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Abstract.  
Nitrogen fertilizer response (N-response) curves are tools used to support farm management 
decisions. The conventional approach to model an N-response curve is to fit crop yield in 
response to a range of N fertilizer rates as a quadratic or exponential function. The purpose of 
the model is to identify the profit maximizing N rate given the costs of nitrogen and the price 
paid for the crop yield. We show that N-response curves are not only field-specific but also site-
specific and, as such, economic optimal (profit maximizing) rates should be calculated for each 
field each year prompting the use of on-field precision experiments (OFPE) utilizing precision 
agriculture technologies.  We propose a methodology that allows deriving N-response curves 
automatically instead of using parametric curve fitting approaches. Thus, we obtain a specific 
non-parametric N-response curve for each 10 m x 10 m cell of a grid virtually draped on the 
field. First, we train a convolutional neural network called Hyper3DNetReg using remote sensed 
data collected during the early stage of the winter wheat growing season (March) to predict crop 
harvest yield values . The neural network models the behavior of the field under different 
environmental and terrain conditions. Then, we use the trained prediction model to obtain an N-
response curve per cell by simulating what would be the yield response given a range of 
nitrogen rate values between 0 and 150 pounds per acre (lbs/ac). Results show that the shape 
of the N-response curve depends on the region of the field from which it was calculated. Related 
work will address the problem of generating prescription maps that merge the site-specific 
economic optimal rates calculated from our N-response curves while also minimizing the overall 
fertilizer applied and the number of jumps between consecutive cells’ nitrogen rates. 
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Introduction 
The economic optimal nitrogen rate (EONR) is defined as the nitrogen rate beyond which there 
is no actual profit for the farmers. Estimation of the EONR is usually obtained after fitting pre-
selected, parametric yield response functions to crop yield data. Some traditional approaches 
assume plateau-type, quadratic, and exponential functions (Bullock & Bullock, 1994; Watkins, et 
al., 2010; Kablan, et al., 2017). Other approaches are based on basic agronomic principles, as is 
the case of the Liebig response functions (Ackello-Ogutu, Paris, & Williams, 1985). It is worth 
mentioning that different crop yield data models can produce different EONR estimations 
(Meisinger, Schepers, & Raun, 2008).   
Previous works have documented that the EONR is highly dependent on the type of crop, soil, 
environmental conditions, and other factors (Nyiraneza, et al., 2010; Tremblay, et al., 2012). 
Some work has tried to account for the field and year variability by introducing stochasticity on 
crop yield models that used conventional functional forms, obtaining better results than their 
deterministic counterparts (Tembo, et al., 2008; Tumusiime, et al., 2011; Boyer, et al., 2013). 
However, the variability of the nitrogen response (N-response) functional form across the fields 
has not been widely addressed by previous work (Anselin, Bongiovanni, & Lowenberg-DeBoer, 
2004; Maxwell, et al., 2018). 
We argue that trying to fit a single N-response curve for an entire field implies the strong 
assumption that the field is homogeneous and behaves similarly everywhere. However, it is 
reasonable to consider that this assumption does not always hold when there exists variability in 
the terrain of the field (e.g., terrain slope and soil composition). Thus, in this work, we consider 
that N-response curves are not only field-specific and year-specific but also site-specific. 
In particular, we propose to use a convolutional neural network (CNN) called Hyper3DNetReg 
(Morales & Sheppard, 2021) that maps the spatial features into predicted yield values. The CNN 
acts as a complex crop yield data model whose implicit functional form is non-parametric and is 
learned from the data. We use an early-yield prediction dataset and show how different N-
response curves can be generated for different regions of a field using the learned yield prediction 
model. In addition, we explain that having site-specific N-response curves allows for site-specific 
N recommendations.    

Proposed Methodology 

Datasets 
In previous work, we presented a curated early-yield prediction dataset of winter wheat (Morales 
& Sheppard, 2021; Hegedus, 2022). In this case, the early-yield prediction of winter wheat can be 
viewed as a regression problem where its explanatory variables are determined by the set of 
features collected during the growing season (March). Below, we report the list of features that 
were used: 

• Nitrogen rate applied. 
• Terrain slope. 
• Terrain elevation. 
• Terrain aspect. 
• Topographic position index (TPI). 
• Sentinel-1 Vertical Transmit-Vertical Receive Polarization (VV) backscatter coefficients. 
• Sentinel-1 Vertical Transmit-Horizontal Receive Polarization (VH) backscatter 

coefficients. 
The yield value in bushels per acre (bu/ac) is considered the response variable of the regression 
problem. The yield is measured during the harvest season (August) using a combine harvester 
equipped with a yield monitor that collects georeferenced values from the field. Hence, the data 
acquired from the winter wheat fields in March is used to predict crop yield values in August of 
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the same year. 

 

Fig 1. Image rasters corresponding to the G1 field. (a) Yield raster. (b) Automatic extraction of  𝟓 × 𝟓 m pixel patches. 

 

Each field was divided into a grid where each cell represents a region of 10 × 10 m. By doing this, 
all the data was aggregated on a scale of 10 m. Fig 1a shows a yield raster for one of the fields 
of our dataset from 2018 where each pixel represents an area of 10 m x 10 m.  
We chose Hyper3DNetReg as the yield prediction model due to its ability to exploit spatial 
information from its two-dimensional (2-D) input patches by using 2-D and 3-D convolutional 
filters. Thus, the collected data rasters need to be pre-processed to create the training datasets 
used to fit the Hyper3DNetReg models. Specifically, we automatically extract square patches 
using a 5 × 5 pixel window allowing a maximum overlap of 0.75, as shown in Fig 1b. This 
approach differs from traditional methods that rely on models trained on 1-D features regardless 
of the spatial distribution (Gonzalez-Sanchez, Frausto-Solis, & Ojeda-Bustamante, 2014; Kim & 
Lee, 2016; Wei, et al., 2020). Table 1 shows the total number of extracted samples and the years 
of observation for each field used in our experiments. Here, F1 and G1 are two fields of winter 
wheat from two different farms in Montana. 
 

Table 1. Number of samples and years of observation for each field 

Field # Samples 1st 
Year 

# Samples 2nd 
Year 

# Samples 3rd 
Year Observed Years 

F1 408 316 317 2016, 2018, 2020 

G1 484 497 614 2016, 2018, 2020 

 

Yield Prediction 
In this section, we use the collected datasets to train and test the Hyper3DNetReg models. These 
models are field-specific; that is, they are trained on data of a given field from previous years 
(2016 and 2018 in this case) and used to predict yield maps using data from the last observed 
year (2020 in this case) of the same field.  
In our previous work (Morales & Sheppard, 2021), we showed that 2-D deep regression models 
yielded better results than regression models that use a single output. Therefore, in this work, we 
only use Hyper3DNetReg models with output windows of 5 × 5 pixels (i.e., the input window size 
matches the output window size), as shown in Fig 2. 
After training the Hyper3DNetReg models using data from 2016 and 2018, they are tested on 
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data from 2020. Here, the predicted yield maps are obtained after averaging the resulting 
overlapping output patches. We refer the reader to our previous work (Morales & Sheppard, 2021) 
for further details on how the predicted yield maps are generated. Table 2 shows the metrics 
obtained after comparing the generated predicted maps and their corresponding ground truth. 
The metrics that are used for comparison are root mean square error (𝑅𝑀𝑆𝐸), root median square 
error (𝑅𝑀𝑒𝑑𝑆𝐸), and average structural similarity using a windows size of 3 (𝑆𝑆𝐼𝑀3) and 11 
(𝑆𝑆𝐼𝑀11). Fig 3 illustrates the comparison between the ground-truth maps and the predicted yield 
maps that results from applying our Hyper3DNetReg network. The performance values shown in 
Table 2 are slightly better than those shown in the original paper due to more careful 
hyperparameter tuning. 
 

 
Fig 2. Hyper3DNetReg yield prediction model using an  𝟓 × 𝟓 – pixel output window.  

Table 2. Yield prediction results 

Field 𝑅𝑀𝑆𝐸 𝑅𝑀𝑒𝑑𝑆𝐸 𝑆𝑆𝐼𝑀3 𝑆𝑆𝐼𝑀11 
F1 10.74 6.93 41.63 61.71 
G1 14.88 8.94 20.51 42.27 

 

 
Fig 3. Yield prediction, square error map, and structural similarity map of the (a) F1 field and (b) G1 field. 
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N-response Curves 
A site-specific Hyper3DNetReg model is a mapping from the feature space to the yield value 
space. In our previous work, we demonstrated that the Hyper3DNetReg models trained for 
different fields performed better than other traditional and more recent machine learning methods 
(e.g., linear regression, stacked autoencoders, and 3-D CNNs). This implies that our 
Hyper3DNetReg network models the mapping from the feature space to the yield value space 
better than other approaches. Therefore, here we propose a method to generate N-response 
curves that are specific to each location of the field using Hyper3DNetReg models. To do so, we 
apply the learned Hyper3DNetReg model at each location of the field with varying nitrogen rate 
values between 0 and 150 pounds per acre (lbs/ac) with a step size of 3 lbs/ac.  
For example, Fig 4a depicts the original nitrogen rate map applied on F1 in 2020 and the 
corresponding yield prediction. In contrast, Fig 4b, Fig 4c, and Fig 4d show the results of applying 
constant nitrogen rates of 50, 75, and 100 lbs/ac, respectively.  
 

 
Fig 4. Yield prediction for the G1 field using different N rates. (a) N rate values applied on the field during the growing 
season (March 2020). (b) Uniform N rate of 50 lbs/ac. (c) Uniform N rate of 75 lbs./ac. (d) Uniform N rate of 100 lbs./ac. 

 

From the yield maps generated after simulating using a wide range of N rates for the entire field, 
we obtain an N-response curve for each 10 × 10 m cell of the field. Fig 5 and Fig 6 show six 
different N-response curves generated from the F1 and G1 fields, respectively. Note that, in both 
cases, different regions of the field react differently to the nitrogen rate applied. Specifically, some 
regions of the fields reach a plateau for high N rates while others experience a rapid decline.  
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Fig 5. N-response curves generated for different regions of the F1 field. 

 
Fig 6. N-response curves generated for different regions of the G1 field. 
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From Fig 5 and Fig 6, it is observed that the slope and the position of the local maximum of the 
generated N-response curves vary depending on the field location. This is important because 
traditional methods suggest that the EONR point can be found as the N rate at which the first 
derivative of the N-response curve – which depends directly on the slope – is equal to a common 
yield-nitrogen price ratio (Bullock & Bullock, 1994). Thus, considering that the EONR point is 
estimated from a single N-response curve and that we are obtaining different N-response curves 
for different regions of the field, we would be able to find different EONR points for different regions 
of the field 
It is worth mentioning that traditionally the EONR calculation assumes concave functional forms 
with a single local optimum (e.g., quadratic and exponential functions). On the other hand, the N-
response curves generated by our non-parametric approach may have more than one local 
optimum. This can be seen in two of the N-response curves shown in Fig 5 that have at least two 
local maxima. Therefore, the traditional EONR calculation is not sufficient for these cases.  
Furthermore, we argue that uncertainty plays a crucial role in yield prediction and EONR 
estimation. Uncertainty may arise due to representational bias, training data variance, and 
parameter uncertainty (Pearce, Brintrup, Zaki, & Neely, 2018). It can be quantified using 
prediction intervals (PIs) that consist of an estimate of the upper and the lower bounds within 
which a prediction will fall with a certain probability. For future work, we will present an N-response 
curve generation method coupled with non-parametric PIs generated by the modified 
Hyper3DNetReg models automatically.  
Finally, we should consider that the EONR values obtained from our site-specific N-response 
curves may differ significantly between neighboring cells. We refer to this phenomenon as 
“jumps.” Hence, jumps put a strain on the farmer’s equipment, so it becomes necessary to 
minimize the jumps when determining the prescription maps (Peerlinck, Sheppard, Pastorino, & 
Maxwell, 2019). Therefore, future work will focus on generating prescription maps that merge the 
site-specific economic optimum points calculated from our N-response curves while also 
minimizing the overall fertilizer applied and the number of jumps between consecutive cells’ 
nitrogen rates.  

Conclusion 
Traditionally, EONR estimation is carried out assuming parametric N-response curves for an 
entire field. In this work, we have proposed that N-response curves should be site-specific, and 
their functional form can be learned from data.  
In our experiments, we have used the Hyper3DNetReg convolutional neural network, which is an 
accurate yield prediction model that can be used to generate N-response curves. Thus, our initial 
results using two different winter wheat fields showed that different regions of the field have 
different responses to the N fertilizer. Moreover, the N-response curves generated by our method 
may have more than a single local optimum. Therefore, conventional EONR calculation methods 
cannot be applied directly.  
Future work will address the need of incorporating uncertainty quantification into the N-response 
curve generation by using automatically generated prediction intervals. Furthermore, these 
curves will be used to generate fertilizer prescription maps based on multi-objective optimization 
while considering other factors such as the minimization of jumps.  
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