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Abstract. Precision Agriculture has been gaining interest due to the significant growth in the 
fields of engineering and computer science, hence leading to more sophisticated methods and 
tools to improve agricultural techniques. One approach to Precision Agriculture involves the 
application of mathematical models and machine learning to fertilization optimization and yield 
prediction, which is what this research focuses on. Specifically, in this work we report the results 
of predicting yield and protein content of winter wheat over four farms based on the levels of 
nitrogen fertilizer applied to the fields. The intent is to use these predictions as a basis for 
prescribing fertilizer application to optimize net returns on the subsequent harvest. More 
specifically, we compare methods based on multiple regression (linear and non-linear) and 
neural networks (shallow and deep). Our results indicate that a deep neural network based on 
the stacked autoencoder that includes spatial sampling yields the best results. 
Keywords.  
Precision agriculture, neural network, stacked autoencoder, yield prediction, protein prediction, 
fertilization optimization, spatial sampling. 
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1. Introduction  
In recent years the amount of petroleum-based fertilizer being wasted has increased 
significantly. Ecologists believe this increase could be one of the leading causes for the surge in 
algal blooms, which in turn lead to increased soil toxicity (Michalak et al., 2013). In addition, 
climate change is believed to influence the rate of carbon sequestration in agricultural soil (Lal, 
2004). More pertinent to the current study, farmers are seeking new ways to maximize their 
profits, especially in the presence of climate change and limited growing seasons. This latter 
point is one of the primary motivations of our work. These problems are addressed in the field of 
Precision Agriculture, which combines recent technologies, mostly from the fields of computer 
science and engineering, to provide informed decision making in an agricultural setting.  
There are two aspects of Precision Agriculture that could help to address these issues. The first 
is to calculate and predict optimized fertilizer rates in order to lessen fertilizer waste and 
maximize the farmer’s profit. However, to accomplish this, yield and protein points have to be 
predicted based on climate and both current and historical properties of the field. This is the 
second aspect and the focus of this paper.  
Our approach, which we describe in this paper, is to apply machine learning techniques to 
predict the yield and protein content for specific regions in target fields. In machine learning, the 
application of Artificial Neural Networks (ANN), especially within the context of deep learning 
(Goodfellow et al., 2017), has been of growing interest for innumerable domains, including 
natural language processing, stock market prediction, and medical diagnosis. One of the most 
interesting advantages of ANNs is their ability to learn and recognize patterns from different 
input signals, where the network’s “neurons” perform the analysis of the input signals 
simultaneously yet independently.  
Applying ANNs in the field of Precision Agriculture is a relatively recent development, as will be 
discussed in more detail in Section 2 of this paper. Here, we present the results of our exploring 
two different approaches to using ANNs, each within the context of modeling localized 
properties of the field as well as expanding the inputs to consider spatial context. Specifically, 
we compare training simple feedforward neural networks to using a deep learning model known 
as a stacked autoencoder. We then compare the results of these two neural networks to 
multiple linear regression and multiple nonlinear regression. Our results indicate that the neural 
network models (both shallow and deep) provide an improvement over the traditional regression 
methods. Furthermore, we find that adding the spatial context yields a statistically significant 
boost in performance.  
The rest of the paper is structured as follows. Related work is discussed in Section 2. In Section 
3, we discuss each of the models in greater detail. In addition, this section provides background 
information on Precision Agriculture. Section 4 details the specifics of our experimental 
approach, the results of the experiments, and a discussion of these results. Finally, possible 
future research is presented in Section 5, and a conclusion is offered in Section 6. 

2. Related Work  
Precision Agriculture (PA) is a field that has been receiving a great deal of attention in recent 
years. Earlier research similar to the work reported here focused on linear and nonlinear 
regression models, but there has been an increase in the use of ANNs to predict crop yield and 
optimize fertilization (although, the latter has seen significantly less research). The following 
sections will give an overview of the most significant research using the aforementioned models 
in the field of PA.  
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2.1 Linear and Non-Linear Models  
Stepwise multiple linear regression (SMLR) is one of the most commonly used methods to 
develop empirical models from large data sets. Osborne et al. (2002) used SMLR to estimate 
grain yield in nitrogen- and water-stressed corn. More specifically they used the REG procedure 
in SAS on collected data to predict plant nitrogen, biomass, grain yield, grain nitrogen 
concentration, and chlorophyll meter readings. Uno et al. (2005) explore whether ANNs perform 
better than SMLR. The authors note that there are three noteworthy drawbacks to using SMLR. 
First, SMLR is based on the assumption that a linear relationship exists between input and 
response variables. Second, noise in the samples is assumed to follow a normal distribution, 
and third, in some cases, the model tends to overfit, thus reducing its applicability to unseen 
data. However, their results show that ANNs and SMLR perform similarly. Because of their 
inconclusive results, the authors emphasize that more research needs to be conducted using 
both models.  

2.2 Machine Learning 
Machine Learning (ML) has enabled more in-depth research in a plethora of fields. Training 
artificial neural networks (ANNs) is one of the most popular techniques in ML and has been 
applied to a variety of biological and agricultural problems. An interesting and useful aspect of 
ANNs is their ability to find complicated associations between input and response variables 
without pre-defining any constraints or assumptions about the sample distribution of the data. 
This enables the possibility of describing complex non-linear relationships that are often present 
in domains such as PA resulting from a wide range of crop conditions and other influencing 
factors (Uno et al., 2005).  
This section focuses on agricultural uses of ANNs, more specifically on research concerning 
yield prediction and fertilization optimization. For a more general overview of ANN applications 
in biology and agriculture, Samborska et al. (2014) summarize research where ANNs have been 
applied successfully.  
Drummond et al. (1998) use different methods of training ANNs on the same dataset to predict 
yield. They focus on training accuracy, test set generalization, and outlier rejection properties to 
determine the preferred method. The authors looked at backpropagation, with and without 
weight decay, as well as quickprop and rprop for their training techniques. Contrary to what Uno 
et al. (2005) found, Drummond et al. showed that any form of learning and training 
outperformed the linear method, and that rprop as a learning technique performed slightly better 
than backpropagation.  
Yu et al. (2010) introduced an ensemble of feedforward ANNs in fertilization models. They claim 
there are two common issues when using single feedforward networks in this context. First, they 
found that assigning a maximum target yield before computation leads to a large error in 
determining the fertilization rates. Second, they believe that using a single ANN as their model 
leads to limited forecasting accuracy and generalization capacity. The authors proposed using 
an ANN with nutrient concentration and fertilization rate as input and yield as output. They 
trained several neural networks via backpropagation using a bagging procedure and used k-
means clustering to cluster the networks. Next they selected a representative network from 
each cluster to form an ensemble of ANNs. They determined the combining weights for the 
ensemble by applying the Lagrange multiplier method where the associated constraints enforce 
that the weights sum to one. Then they applied the ensemble to define a nonlinear objective 
function based on the ensemble output and optimized the fertilizer application rates through 
nonlinear programming.  
Since the aforementioned research, applying ANNs to PA has seen vast improvements. Dahikar 
et al. (2015) applied a feed-forward neural network trained via backpropagation to predict which 
crop would be best for a certain field based on different soil and atmosphere parameters. Their 
input parameters included pH-levels, nitrogen, potassium levels, temperature, and rainfall. 
Furthermore, they predicted the best fertilization rate for the crop. Their predictions were 
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intended for farmers who are not able to perform expensive soil tests. The results showed 
relatively accurate predictions and could hence assist these farmers.  
A deep neural network (DNN) has been applied by Kuwata and Shibasaki in 2015. They use 
NDVI, Absorbed Photosynthetically Active Radiation, canopy surface temperature and water 
stress index as input to their DNN and a Support Vector Regressor (SVR). Using the DNN, 
RMSE values of approximantely 8 are achieved for corn yield prediction, however, the results 
using the SVR are not shown (Kuwata and Shibasaki, 2015). You et al. (2017) applied a 
convolutional neural net (CNN) and a Long-Short Term Memory (LSTM) network to the 
classification of histograms created from remotely sensed images. The CNN achieves the best 
RMSE values overall, averaging around 7 (You et al., 2017). 
Data mining is a separate field of study that frequently uses techniques from machine learning. 
Pantazi et al. (2014) used a method based on Supervised Self Organizing Maps to analyze 
sensor information, assess measurement data, and update initial knowledge. Their proposed 
model used input nodes corresponding to the main factors of wheat crop production. The model 
classified the data to predict wheat yield and productivity. Ru et al. (2008) used neural networks 
to predict wheat yield from freely available and usually low-quality in-season data. Furthermore, 
the authors applied data mining with neural networks to optimize fertilizer usage. Different 
networks were built and evaluated, and the results showed that the prediction accuracy of the 
networks rose once more data became available. 

3. Background  
Before going into detail on the approach proposed in this paper, some background information 
on Precision Agriculture in general will be given. Furthermore, Section 3.2 explains the linear 
and non-linear models we used and how these contribute to the yield and fertilization prediction. 
Both implemented neural networks—feed forward trained with backpropagation and stacked 
autoencoders—are clarified in Section 3.3.  

3.1 Precision Agriculture  
Precision Agriculture (PA) is a field where various technologies are applied to improve 
agricultural outcomes. The field started with the development of the Global Positioning System 
(GPS) technology in the 1970s, which made it possible to determine coordinates anywhere on 
earth, enabling machines to apply treatments with localized requirements for each field 
(Stafford, 2000). In recent years the fields of study that have gained a lot of traction in PA are 
computer science and different types of engineering. Zhang et al. (2002) give an overview of 
how different technologies have been applied to agriculture throughout the years and around 
the globe. Because the conducted research focuses on yield mapping and fertilization 
optimization, these are the subfields of PA that will be explained in the following sections.  
3.1.1 Yield Mapping  

Yield mapping concerns the creation of a spatially referenced, graphical representation of crop 
yield for a certain area. These maps can be based on physical measurements or estimates of 
the yield using computational models to predict the values. Yield maps are generally split into 
four categories: inference, prediction, interpolation, and aggregation (Pierce et al., 1997). 
Inference maps associate yield estimates with existing map coordinates without changing the 
delineations on a base map, for example when specifying a yield goal with a soil map. 
Prediction maps fill in values on the map where a yield component is predicted rather than 
measured. Interpolation maps are coarser than prediction maps and are created by making 
yield measurements at specific locations within a defined area. Then the yield values between 
data points are estimated using some form of local estimation. Lastly, aggregation maps render 
aggregated statistics from the original data, either through measurement or prediction. Of these 
four types of yield mapping, the aggregation and the prediction of data are the most used in PA.  
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Essentially, yield mapping captures the mass or volume of grain or harvested crop by location 
within a specified field and requires three measurements: the yield measurement itself, the area 
over which the measurement was taken, and the location of the measurement within a field in 
that area1 (Pierce et al., 1997). Yield mapping is closely related to our objective in fertilization 
optimization, as it is often used as a basis to calculate the prime fertilization rate for fields.  
3.1.2 Fertilization Optimization  

Due to the increase in agricultural production over the past 50 years, the amount of fertilizer 
being applied has increased significantly. This rise in fertilization results in a boost in production, 
but it also increases agricultural emissions, more specifically nitrogen emission, in groundwater 
and surface water. This issue, combined with the goal to apply nitrogen more effectively to 
increase yield and thus profit, motivated research into the field of fertilization optimization (Van 
Alphen and Stoorvogel, 2000). The most frequently used method to improve fertilization 
application is to apply variable rate technology.  
Bongiovanni and Lowenberg-DeBoer (2004) give an overview of different fertilization studies 
performed in PA. Their first literature review concerns nutrition management with a focus on 
research that studies how fertilization application improves yield. The authors found that most 
research concurs with the observation that variable rate application for site specific 
management performs better than using a uniform application rate. Variable rate technology 
uses different types of optimization models to determine what rate of nitrogen should be applied 
to which patches in a field. It calculates optimized nitrogen rates for each plot in a field instead 
of applying the same rate, a uniform rate, across the whole field and uses that as the basis for 
predicting return (i.e., yield, protein, or net profit). However, sprayers and spreaders that are 
able to apply these different rates are more expensive, and switching rates takes a higher toll on 
their mechanics, especially if the rate is changed frequently or if the variations involve 
particularly large changes. Therefore, it is no surprise that the authors report two studies where 
uniform rate application had higher profit (Larson et al., 1997; Watkins et al., 1998), especially 
since both of these studies were conducted when the equipment was less well developed 
(Bongiovanni and Lowenberg-DeBoer, 2004).  

3.2 Linear and Non-linear Regression  
Multiple regression is a tool for statistical analysis that uses mathematical methods to define 
possible relationships between variables. In linear regression, a straight line (or hyperplane) is 
fitted through the data in order to best match predict the response values. This method is often 
used to predict certain values for a variable given another variable, but can also assist in 
explaining certain values or to test a scientific hypothesis (Seber and Lee, 2012). Nonlinear 
regression works similar to linear regression but instead of constructing a linear surface, other 
surface shapes are implemented. This shape is determined by the overall spread of the data 
and can therefore vary greatly. The implemented non-linear model in this research uses a 
hyperbolic function to estimate the yield and protein values.  
  

                                                
 
1 In our context, we also track and predict protein content in the harvested crop. While protein is not the same as yield, the 
associated map is essentially just another kind of yield map. 
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3.3 Neural Networks  
An artificial neural network is defined as a parallel, distributed information processing structure, 
modeled loosely on the structure of the brain. This structure contains processing elements 
connected to each other with unidirectional or bidirectional signal channels (connections). Each 
of these processing elements possesses local memory and can therefore process local 
information. All of the processing within an element depends solely on the current value of the 
input signals and on values stored within the local memory. The elements each have a single 
output (with an output signal of any mathematical type) branching into as many collateral 
connections as necessary (Hecht-Nielsen, 1989). This section discusses the feed-forward 
model in more detail and introduces the concept of a stacked autoencoder as a deep method 
that, to our knowledge, has not been applied to PA.  
3.3.1 Feed-forward Neural Network  

In a feed-forward ANN, all nodes of the network pass information forward through a sequence of 
layers until reaching the output layer. The output of any given node in the network is computed 
as follows:  

𝑦 = 𝑓 $𝑤& +(𝑤)𝑥)

+

),-

. 

where 𝑓(⋅)	is often referred to as an “activation function.” Letting 𝑧 = 𝑤& + ∑ 𝑤)+
),- 𝑥), these 

activation functions take on many forms, including linear (𝑓(𝑧) = 𝑧), rectified linear (𝑓(𝑧) =
𝑚𝑎𝑥0, 𝑧), logistic 9𝑓(𝑧) = 1/(1 + exp	(−𝑧))@, hyperbolic tangent (𝑓(𝑧) = tanh	𝑧), and radial 
9𝑓(𝑥) = exp(||𝑥 − 𝑐||/𝜎)@.  

The updates to the weights in the interior of the network are defined by the backpropagation 
(BP) algorithm. An example of a feed-forward ANN illustrating the backpropagation process is 
shown in Figure 1. BP is one of the most popular techniques for training a neural network. It was 
introduced to a large audience by the Parallel Distributed Processing (PDP) group at Stanford 
(Rumelhart et al., 1988). The PDP lab also developed the first usable technique to implement 
backpropagation, and because of this they are usually credited for the current approach of BP, 
even though there were other researchers who discovered BP earlier (Bryson and Ho, 1969; 
Werbos, 1974). In BP, the mean squared error of the network is used as the loss function to be 
minimized, and the updates correspond to the following: 

Δ𝑤I) =
∂Err(𝑥)
𝑤I)

= 𝜂δ)𝑥I)  

Figure 1: A feed-forward neural network being trained via backpropagation. 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 2, 2018, Montreal, Quebec, Canada Page 7 

where at the output layer, 

δI = 9𝑟I − 𝑦I@𝑦I91 − 𝑦I@ 

with	𝑟I being the target response value and 𝑥I) being the input from the ith node to the jth node. In 
the interior layers, 

δI = 𝑜I91 − 𝑜I@ ( δQ
Q∈STUVWXYZ[\(I)

𝑤QI 

with 𝑜I being the output generated by the jth node. Note that this update rule assumes a logistic 
activation function. Other activation functions will modify the update rule slightly because of the 
different derivative being calculated. 
3.3.2 Stacked Autoencoder  

The research in this paper uses a different type of ANN that utilizes deep learning to predict 
yield, namely the stacked autoencoder (SAE). The concept of deep learning arose from the 
notion that several levels of abstraction in feature space could be the key to improving the 
modeling of highly nonlinear relationships among the variables and thus perform better 
generalizations on complex recognition tasks.  
The autoencoder was introduced by Bengio et al. (2006) and Ranzato et al. (2007) as an ANN 
to try to copy the input it receives to its output with a hidden layer encoding the input. An 
autoencoder has two functions: 1) encoding the input using the hidden layer, and 2) decoding 
the encoded values from the hidden layer to reconstruct the input. By design, the autoencoder 
model is forced to prioritize certain aspects of the input to be copied, thus often learning useful 
properties of the data (Goodfellow et al., 2017).  
A stacked autoencoder is initially built as follows. In the first phase, a single autoencoder is 
trained using backpropagation with the inputs being treated as target values as well. In the 
second phase, a separate hidden-layer network is stacked onto the existing autoencoder where 
the input layer maps to the values generated by the hidden layer of the first autoencoder, and 
this new network attempts to reconstruct those hidden values at the output. By repeating this 
process and connecting the learned autoencoders, a “stacked” autoencoder results (Figure 2).  
Since the hidden layers of each autoencoder correspond to a set of feature detectors targeted 
at the signals from the previous layer, this process of stacking is believed to create an 
abstraction hierarchy of features for the data being analyzed. Once the autoencoders have been 

Figure 2: A stacked autoencoder with softmax classifier (Jirayucharoensak et al., 2014). 
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trained and stacked, the final step is to place another network on the top, focused on the goal of 
learning (e.g., classification, or in our case, yield or protein prediction). Once this is done, all the 
weights are trained together to learn the final mapping from the original set of inputs to the 
target yield/protein values (Tan and Eswaran, 2008).  

3.4 Spatial Sampling  
Spatial sampling is a process where observations are collected in a two-dimensional space. The 
sampling method is usually designed to capture as many spatial variations of the variables that 
are to be studied. After initial data has been sampled and documented, additional 
measurements may be made depending on the variations within the data. These additional 
measurements are generally made based on criteria to optimize the data (Delmelle, 2014).  
The final collected data can be irregular due to a higher interest in certain variables of particular 
areas or due to terrain conditions. This irregularly spaced data is significantly more complicated 
to analyze than regularly spaced data. Therefore, managing these irregularities becomes 
important in order to analyze the datasets more efficiently (Ganesan et al., 2004).  
In this research, a field is laid out in a grid pattern; thus, a form of spatial sampling naturally 
arises from the grid-based arrangement imposed by the fields studied and the prescription maps 
defined for those fields. Data points reside in each grid cell; therefore, it would be natural to 
sample, not only from the target cell, but from the neighboring cells. Two common neighborhood 
functions for such sample are the von Neuman neighborhood (Figure 3 left) and the Moore 
neighborhood (Figure 3 right). The Moore neighborhood provides a more rounded view of the 
surrounding samples and was, therefore, implemented as our spatial sampling technique. 
Specifically, the average values of all points in a single cell were calculated. For each data point 
the averaged values of the 8 neighboring cells provides the spatial data for that data point. For 
more consistent spatial information, two alterations to the data were used to decrease noise and 
smooth the data. The first was the aforementioned averaging technique and second was to 
increase the grid cell size to contain more points in each cell. 

4. Experiments  
The following section (section 4.1) outlines our approach to evaluating the various modeling and 
machine learning methods. The results for the four implemented methods (linear regression, 
non-linear regression, ANN, and SAE) are presented and compared in section 4.2. Next a 
comparison is made between non-spatially sampled data and data that was sampled spatially 
using a k-nearest neighbor sampling method. Finally, these results are explained and discussed 
in section 4.3.  

4.1 Approach  
We implemented a simple linear regression through the protein and yield points based on the  

Figure 3: Neighborhood configurations for sampling. The center cell is denoted “C”. The 
von Neuman neighborhood is shown on the left, and the Moore neighborhood on the right. 
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Table 1: Amount of data for each field 

 sec35mid sre1314 davidsonMW carlinW 
     

yield points 17873 24646 11802 15621 
     

protein points 1019 2998 560 655 
     

 Table 2: Yield prediction for all fields. Statistically significant differences are shown in bold. “Sp” stands for spatial data 

fertilizer rate. The nonlinear model fit a hyperbolic curve through the data. Using a hyperbolic fit 
stems from the fact that fertilizer rate hits a saturation point after which yield and protein values 
no longer rise. We also implemented and evaluated non-spatial and spatial versions of the ANN 
and the SAE (see section 3.4), resulting in a total of six different models.  
During the experimentation process, different parameters were tested to discover which 
architecture produced the best results. For the ANN and SAE, these parameters included the 
number of hidden layers, the number of hidden nodes within those layers, and the number of 
epochs for the SAE. These parameters were adjusted for each dataset; however, the ANN 
achieved optimal performance using a single hidden layer with 15 to 100 hidden nodes, 
depending on the number of features available for the field. The architecture of the SAE varies 
between two and three hidden layers for non-spatial and spatial data respectively, where the 
hidden nodes for these layers diminish in each layer. For the spatial data, 500, 250 and 125 
hidden nodes were used from the top to bottom layer respectively. The number of hidden nodes 
for non-spatial data was less consistent, depending on the number of data points available.  
All of the models were evaluated using two different measures, namely the coefficient of 
determination (R²) and the Root Mean Squared Error (RMSE). Each of these were calculated 
using 10-fold cross validation, after which the average of the results for each fold was 
calculated. A paired Student t-test, adjusted using the Bonferroni correction, was performed to 
evaluate the differences of the means (Bland and Altman, 1995).  
The data we analyzed were taken from four different fields, each owned by a different farmer. 
The data consist of yield and protein values for a specific point, information about their location 
on the field, the slope at their respective location, the amount of nitrogen applied, the 
precipitation measured, and the Normalized Difference Vegetation Index (NDVI) for previous 
years. The yield and protein values are what the implemented models are trying to predict 
based on the other information provided. The yield and protein values were obtained directly 
from the farmer and come from fields with previous harvest, where the prescription map was 
generated based on previous yield bins. An example of such a prescription map is shown on the 
top in Figure 4; where red, orange, yellow, light green and dark green stand for the nitrogen 
rates 0, 18, 43, 69, 100 and 150 respectively. Furthermore, the number of cells in a prescription 
map vary from 200 to 500 depending on the field size and grid cell size. 
The amount of data for protein and yield points in each field varies greatly, as can be seen in 
Table 1. The number of data points is reduced during the spatial sampling process because 
only points that have 8 neighboring cells containing data are taken into account. An example of  

Field Measure Linear NonLin ANN ANN Sp SAE SAE Sp 
        

sec35mid 
RMSE 10.16 10.01 10.64 8.97 10.09 8.95 

       

R² 30.03 52.66 24.07 45.15 53.95 65.78  

sre1314 
RMSE 11.23 11.25 11.51 11.05 10.89 10.15 

       

R² 1.37 14.78 9.16 20.69 17.69 32.69  

david 
RMSE 15.25 15.92 16.36 12.49 16.03 12.06 

       

R² 38.94 36.93 30.46 50.64 35.16 59.35  

carlin 
RMSE 12.07 10.20 10.23 8.06 9.93 9.15 

       

R² 1.45 6.79 -4.30 16.17 11.49 9.68  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 2, 2018, Montreal, Quebec, Canada Page 10 

Table 3: Protein prediction for all fields. Statistically significant different are shown in bold. “Sp” stands for spatial data. 

Field Measure Linear NonLin ANN ANN Sp SAE SAE Sp 
        

sec35mid 
RMSE 1.40 N/A 1.44 1.22 1.97 1.96 

       

R² 24.60 N/A 23.13 49.72 0.78 17.41  

sre1314 
RMSE 1.22 N/A 1.16 0.90 1.15 1.13 

       

R² -56.96 N/A -41.37 11.64 0.41 5.70  

david 
RMSE 1.68 N/A 1.60 1.49 1.67 1.61 

       

R² -32.20 N/A -15.68 -9.60 0.05 0.05  

carlin 
RMSE 1.17 N/A 1.18 1.13 1.37 1.29 

       

R² 11.15 N/A 11.12 16.45 4.82 0.48  

a grid applied for spatial sampling and the distribution of yield points can be seen on the bottom 
in Figure 4. 

4.2 Results  
Tables 2 and 3 show the RMSE and R2 results for yield and protein predictions respectively. 
For easier readability the R2 values have been multiplied by 100 to show percentages. The non-
linear model did not provide results for protein predictions, which is denoted as “N/A” in Table 3. 
Statistically significant differences between the RMSE values are highlighted in bold. 

4.3 Discussion  
The results for yield prediction suggest that spatial data generally improves a model’s accuracy 
(Table 2). With the exception of one field (sre1314), the spatial ANN and spatial SAE perform 
significantly better than the other models. The lack of improvement on this field may be due to 
the way the yield points are distributed across the field; the points are closer together along the 
length of the field but are spaced much wider apart across the width than those in other fields. 
This effectively increases the number of points in one cell of the grid while decreasing the 
number of total cells to be taken into account for the spatial data. Overall, applying machine 
learning techniques to spatial data outperforms the more traditional approaches to yield 
prediction. More research into other methods of both regression techniques and spatial 
sampling techniques could provide useful insights into yield prediction and further increase 
accuracy.  
The results for protein prediction tell a different story (Table 3). Although improvement is always 
achieved within the results for the same model using spatial data, the results are not 
significantly different from each other. However, the ANNs performed significantly better than 
the other models on two of the fields. Interestingly, the two fields are the ones with the highest 
and lowest numbers of protein points. More in-depth analysis of the data may provide additional 
insights into the cause of this phenomenon. Furthermore, the SAE performs relatively poorly, 
especially when compared to its performance on yield prediction. The most logical explanation 
is the much lower number of data points available for training the protein models, preventing the 

Figure 4: An example of a prescription map (top) and distribution of yield points (bottom). 
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models to learn effectively, as SAEs tend to perform better on a large number of data. However, 
looking at the RMSE values, the predictions themselves are fairly accurate across all models. 
When analyzing the data, it becomes apparent that protein values do not differ as much as yield 
values do, possibly making it easier to predict the correct protein values and leading to smaller 
RMSE values overall.  

5. Future Work  
There are several methods of sampling spatial context not described in this work that are worth 
exploring, such as Equal Distance and Random Selection. We would like to evaluate the relative 
performance of including these different types of spatial context. The similar performance of the 
ANN and SAE warrant more investigation into the workings of both models. The currently 
implemented stacked autoencoder was originally designed for different research, so it may be 
useful to see whether the autoencoder can be modified to better suit this specific problem.  
The structures of the ANN and SAE are adapted depending on the data being analyzed. In 
other words, unique models are defined for each unique field. An area of research receiving 
attention is “transfer learning” where knowledge learned in one domain (i.e., a particular field) is 
reused in the context of a different problem (i.e., another field). It may be interesting to explore 
how this could decrease training complexity or even improve overall accuracy.  
Another aspect to consider for future work is provided data used to predict the yield and protein 
values. Investigating which values have the highest impact on accurate prediction and which 
make little to no difference could be a fruitful research direction. More specifically, looking at 
how certain values impact the different model types and comparing the differences in influence 
of these values for each type could provide more insight into the models and how they predict 
the yield and protein values.  
Lastly, this paper is only concerned with the prediction of yield and protein, especially in relation 
to fertilizer application. As mentioned previously, predicting the optimal fertilization rate is 
another important aspect of our work, and we are investigating the extent to which we can use 
these models to facilitate creating optimized fertilization prescriptions.  

6. Conclusion  
Precision Agriculture has the ability to improve the yield of different crops vastly through 
applying various mathematical models and experimental processes. This area of study has 
seen an increase in computationally-based research, especially involving machine learning. By 
applying machine learning to train predictive models, fertilization prescription maps and 
yield/protein prediction could become increasingly accurate, resulting in higher productivity. 
Despite the amount of previous work using machine learning, there has been minimal research 
into applying deep learning techniques to precision agriculture. The research presented in this 
paper compared multiple regression, shallow feed-forward networks and stacked autoencoders 
(a deep method), the latter two both non-spatially and spatially, to generate models for yield and 
protein prediction. Our results indicate that spatial stacked autoencoders and feed-forward 
networks seem to provide significantly more accurate results than the competing methods on 
the fields studied.  
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