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Abstract—The Linear Model U-Tree (LMUT) has been used
to increase the interpretability of Deep Reinforcement Learning
(DRL) agents by mimicking behavior in terms of Q-value predic-
tions and gameplay. In this paper, we consider two extensions to
LMUT. First, we evaluate the impact of prepruning and bottom-
up postpruning on LMUT and find that while prepruning has a
mixed to negligible impact on performance, postpruning brings
its Q-value predictions closer in line with the DRL agent, in-
creasing the effectiveness of its influence on DRL interpretability.
Second, we find evidence that LMUT gameplay typically more
closely matches that of the DRL agent it learns to mimic when the
DRL agent policy is more robust to noise, even after controlling
for the performance of the DRL agent on the underlying task.
This indicates that LMUT efficacy is driven in part by the
robustness of the DRL policy.

Index Terms—Linear Model U-Tree, Deep Reinforcement
Learning, Mimic Learning, Tree Pruning

I. INTRODUCTION

Deep Reinforcement Learning (DRL) [1] expands the state,
action, and reward space on which a reinforcement learning
agent can efficiently learn an optimal policy by using a deep
neural network (DNN) to approximate expected cumulative
rewards. By incorporating a DNN, researchers have been able
to identify solutions to complex reinforcement learning tasks
[2] but often at the expense of interpretability, raising potential
issues in usefulness, trust, ethics, safety, and accountability
[3]. Thus, there is a strong motivation to help make DNN
predictions more interpretable.

To address these interpretability concerns, Liu et al. in-
troduced a model that learns to mimic the predictions of
a DRL agent in a more interpretable fashion using Linear
Model U-Trees (LMUT) [4]. They train LMUT under two
conditions: Experience Training (where LMUT and DRL train
simultaneously) and Active Play (where LMUT trains after
DRL completes its training). They judge the performance of
LMUT in terms of how well it can match the DRL Q-value
predictions (fidelity) and how well it can perform the original
task (gameplay). They find that LMUT achieves competitive
fidelity to DRL, and while DRL outperforms on gameplay,
LMUT achieves strong performance while offering greater
interpretability. They suggest that future research consider the
impact of pruning on performance and interpretability.

A. Research Questions and Hypotheses

Here we pose two research questions. First, what impact
do prepruning and postpruning have on the performance of
LMUT trained to mimic the behavior of a DRL agent?
Performance will be measured in terms of both fidelity and
gameplay. Prepruning will take the form proposed by Liu
et al. [4]: new node splits occur only when the differences
between Q-value predictions and DRL Q-values at the original
leaf exceed a minimum error threshold. A form of bottom-up
postpruning is implemented where, after building the LMUT,
we gather validation data and test whether any combination of
leaves experience greater error than their common ancestor. If
so, the leaves are pruned.

We hypothesize that prepruning will not impact performance
while postpruning will increase performance on both mea-
sures, which is consistent with prior work on pruning and
decision tree learning [5]. We tested this hypothesis using data
gathered after training. Performance was compared across all
combinations of pruning techniques using bootstrapping.

The second research question asks to what extent LMUT
performance is influenced by the robustness of the policy
learned by the DRL agent. We define robustness according
to the theory of robust control, whereby a more robust policy
is one that performs better when noise is introduced [6]. To
measure robustness, for each reinforcement learning task, we
trained two DRL agents over a different number of episodes
but with the same target gameplay performance. We then tested
robustness by introducing noise into the observations during
testing and measured the amount of performance degradation.
We then trained a separate LMUT agent on each DRL agent
and evaluated the LMUT’s gameplay performance.

We hypothesize that the LMUT agent that mimics the more
robust DRL agent will outperform the agent that mimics the
less robust agent in gameplay, given the policy mimicked by
the former should be more capable of handling noise that may
be introduced through the LMUT training process. Once again,
performance was compared using bootstrapping.

In addressing these questions, we considered LMUT learn-
ing under only Active Play, as this condition performed better
than Experience Training in [4]. It also needed less memory
and required no access to the the DRL model itself.



B. Motivation

This work is motivated by the goal to improve the inter-
pretability of the DRL agent behavior based on the LMUT
mimic model. DRL has exhibited strong performance on
a variety of games [1], and the technology is potentially
applicable in impactful areas such as autonomous driving and
healthcare. But the lack of interpretability serves as an obstacle
to DRL’s deployment in such real-world applications [7].

Furthermore we wish to understand the drivers of LMUT
performance relative to DRL better. If as we hypothesize
LMUT performance is related to the robustness of the DRL
agent’s learned policy, this has important implications for
when LMUT action interpretations can serve as reliable prox-
ies for action interpretations of the DRL agent.

We chose to focus on LMUT because it is “the first work
that extends interpretable mimic learning to Reinforcement
Learning [4],” and because it achieved strong performance in
fidelity and gameplay compared to the baseline mimic models
tested. With mimic learning, the goal is to use the interpretable
predictions of one model as a proxy for the less interpretable
predictions of another. One necessary condition for mimic
learning to be effective is that the two models behave similarly.

Our goal is to measure the extent to which different pruning
techniques are able to align the behavior of the LMUT agent
with that of the DRL agent, as well as to determine whether
the robustness of the DRL policy influences the similarity
between DRL and LMUT gameplay. If our pruning hypothesis
is validated and employing postpruning brings about the best
performance alignment, the interpretations associated with the
postpruned LMUT will be more effective as proxy inter-
pretations for the DRL agent. If our robustness hypothesis
is validated and the more robust DRL policy results in a
better aligned LMUT gameplay, future practitioners will have
a better understanding of when LMUT interpretations will be
able to serve as reliable proxies for DRL interpretations.

C. Contributions

Our contributions can be summarized as follows.
1) We evaluated the impact of prepruning and our proposed

postpruning technique on the fidelity and gameplay of
LMUT trained to mimic DRL agents on three puzzles.
We found that prepruning had a mixed to negligible
effect according to both measures, and that postpruning
had a positive to negligible effect on fidelity with a
mixed to negligible effect on gameplay.

2) We evaluated the impact of the robustness of the DRL
policy on LMUT gameplay and found that most of the
time, LMUT gameplay increased with the robustness
of the DRL policy. The robustness of the DRL policy
played a significant role in the efficacy of LMUT game-
play in certain circumstances, as evidenced by the results
in two puzzles.

The remainder of this paper is organized as follows. Section
II summarizes related work in decision tree pruning, mimic
learning, and robust control. Section III describes pertinent

background information on reinforcement learning and LMUT
learning. Section IV presents our approach for testing our
hypotheses. Section V presents the results of our experiments,
followed by a discussion of those results in Section VI.
Section VII presents areas for future research, and Section
VIII presents our concluding remarks.

II. RELATED WORK

A. Decision Tree Pruning

Quinlan evaluated the impact of different postpruning tech-
niques on the interpretability and accuracy of decision trees
[8]. The goal was to make the decision tree smaller, and
thereby more interpretable, without significantly impairing its
accuracy on the underlying classification task. After apply-
ing three pruning techniques to six datasets across various
domains, Quinlan found that, while the size of the tree
was reduced, typically the accuracy of predictions on unseen
data also improved. The improvement in accuracy was likely
due to the fact that decision trees can overfit the data they
are trained on, and by pruning leaves that underperform on
predictions made on held-out test data, one can help make
the tree generalize better. Schaffer argued that pruning is not
inherently beneficial to decision tree accuracy, and that instead
the question of whether pruning can be successfully applied
depends on if it is correct to assume that simpler trees will
generalize better for a particular problem [9]. Due to the nov-
elty of LMUT, we cannot rely on existing work to determine
whether the resulting decision trees have a propensity to overfit
the data, and our hypothesis that postpruning will enhance
performance is premised instead on the finding that such an
effect has been found when working with decision trees more
generally.

Leiva et al. introduced the Minimum Surfeit and Inaccuracy
(MSI) algorithm for growing a decision tree with prepruning,
where the choice over whether or not to preprune depends
on the Kolmogorov complexity [10]. This approach factors
in both the inaccuracy and complexity of the tree. They
found that applying MSI resulted in reduced computational
complexity and a smaller tree when compared to benchmark
decision tree algorithms, and that while accuracy did suffer,
the impact was not substantial. We are testing the impact of
prepruning on LMUT, yet in light of findings such as with
MSI, we do not expect performance to be enhanced.

B. Mimic Learning

Mimic learning is a knowledge distillation process whereby
one aims to mimic the predictions of a complex and potentially
difficult to interpret model with another more interpretable
one. Che et al. used Gradient Boosting Trees to increase
the interpretability of deep learning models applied in the
healthcare domain for making phenotype predictions [11]. Liu
et al. developed LMUT to mimic the predictions of DRL
agents so that the decision process is easier to interpret [4].
With mimic learning, the assumption is that the closer the
performance of the mimic model is to the original, the more
applicable the corresponding interpretations are. We aim to



evaluate the impact of prepruning, postpruning, and DRL
robustness on the performance gap between the LMUT agent
and the DRL agent it mimics.

C. Robust Control

Robust control is a subset of control theory that focuses
on how to design a system to withstand uncertainty, for
example as a consequence of noise in the environment. With
robust control, the more noise a system can withstand while
functioning properly, the more robust that system is. Dorato
presents an overview of various approaches to quantifying and
solving robust control problems [12].

The notion from robust control that robustness is associated
with successful system functioning in the presence of noise
translates well to the reinforcement learning domain. If two
agents A and B perform the same on a task under perfect
conditions, but A performs better than B after noise is added
to the environment, then by robust control theory, A’s learned
policy is more robust. We hypothesized that the more robust
DRL policy would have a demonstrably positive impact on
LMUT gameplay performance because the policy LMUT is
learning to mimic would be better able to withstand noise that
may be added through the LMUT training process.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement learning is a machine learning framework
where an agent learns to maximize expected cumulative
rewards through a combination of observing the state of
its environment s, interacting with its environment through
actions a, and receiving rewards r [13]. The choice of action
to take from each state is called a policy π, and reinforcement
learning aims to identify the optimal policy π∗ associated
with maximum expected cumulative rewards. The expected
cumulative discounted rewards associated with taking at from
st and following π thereafter is described by the Q-value:
Q(st, at) = Eπ(

∑∞
k=0 γ

krt+k), where γ is a discount rate.
When everything an agent needs to know to estimate the

expected cumulative rewards of a particular action at from
a particular state st accurately is known in the current state,
the state is described as being Markovian. When all states
are Markovian, the reinforcement learning problem follows
a Markov decision process (MDP). When working with an
MDP, the problem can be modeled mathematically, and when
the number of possible states, actions, and rewards in an MDP
are finite, after infinite experiences one is guaranteed to find a
policy that is optimal [14]. When the state, action, and reward
spaces are small, this can often be accomplished in finite time
by deriving an optimal value for every possible state-action
combination. In situations where the state-action space is large,
it is often not feasible (due to computational time and/or
resource constraint) to derive optimal values for all state-action
combinations. In these instances, function approximation is
often employed to approximate the value of state-action pairs,
such as through the incorporation of a DNN in DRL [1].

B. Linear Model U-Trees

McCallum introduced the U-Tree, an online reinforcement
learning algorithm that explicitly addresses the problem of
handling hidden states [15]. With U-Trees, the reinforcement
learning agent learns an internal representation of the state-
action space by mapping discrete observations to state or state-
action values. U-Trees encompass both feature selection and
short-term memory, helping manage the dual related problems
in reinforcement learning of too much information and not
enough information, while at the same time embodying the
interpretability feature of decision trees [16].

Uther and Veloso introduced the continuous U-Tree (CUT),
an extension of the U-Tree that can be applied to continuous
state features by automatically discretizing the input signal
[17]. CUT is a binary tree where each node corresponds
to an area of the observed state space. Each internal node
splits the state space in two, and each leaf node corresponds
to a particular discretized internal state. To determine where
to introduce new splits, CUT sorts the set of instances at
each leaf according to each feature and evaluates the resulting
distributions of data points that result from splitting. Once two
such distributions are found to be statistically significantly
different, a split is introduced. CUT learning uses dynamic
programming to solve the MDP at each leaf, which is expen-
sive computationally in both time and space.

Liu et al. introduced LMUT to extend CUT by allowing leaf
nodes of the resulting binary tree to represent linear functions
instead of constants [4]. The resulting tree is more expressive
than CUT, allowing closer approximation to a continuous
function, while also generating fewer splits, which could make
the tree more interpretable [18]. With LMUT, each action
has an independent binary tree structure, and each leaf on
a given tree structure represents a particular discrete state for
the decision process of that particular action. Each leaf makes
a QUT -value prediction. The actions with the highest QUT

values in each state define the policy.
The training process for LMUT with Active Play involves

a data gathering phase followed by a node splitting phase.
During data gathering, the LMUT learner has three compo-
nents: an observation of the state-space I , a query function
that selects an action at from It with ϵ-greedy where ϵ decays
linearly, and a Q̂-value generated by the trained DRL agent
for a particular (It, at). LMUT observes transition Tt, the
transition at time t, and identifies the specific leaf N of the
tree structure associated with at to which It belongs. It then
adds Tt to the transition set on N and proceeds to gather the
data for the next transition, processing a total of B transitions
in a single phase, where B represents the batch size. Initially,
all tree structures have a single leaf to which every T with
associated action in the initial batch is added.

Once the data gathering phase is complete, LMUT proceeds
with the node splitting phase. For every leaf N and for every
transition in the transition set TN at leaf N , it updates the
weight vector w via minibatch Stochastic Gradient Descent



(SGD) over E epochs with step size α according to

w ← w + α∇wL(w),

L(w) =

m∑
t=1

1/2(Q̂t −QUT (It|w, at))
2,

where m is the total number of transitions in TN . In the event
that SGD is unable to bring about sufficient improvement
of L(w) on N , defined as being greater than or equal to a
predefined threshold max err, a new split is added. When the
the node is not split, prepruning has occurred. For choosing
a split, LMUT sorts the instances according to each feature,
temporarily splits the transitions in two at the midpoint of
every consecutive pair of sorted values, and computes the
weighted average variance in Q̂-values of the resulting two
groups of transitions. The chosen combination of feature
and splitting value is that which has the minimum weighted
average variance. Each leaf then inherits the weights and
associated transitions of its parent, and these weights are
updated with SGD. LMUT then returns to the data gathering
process to obtain the next batch of transition data and the
process repeats. The hyperparameters E, α, and B are tunable.

Unlike the U-Tree, neither CUT nor LMUT incorporate
short-term memory; therefore, both may suffer when working
with tasks involving hidden state. The tasks we evaluate in this
paper do not incorporate hidden state, so the lack of short-term
memory will not pose a problem in our case.

IV. APPROACH AND EXPERIMENTAL DESIGN

A. Environment

For running our experiments, we trained DRL agents using
Deep Q-Networks [1] to learn to play Cart Pole, Mountain Car,
and Acrobat, three puzzles whose environments are simulated
with the OpenAI Gym toolkit [19].

The goal of Cart Pole is to learn which of two actions—
push left or right—to take in order to get a pole to stay upright
on top of a cart. Cart Pole has a four-dimensional observation
space—the position and velocity of the cart, and the angle and
angular velocity of the pole—and earns a reward of +1 for
each step other than when the poll falls down for a reward of
0. An episode ends after 500 steps or when the pole falls.

The goal of Mountain Car is to learn which of three
actions—accelerate left, right, or do not accelerate—to take in
order to get a car to reach the goal at the top of a mountain.
Mountain Car has a two-dimensional observation space—the
position and velocity of the car—and incurs a cost of −1 for
each step or a reward of 0 at the goal. An episode ends after
200 steps or when the goal is obtained.

The goal of Acrobat is to learn which of three actions—
apply −1, 0, or +1 torque—to take in order to get a chain
to reach a target height. Acrobat’s chain has two rotational
joints and a six-dimensional observation space—cosine, sine,
and the velocity of each joint angle—and incurs a cost of −1
for each step or a reward of 0 at the goal. An episode ends
after 500 steps or when the goal is obtained.

B. DQN Training

Recall that we hypothesized that LMUT gameplay perfor-
mance will improve as the policy learned by the DRL agent
grows more robust, even after controlling for performance of
the DRL agent on the underlying task. In order to generate two
DRL agent policies with different degrees of robustness, we
need to train our DRL agents such that the policies will grow
more robust to noise over time. To do this, we use Averaged
DQN [20], an extension of DQN where Q-value predictions
are made using the average of the previous K learned weights.
We set K = 10 because the work by [20] indicates that this
results in a more stable training trajectory than the original
DQN, as well as relative to other well known DQN extensions
such as Double-DQN. Setting K = 10 appears to be consistent
with hitting a point of diminishing returns in that work.

For all three puzzles, we trained DQN networks with 2
hidden layers and 128 hidden nodes in each layer. For learning
the weights of the network, we used the AdamW optimizer
with AMSGrad and a weight decay of 0.01. For ϵ (the
exploration rate), we employed a dynamic ϵ-decay strategy
whereby ϵ starts at 1 for every state in the puzzle and reduces
by 0.001 for each visit to a particular state, with a minimum
ϵ of 0.05. We set the batch size in the replay monitor to
128 and the decay factor γ to 0.99 for all three puzzles.
During training, we evaluated performance after every 100
episodes using 100 test episodes where we fix ϵ to 0 and
record the average reward. Based on several preliminary test
runs, we predefined an average reward target of 500 for Cart
Pole, −150 for Mountain Car, and −80 for Acrobat. Once
the reward target is matched or exceeded, we save the model
and continue to train in increments of 100 episodes until the
model has trained for at least 1000 more episodes and the
reward target is matched or exceeded, at which point we save
a second version of the model. We set an initial learning rate
of 0.0005, and for Cart Pole, we decayed this by 50% after
each set of test episodes for which target performance was met
or exceeded, leaving the learning rate unchanged otherwise, in
order to reduce the model’s tendency to overfit when learning
this puzzle.

C. LMUT Training

To train the LMUT agent, we used the process described
in Section III-B, with a few modifications. First, we noticed
that when a new feature split is determined and the new leaf
nodes inherit the weights of the parent node, this resulted in
very poor performance. This makes sense, as these weights
were derived using transition data, some of which were
subsequently determined to be a better fit with a different
part of the feature space. As a result, we decided to reset
the weights to small positive random values and then perform
SGD with only the transition data assigned to the new leaf
node. This resulted in much better performance but did require
setting an additional hyperparameter: a minimum number of
instances required to evaluate for a potential split, as too few
instances would result in poor SGD performance. We set this
minimum to twenty times the number of weights (where the



TABLE I: Tuned and chosen LMUT hyperparameters
(max err = 0.00 implies no prepruning).

Problem Training Episodes max err B α E
Cart Pole 1200 0.066 1000 0.005 50

— 2200 0.019 1000 0.005 100
— 1200 0.000 1000 0.005 50
— 2200 0.000 1000 0.005 100

Mountain Car 2300 1950 500 0.01 100
— 3400 3926 500 0.01 100
— 2300 0.000 500 0.01 100
— 3400 0.000 500 0.01 100

Acrobat 1000 0.324 1000 0.01 100
— 2000 0.437 1000 0.005 50
— 1000 0.000 1000 0.005 50
— 2000 0.000 1000 0.005 100

number of weights is one plus the number of observation space
features). With more time, we would have liked to tune this
hyperparameter.

For LMUT training, Liu et al. [4] did not define how they
chose what maximum error threshold max err to use to
determine whether a given leaf warrants splitting. We chose
the following approach: first, we measured the median reward
per episode (MRPE) with the fully trained DRL agent on
10 iterations over 20 episodes each. Next, we set cutoff as
the worst MRPE over the 10 iterations. We then continued
to measure MRPE over 20 episodes while adding to the Q̂-
values a small amount of uniformly random noise centered
on zero, where the degree of noise was defined by the span
of the noise distribution range. Specifically, the degree of
noise added began at 1 and increased by factors of 10. Once
MRPE falls below cutoff , we divide the most recent degree
of noise by 10 and increase the degree of noise in tenths until
performance again drops below the cutoff. The degree of noise
beyond which MRPE drops below cutoff the second time was
then used as the bounds for creating a uniform distribution
of 100 randomly generated values that are each squared. The
average of these 100 squared values then became our max err
threshold below which we decided to not split the leaf. The
pseudocode for calculating max err is given in Algorithm 1.

We tuned three hyperparameters using grid search: B ∈
{100, 500}, α ∈ {0.005, 0.01}, and E ∈ {50, 100}. The
batch sizes B were chosen to balance the number of instances
needed to perform SGD against the number of batches needed
for producing new feature splits. The learning rates α were
chosen to balance speed against stability in SGD. The epochs
E were chosen to balance having enough iterations for ef-
fective learning against the risk of overfitting. The resulting
hyperparameters derived from tuning are shown in Table I.

We defined the more robust DRL policy as being that
which continues to perform well in the face of a greater
amount of noise. The magnitude of max err is therefore a
measure for the robustness of the DRL learned policy. By this
measure, according to Table I, the longer trained DRL agents
for Mountain Car and Acrobat learned a more robust policy
as expected, but the reverse was true for Cart Pole.

Algorithm 1 Calculate max err

1: max err ← 0
2: cutoff ←∞
3: n← 20
4: err ← 0
5: for iteration = 1 to 10 do
6: MRPE ← GetMRPE(n, err)
7: if MRPE < cutoff then
8: cutoff ←MRPE
9: end if

10: end for
11: err ← 1
12: while True do
13: MRPE ← GetMRPE(n, err)
14: if MRPE < cutoff then
15: break
16: end if
17: err ← err × 10
18: end while
19: err ← err ÷ 10
20: cur err ← err
21: while True do
22: cur err ← cur err + err ÷ 10
23: MRPE ← GetMRPE(n, cur err)
24: if MRPE < cutoff then
25: err ← cur err − err ÷ 10
26: break
27: end if
28: end while
29: for iteration = 1 to 100 do
30: max err ← max err + (err × (Rand(0, 1)− 0.5))2

31: end for
32: return max err ÷ 100

D. Tree Postpruning

For postpruning the LMUT trees, we carry out the fol-
lowing: during training, we maintain the state of the linear
model at each node, even if the node is later split. After
training completes, we drop all original transition data and
assemble a new set of transition data in the same fashion
as during training, only now we assign each new transition
to each node encountered from root to leaf according to the
feature splits. We then evaluate the performance at each node
defined as

∑m
t=1(Q̂t−QUT

t )2, where m is the number of new
transitions at the given node. Next we compare the cumulative
performance of each set of descendant leaves to their common
ancestor, starting with the youngest common ancestor and
moving recursively towards the root node. In the event that the
common ancestor outperforms its descendant leaves, the leaves
are pruned, the common ancestor becomes the new leaf, and
the process continues until the root node is evaluated against
all leaves. This process is carried out for each LMUT tree. The
pseudocode for postpruning a given LMUT tree is displayed
in Algorithm 2.



Algorithm 2 Postprune an LMUT Tree
Definitions:

• self : The current considered node in the LMUT tree.
• self.children: A list of child nodes of the current node.
• self.error:

∑m
t=1(Q̂t−QUT

t )2, where m is the number
of new transitions at the current node.

1: Function Prune(self ):
2: if length(self.children) = 0 then
3: return self.error
4: end if
5: desc error ← 0
6: for child in self.children do
7: desc error ← desc error + child.Prune()
8: end for
9: if self.error < desc error then

10: self.children← []
11: return self.error
12: end if
13: return desc error

For each DRL agent, we trained an LMUT with and without
prepruning (to omit prepruning, we simply set max err
equal to zero), and then evaluated each of these LMUT with
and without postpruning. We compared each of these four
combinations using fidelity and gameplay. We trained the
initial LMUT with 30K consecutive transitions, then applied
postpruning using another 30K transitions. We ran this entire
process for five iterations. To determine the fidelity perfor-
mance, we averaged QUT on 10K additional transitions across
each iteration for each pruning configuration and recorded the
absolute error at each transition t (i.e., AE = |Q̂t - QUT Avg

t |).
We report the median absolute error and 95% confidence
interval for each pruning combination. For determining the
gameplay performance, we had each iteration of each pruning
condition play each puzzle for 100 episodes, averaged the re-
sults by condition, and reported the associated MRPE and 95%
confidence intervals. We also reported the average number of
leaves in each condition across all five iterations.

E. Impact of DRL Robustness

As part of the pruning evaluation process, we gathered
performance metrics for LMUT agents under the various
pruning conditions trained on both more robust and less robust
DRL agents, where the degree of robustness is defined by
max err. To determine whether differences in the robustness
of the DRL policies impact the gameplay performance of
the corresponding LMUT agents, we compared the gameplay
performance across the two DRL robustness conditions when
holding the pruning technique constant.

V. RESULTS

Table II shows a summary of the performance of our LMUT
agents, DRL agents, and an agent acting at random across the
three puzzles. For LMUT, performance is given in terms of
fidelity and gameplay, as well as the average number of leaves,

across each pruning condition and each DRL condition (more
and less robust). For DRL and the random agent, we report
only the gameplay performance.

When comparing the more robust LMUT agent to the
less robust LMUT agent, we see that gameplay improved
significantly (i.e., with no overlap in confidence intervals)
across all four pruning methods with Cart Pole and Mountain
Car, and in two out of four pruning methods with Acrobat.

In considering the impact on gameplay and fidelity from
pruning, we note first that implementing prepruning appears
to have had no noticeable impact on the number of leaves
for Cart Pole and Acrobat; although it did reduce the number
of leaves in Mountain Car. Interestingly, with Mountain Car,
prepruning led to a significant increase in median absolute
error under the less robust condition, a significant decrease
under the more robust condition, and did not have a significant
impact on gameplay in either condition. As such, we conclude
that prepruning had a mixed to negligible impact on LMUT
performance across these three puzzles.

Postpruning led to a noticeable reduction in the number
of leaves across all three puzzles and was associated with
either a negligible change or a significant improvement in
fidelity across the three puzzles. With gameplay, postpruning
led to a significant improvement in performance for the more
robust Cart Pole condition and in one of two circumstances
when working with the more robust Acrobat condition. On
the other hand, it resulted in significantly worse performance
when working with the less robust Acrobat condition and in
one of two circumstances when working with the less robust
Cart Pole condition. Finally, it had no significant impact under
either condition for Mountain Car.

VI. DISCUSSION

We hypothesized that an LMUT agent trained with a more
robust DRL policy would perform better in terms of gameplay
than one trained with a less robust DRL policy, even if the
two DRL agents performed the same. The results of our
experiments provide evidence to support this from both Cart
Pole and Mountain Car, where the LMUT agent trained on
the less robust DRL policy was unable to outperform an agent
acting randomly, but the LMUT agent trained on the more
robust DRL policy performed significantly better than random,
despite the fact that the two DRL agents performed either the
same (cf. Cart Pole) or highly similar (cf. Mountain Car).

The findings from Acrobat are less uniformly supportive
of our hypothesis, where gameplay performance increased
under the more robust condition relative to the less robust
condition when postpruning was applied, but the impact was
mixed when postpruning was not applied. Furthermore, we
found that the second best gameplay performance across all
Acrobat training conditions took place under the less robust
policy when no pruning was applied. Therefore, based on
our findings, the relationship between the robustness of the
DRL policy and the LMUT gameplay performance holds in
most, but not all, circumstances. We note that Acrobat had
the smallest relative difference in max err across the three



TABLE II: Agent performance. ‘Less (More) Robust LMUT’ indicates the LMUT agent trained on the less (more) robust DRL
agent. ‘Pre’ and ‘Post’ indicates prepruning and postpruning, respectively. ‘Fidelity’ is the median absolute error in average
Q-value prediction over five iterations. Gameplay is the MRPE of the average gameplay performance across five iterations
over 100 episodes each.

Cart Pole
Agent Pre Post Leaves Fidelity (95% CI) Gameplay (95% CI)

Less Robust LMUT No No 121.2 3.30 (3.19, 3.41) 19.4 (18.5, 20.0)
Less Robust LMUT No Yes 63.8 1.20 (1.17, 1.23) 17.3 (16.6, 19.4)
Less Robust LMUT Yes No 122.8 2.99 (2.87, 3.15) 17.3 (16.0, 18.8)
Less Robust LMUT Yes Yes 66.0 1.13 (1.09, 1.16) 15.2 (14.2, 15.9)
Less Robust DRL N/A N/A N/A N/A 500.0 (500.0, 500.0)

More Robust LMUT No No 116.8 1.60 (1.55, 1.65) 53.9 (48.9, 56.6)
More Robust LMUT No Yes 84.6 1.42 (1.37, 1.47) 62.2 (58.2, 67.5)
More Robust LMUT Yes No 116.6 1.31 (1.28, 1.36) 64.4 (60.2, 66.2)
More Robust LMUT Yes Yes 77.0 1.34 (1.30, 1.38) 74.9 (72.8, 77.3)
More Robust DRL N/A N/A N/A N/A 500.0 (500.0, 500.0)

Random N/A N/A N/A N/A 21.4 (20.8, 23.1)
Mountain Car

Agent Pre Post Leaves Fidelity (95% CI) Gameplay (95% CI)
Less Robust LMUT No No 196.2 140.2 (133.4, 147.2) -200.0 (-200.0, -200.0)
Less Robust LMUT No Yes 153.0 130.9 (124.1, 136.9) -200.0 (-200.0, -200.0)
Less Robust LMUT Yes No 122.0 157.5 (149.9, 165.3) -200.0 (-200.0, -200.0)
Less Robust LMUT Yes Yes 94.0 138.4 (132.5, 142.6) -200.0 (-200.0, -200.0)
Less Robust DRL N/A N/A N/A N/A -146.5 (-149, -143.7)

More Robust LMUT No No 194.6 497.2 (486.2, 517.4) -155.1 (-163.0, -153.0)
More Robust LMUT No Yes 159.8 479.5 (467.2, 490.8) -155.5 (-162.2, -153.4)
More Robust LMUT Yes No 185.0 463.8 (449.9, 478.9) -152.8 (-162.0, -152.1)
More Robust LMUT Yes Yes 151.2 461.9 (443.0, 472.0) -153.5 (-163.2, -152.6)
More Robust DRL N/A N/A N/A N/A -141.3 (-142.6, -139.8)

Random N/A N/A N/A N/A -200.0 (-200.0, -200.0)
Acrobat

Agent Pre Post Leaves Fidelity (95% CI) Gameplay (95% CI)
Less Robust LMUT No No 88.8 25.6 (25.1, 26.2) -306.3 (-315, -297)
Less Robust LMUT No Yes 80.4 25.9 (25.3, 26.5) -329.9 (-334, -322)
Less Robust LMUT Yes No 89.4 25.8 (25.2, 26.3) -343.7 (-352, -338)
Less Robust LMUT Yes Yes 74.6 25.3 (24.8, 25.8) -397.4 (-409, -390)
Less Robust DRL N/A N/A N/A N/A -78.0 (-79.6, -76.8)

More Robust LMUT No No 89.8 21.2 (20.6, 21.6) -352.1 (-360, -345)
More Robust LMUT No Yes 73.4 20.7 (20.3, 21.2) -247.0 (-258, -232)
More Robust LMUT Yes No 87.2 22.0 (21.5, 22.5) -333.5 (-341, -327)
More Robust LMUT Yes Yes 77.0 21.6 (21.2, 22.2) -348.3 (-354, -339)
More Robust DRL N/A N/A N/A N/A -75.0 (-76.0, -73.2)

Random N/A N/A N/A N/A -500.0 (-500, -500)

puzzles. With more time, we would have liked to test a wider
range of robustness levels for the DRL policies across all three
puzzles to determine whether the relationship between DRL
robustness and LMUT gameplay continued to hold across Cart
Pole and Mountain Car. We would also like to determine
whether the relationship is more consistent with Acrobat at
more pronounced differences in robustness.

We hypothesized further that both fidelity and game-
play would improve through postpruning, whereas prepruning
would not have a positive impact. Our findings support our
hypothesis in the case of prepruning, as we saw no impact
on performance in two puzzles and mixed impact in the third.
Postpruning had a positive to negligible impact on fidelity, and
a mixed impact on gameplay. We conclude that prepruning
may not be worth implementing, whereas postpruning should
be included in the training process, but that one should test
both the unpruned and postpruned models out of sample to
determine which to apply on a particular task.

Finally, we highlight that postpruning resulted in a substan-
tial reduction in the number of leaves and, as a consequence,

smaller trees. In [4] and [8], the authors assume that smaller
trees are inherently more interpretable, which suggests a strong
argument in favor of implementing postpruning. We are more
reserved in our claims with respect to interpretability but
acknowledge the improvement in interpretability is likely.

VII. FUTURE WORK

For a mimic model trained to enhance blackbox model
interpretability to be effective, the drivers of its predictions
must be interpretable because these interpretations serve as a
proxy for the interpretations of the blackbox model behavior.
Future work might consider the impact of postpruning on
LMUT interpretability with user surveys (e.g., see [21]).

The inability of LMUT to perform better than a random
agent when working with the less robust DRL policy with Cart
Pole and Mountain Car, despite achieving Q-value predictions
that in most cases were closer to the DRL agent’s than those
derived from the more robust DRL policy, indicates that the
LMUT is pushing the DRL agent into areas of the state-space
for which the agent had not established a robust policy. This



presents a potential opportunity for future research: we could
use the LMUT policy to train the DRL agent further, focusing
the latter to learn Q-values for a wider distribution of the state-
space to achieve a more robust DRL policy. Subsequently, we
could then train a more closely aligned LMUT for generating
stronger associated interpretations of the DRL actions.

We evaluated our hypotheses on three benchmark reinforce-
ment learning puzzles. We recommend that future work extend
our experiments to real-world problems in order to gauge
to what extent these findings translate to the more complex
domains that DRL is used to solve in practical applications.

Finally, we defined DRL robustness according to the metric
max err which was inspired by the concept of robust control
in control theory. There may exist other measures of robustness
that are applicable to this problem, and we encourage future
research to identify and apply these alternative measures to
our experiments in order to enhance our understanding of the
relationship between LMUT gameplay and the robustness of
the mimicked DRL policy.

VIII. CONCLUSION

We examined the impact of prepruning and postpruning on
the fidelity and gameplay of LMUT trained to mimic DRL
agents. In light of our findings, we recommend that prepruning
be omitted but that postpruning be included as an alternative
to compare against the unpruned trees on out-of-sample test
data. We also examined the impact of DRL policy robustness
on LMUT gameplay and conclude that in most circumstances,
LMUT gameplay is related to and serves as an indicator of
the robustness of the underlying DRL policy.
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