors obtained from both the graph adjacency matrix
(depicted with a red line) and the eigendecomposition on the
normalized Laplacian matrix (depicted with a blue line) using
edge threshold of 0.2.

As shown, the CPCC values when using the spectral en-
coded matrix are consistently higher than the CPCC values
obtained with the original adjacency matrix. This is expected
as the algorithm uses the spectral encoded matrix for produc-
ing hierarchical clusters, and the cophenetic distances obtained
from the dendrogram are much more aligned with the encoded
matrix. Nevertheless, since we are comparing the spectral



Fig. 1: CPCC vs. number of eigenvectors

clustering hierarchy with the Louvain algorithms, which use
the original adjacency matrix for network partitioning, we
opted to use the CPCC values based on the adjacency matrix
to select the best k for a fair comparison. Based on Figure 1,
this resulted in selecting 10 eigenvectors.

B. Synthetic Networks

To evaluate the algorithms’ performance further, we employ
a hierarchical Stochastic Block Model (SBM) [33] to generate
synthetic networks that capture nested community structures.
This model extends the classical SBM by introducing multiple
levels of community organization, where vertices are grouped
into blocks at each hierarchical level. The parameters for the
hierarchical SBM include the number of vertices (N ), the
number of hierarchical levels (L), a branching factor (B)
where each block is divided into B child blocks, an intra-block
edge probability (Pintra) to connect vertices within a block,
and an inter-block edge probability (Pinter) to connect vertices
between blocks.

Initially, vertices are assigned to a single root block at the
topmost level (Level 0). At each subsequent level, each block
is subdivided into child blocks according to the branching
factor B, and edges are added based on the specified edge
probabilities Pintra and Pinter, forming a dendrogram structure.
Additionally, since the scholarly network is weighted and the
adjacency matrix represents the similarity matrix, we assign
weights to the edges in the synthetic networks. For intra-block
edges, weights are randomly assigned in the range [0.5, 1.0],
and for inter-block edges, weights are randomly assigned in
the range [0.0, 0.5].

The block sizes at each hierarchical level are determined
by the total number of vertices, the branching factor, and the
hierarchy level. For the synthetic networks, we used N =
500, 1000 and L = 3, 4, 5, 6 with a branching factor B = 3,
an intra-block edge probability of Pintra = 0.7, and an inter-
block edge probability of Pinter = 0.7. The reason for choosing
similar and high intra- and inter-edge probabilities is to ensure
that the edge weights dictate the hierarchical structure, similar

TABLE I: CPCC comparison

Dataset Louvain NH-Louvian Spectral
Scholar 0.0 0.53 0.55 0.53
Scholar 0.2 0.54 0.61 0.59

A 3 0.40 0.50 0.37
A 4 0.36 0.49 0.40
A 5 0.36 0.47 0.36
A 6 0.37 0.50 0.33
B 3 0.40 0.50 0.40
B 4 0.40 0.52 0.39
B 5 0.37 0.50 0.37
B 6 0.34 0.45 0.33

TABLE II: Maximum dendrogram depth

Dataset Louvain NH-Louvian Spectral
Scholar 0.0 3 6 12
Scholar 0.2 4 6 18

A 3 3 7 14
A 4 4 6 14
A 5 3 6 18
A 6 4 6 16
B 3 3 7 16
B 4 4 7 18
B 5 4 7 18
B 6 4 7 18

to the scholarly social network. As a result, we generated
8 synthetic networks, with four different hierarchy levels for
networks with 500 and 1000 vertices.

VI. RESULTS & DISCUSSION

Table I shows the Cophenetic Correlation Coefficient
(CPCC) values obtained by the three different algorithms. In
the table, the column labeled NH-Louvain refers to the nested
hierarchical Louvain algorithm, while Spectral corresponds
to spectral clustering with HAC. The first two rows corre-
spond to the scholarly social networks constructed from topic-
based similarity. The label “Scholar-0.0” indicates the entire
network without edge pruning, while “Scholar-0.2” indicates
the removal of edges below Θ = 0.2. Subsequent entries
labeled “A-(ℓ)’ correspond to four synthetic networks using
500 vertices and ℓ hierarchical levels, and “B-(ℓ)” represents
synthetic networks using 1000 vertices, again with ℓ levels.

Analysis of the results reveals that, for the scholarly network
without edge pruning, all three algorithms yielded similar
CPCC values. However, upon edge pruning to reduce network
density, notable improvements in CPCC values were observed,
particularly for NH-Louvain and Spectral clustering. This
suggests that the removal of low-weight edges enhanced the
detection of hierarchical structures by these algorithms. For the
synthetic networks, NH-Louvain consistently provided higher
CPCC values compared to the original Louvain and Spectral
clustering. When comparing Louvain with Spectral, neither
method demonstrates a clear advantage.

Table II shows the maximum depth of dendrograms gen-
erated by the three algorithms for each of the networks.
As shown, the Louvain algorithm yields relatively shallow
trees compared to NH-Louvain and Spectral. In particular,
Spectral demonstrates the greatest tree depth compared to



(a) Dendrogram of Louvain (b) Dendrogram of NH-Louvain

(c) Dendrogram of Spectral

Fig. 2: Dendrograms of “Scholor-0.2”

both of the Louvain algorithms. This difference is expected,
given the distinct clustering methodologies employed by each
algorithm. Spectral employs an agglomerative approach within
a hierarchical framework, where each iteration merges only
a single pair of clusters with minimal distance. On the other
hand, Louvain, while also following an agglomerative strategy,
can merge multiple communities during each iteration, driven
by modularity score improvement. In contrast, NH-Louvain
adopts a top-down, divisive approach, systematically subdivid-
ing previous partitions to obtain finer granularity in subsequent
partitions. But since NH-Louvain still uses Louvain at each of
the levels, multiple communities may still result as children
of a previous community.

For the synthetic networks, we observed differences be-
tween the original hierarchy levels and the tree depths obtained
from different algorithms. Although the network structure
was created using a predefined hierarchy, the introduction of
random edge weights might cause the discovered hierarchy
to deviate from the constructed one due to a corresponding
relaxation of edge weights. Additionally, the Louvain algo-
rithm produces maximum tree depths ranging from 3 to 4
levels, whereas NH-Louvain produces depths ranging from 6
to 7 levels. NH-Louvain uses the base Louvain algorithm for
generating subpartitions, which may still be locally susceptible
to the resolution limit problem. Although this effect is less
pronounced than in the original Louvain, it can still impact the
subpartitions, potentially explaining why NH-Louvain does not
provide hierarchies deeper than 7 levels. In contrast, Spectral
clustering shows a variety of tree depths ranging from 12 to

18 levels. The greater tree depth in Spectral clustering is due
to the pairwise merging of nodes in each iteration.

Further analysis of the dendrograms for the “Scholar-0.2”
network, produced by the Louvain algorithms, is shown in
Figure 2. The base Louvain algorithm, after the first iteration,
forms communities that include large groups of members,
almost revealing the final partition immediately. In subsequent
iterations, only a few communities merge, resulting in a
shallow hierarchy, as depicted in Figure 2a. In contrast, the
dendrogram from NH-Louvain, shown in Figure 2b, and the
dendrogram from Spectral clustering, shown in Figure 2c,
present a more detailed and fine-grained view of the evolving
hierarchy with more levels.

Figure 3 presents hierarchical community WordCloud ex-
amples across different levels of the hierarchy, again for the
“Scholar-0.2” network. To generate these WordClouds, we uti-
lized metadata from the publications of community members
to extract latent topics using the trained topic model. In Figure
3c, the WordCloud represents a community at the bottom
of the hierarchy, primarily associated with topics related to
algorithms and machine learning. As we ascend the hierarchy
for this particular community, we observe a shift towards
computer science-related topics at level 3. Figure 3b displays
the WordCloud at hierarchy level 2, which includes additional
topics such as optics and mathematics. Finally, at hierarchy
level 1, we encounter general science topics (Figure 3a), with
level 0 representing the entire network.

VII. CONCLUSION & FUTURE WORK

Our analysis of content-based scholarly networks highlights
the effectiveness of the proposed NH-Louvain algorithm and
Spectral Clustering in identifying finely structured hierarchical
communities, providing enhanced depth in the dendrogram
compared to the basic Louvain algorithm. These results also
supported our first hypothesis with respect to NH-Louvain
and Spectral Clustering leading to finer-grained identification
of hierarchical structure. When examining the results on
“Scholar-0.0” and “Scholar-0.2”, we also found support for our
second hypothesis that the topic model-based social network
contained hierarchical structure.

In this study, we did not focus on producing the best single-
layer partition from the dendrogram. Although modularity
is commonly used for this purpose, we argue that it may
not always yield the optimal partition due to the resolution
limit. Therefore, in future research, we plan to explore al-
ternative measures to evaluate network partitioning, including
leveraging large language models (LLMs) for advanced topic
modeling. By incorporating LLM-based approaches, we aim
to construct scholarly networks with improved detection of
hierarchical community structures. Lastly, we did not consider
overlapping memberships in the hierarchy, which are preva-
lent in real-world networks. Investigating this aspect further
presents another exciting avenue for future exploration.



(a) “Scholar-0.2” WordCloud at level 1 (b) “Scholar-0.2” WordCloud at level 2 (c) “Scholar-0.2” WordCloud at level 4

Fig. 3: Hierarchical WordCloud examples for “Scholar-0.2”
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