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The continuous time Bayesian network (CTBN) enables reasoning about complex systems 
by representing the system as a factored, finite-state, continuous-time Markov process. 
Inference over the model incorporates evidence, given as state observations through time. 
The time dimension introduces several new types of evidence that are not found with static 
models. In this work, we present a comprehensive look at the types of evidence in CTBNs. 
Moreover, we define and extend inference to reason under uncertainty in the presence of 
uncertain evidence, as well as negative evidence, concepts extended to static models but 
not yet introduced into the CTBN model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Probabilistic models, such as Bayesian networks, provide a mathematically rigorous framework for reasoning under uncer-
tainty. Given observations (i.e., evidence) about the system that the model represents, the model can update the posterior 
probabilities of other states of the system in light of that evidence. However, the representation of evidence in Bayesian 
networks has been further extended to allow for uncertainty in the evidence, in which there is uncertainty in the observa-
tions themselves. For example, a medical test might have false positive and false negative rates. Thus, the test result can be 
trusted only to a certain degree, which uncertain evidence is able to capture. Uncertain evidence provides one generalization 
of evidence, in which the evidence also has an associated likelihood.

Furthermore, one can think of negative evidence. Instead of an observation of the system being in a certain state, we 
can observe the system to not be in certain states, but it could be any of several other states. For example, we may be 
modeling a system in which sensors may only be able to detect a subset of the possible states. A negative sensor reading 
would imply that the system is in one of those other states. Negative evidence provides another generalization of evidence, 
in which multiple states can be ruled out instead of a single state being given.

By lifting restrictions on the types of evidence that the models can support, generalizations of evidence make the models 
more powerful and versatile. Rather than having to transform the observations into a form of supported evidence, such as 
treating all observations as certain or ignoring incomplete observations, generalizing evidence allows the observations to be 
used as evidence directly.

As the CTBN is a relatively new model, current CTBN inference algorithms only support certain and positive evidence, 
in which all of the temporal state evidence is trusted with complete confidence and in which the temporal state evidence 
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dictates what the state is, never what it is not. However, in many applications, the evidence may contain errors and can be 
trusted only to a certain degree. In some cases, only subsets of the states may be observable. Here, the model can benefit 
from ruling out certain states by reasoning with negative evidence. Uncertain and negative evidence for CTBNs has not yet 
been defined nor have CTBN inference algorithms been extended to allow for incorporating negativity and uncertainty into 
the temporal evidence. Therefore, this work proposes a definition for uncertain and negative evidence and shows how to 
support the definitions in the context of CTBNs. The introduction of timing information adds another dimension into the 
types of evidence we can apply. We show how combinations of certain/uncertain evidence and positive/negative evidence 
interact. By so doing, we show how the definitions of uncertain and negative evidence provide a generalization of certain 
positive evidence.

2. Background work

In this section, we give the formal definition of the Bayesian network (BN), as well as its temporal version, the dynamic 
Bayesian network (DBN). Next we give the formal definition of the CTBN model, compare and contrast the CTBN and the 
DBN, and then survey existing CTBN applications and extensions.

2.1. Bayesian networks

Bayesian networks are probabilistic graphical models that use nodes and arcs in a directed acyclic graph to represent 
a joint probability distribution over a set of variables [1]. Let P (X) be a joint probability distribution over n variables 
X = {X1, . . . , Xn}. A Bayesian network B is a directed, acyclic graph in which each variable Xi is represented by a node in 
the graph. Let Pa(Xi) denote the parents of node Xi in the graph. The graph representation of B factors the joint probability 
distribution as:

P (X) =
n∏

i=1

P (Xi |Pa(Xi)). (1)

This factorization is induced by the conditional independences in the underlying distribution. Without any factorization, 
the number of parameters required to define the full joint probability distribution is exponential in the number of vari-
ables. By factoring the joint probability distribution to consider only the relevant variable interactions, represented by the 
parent–child relationships in the network, often the complexity of the distribution can be managed.

2.2. Dynamic Bayesian networks

The Bayesian network defined above is a static model. However, we can introduce the concept of time into the network 
by assigning discrete timesteps to the nodes to create a dynamic Bayesian network, a temporal version of a BN.

A dynamic Bayesian network (DBN) is a special type of Bayesian network that uses a series of connected timesteps, each 
of which contains a copy of a regular Bayesian network defined over X indexed by time t (denoted Xt ). The probability dis-
tribution of a variable at a given timestep can be conditioned on states of that variable (or even other variables) throughout 
any number of previous timesteps as well as on other variables within the same timestep. In first-order DBNs, the nodes in 
each timestep are conditionally independent of any nodes further back than the immediately previous timestep, given that 
previous timestep. Therefore, the joint probability distribution for a first-order DBN factors as:

P (X0, . . . ,Xk) = P (X0)

k∏
t=0

P (Xt+1|Xt). (2)

Spanning multiple timesteps, the DBN can include any evidence gathered throughout that time and use it to help reason 
about state probability distributions across different timesteps. Often, the conditional probability tables of the DBN can be 
defined compactly by defining a prior network over X0 and a single temporal network over Xt that represents P (Xt+1|Xt)

for every t . The temporal network Xt is then “unrolled” to consider X1, X2, . . . , Xk for k timesteps.

2.3. Continuous time Bayesian networks

The continuous time Bayesian network was first introduced in [2]. Although its name attempts to draw parallels between 
the conditional independence encoded by Bayesian networks, the CTBN represents a factored Markov process.

Let X be a set of conditional Markov processes {X1, X2, . . . , Xn}, where each conditional process Xi has a finite number 
of discrete states. Formally, a continuous time Bayesian network N = 〈B, G〉 over X consists of two components. The first 
is a Bayesian network B with nodes corresponding to X. This Bayesian network is only used for determining P (X0), the 
initial distribution of the process. The second is a continuous-time transition model G , which describes the evolution of the 
process from its initial distribution, specified as:



L. Sturlaugson, J.W. Sheppard / International Journal of Approximate Reasoning 70 (2016) 99–122 101
Fig. 1. Example CTBN.

• A directed graph with nodes X1, X2, . . . , Xn , where Pa(Xi) denotes the parents of Xi ,
• A set of conditional intensity matrices (CIMs) Q X |Pa(X) associated with X for each possible state instantiation of Pa(X).

Each conditional intensity matrix QX |Pa(X) gives the dynamics of node X when the states of Pa(X) are fixed. Each entry 
qi, j ≥ 0, i �= j as an element of QX |Pa(X) gives the transition intensity of the node moving from state i to state j, and 
each entry qi,i ≤ 0 controls the amount of time the node remains in state i. With negative diagonal entries, the probability 
density function for the node remaining in state i is given by |qi,i | exp(qi,it), with t being the amount of time spent in 
state i (called the sojourn time), making the probability of remaining in a state decrease exponentially with respect to time. 
The expected sojourn time for state i is 1/ 

∣∣qi,i
∣∣. Each row is constrained to sum to zero, 

∑
j qi, j = 0 ∀ i, meaning that the 

transition probabilities from state i can be calculated as qi, j/ 
∣∣qi,i

∣∣ ∀ j, i �= j.
Fig. 1 shows an example CTBN [2]. The initial distribution and intensity matrices for all the nodes can be found in 

the demo files for the Continuous Time Bayesian Network Reasoning and Learning Engine [3]. Each child node has multiple 
intensity matrices, one for each combination of states of its parent nodes. For example, the matrix denoted QConcentration|u1, f0

defines the transition intensities of the node Concentration given that the state of Uptake is u1 and that the state of Full 
stomach is f0.

This model could be used to answer several interesting queries. For example, what is the expected proportion of time 
that the patient is in pain while drowsy? Or, given that the patient is initially in pain but that uptake occurred at time 
t1 and that the patient finished eating at time t2, what is the expected amount of time until the patient is not in pain? 
Or, given that the patient has been in pain from time t2 to t3, what is the expected number of transitions between the 
concentration levels that occurred during that time period? The user could query the probability of any state of any node 
at any real-valued time, conditioned on past and future observations about the system.

2.4. DBNs vs. CTBNs

Unlike a regular Bayesian network, cycles are allowed in the graph of G . Only one state transition in one node is allowed 
at a time for the whole CTBN. A cycle in a CTBN model would be analogous to a dynamic Bayesian network with variables 
X and Y where arcs such as Xt → Yt+1 and Yt → Xt+1 would be valid.

Similar to the Bayesian network, exploiting the conditional independences allows for a more compact representation for 
the model. In a Bayesian network, the local conditionally independent distributions can be combined to form the full joint 
probability distribution. In the case of the CTBN, this is called the full joint intensity matrix, which describes the evolution 
of the entire process. However, just as in the Bayesian network, in which the number of entries in the full joint probability 
distribution grows exponentially in the number of variables, so too the number of states in the full joint intensity matrix 
grows exponentially in the number of variables for the CTBN.

Despite these few similarities, the CTBN model is fundamentally different from the DBN model. Although the network 
topologies for both models encode conditional independence, the models are differentiated by what the nodes represent. 
Whereas the nodes in a DBN are simple random variables, the nodes in a CTBN are conditional Markov processes. As a 
result, CTBNs can be queried about the state probabilities for any real-valued time. A DBN, unrolled for a discrete number 
of timesteps, can only be queried for state probabilities at these timesteps but not in-between adjacent timesteps. While 
the time interval between timesteps can be set with finer granularity, doing so multiplies the number of nodes needed to 
span the same amount of time as the original unrolled DBN. In fact, a DBN becomes asymptotically equivalent to a CTBN 
only as the interval of time between timesteps approaches zero [4].

2.5. CTBN inference and learning

The only exact inference algorithm that exists so far for CTBNs simply expands and works with the full joint intensity 
matrix, which is exponential in the number of nodes and the number of states [5]. However, this inference algorithm does 
not take advantage of the factored nature of the network. Thus, research on inference has focused on approximate methods.
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There have been a number of sample-based inference algorithms developed for CTBNs, such as importance sampling 
[5–7] and Gibbs sampling [8,9]. In importance sampling, multiple samples are generated that are constrained to conform 
to the evidence. The particles are then weighted by their likelihood. Gibbs sampling, on the hand, takes a Markov Chain 
Monte Carlo (MCMC) approach. For each variable over each interval of evidence, the surrounding states (the node’s parents, 
children, and children’s parents) are held constant and a random walk is performed on the state of the node. The idea 
is that, on each interval of evidence, the distribution of the random walk will converge to the true distribution. Methods 
for expectation propagation [10,11] have also been developed. In these methods, for each interval of evidence, the nodes 
employ a message-passing scheme with their neighbors. The idea is to pass approximate “marginals” that are unconditional 
intensity matrices, valid for that interval, until all of the nodes have a consistent distribution over that interval. Recently, 
methods using mean-field approximation [12,13] and belief propagation [14] have also been developed, which propagate 
the product of inhomogeneous Markov processes to approximate the distribution through a system of ordinary differential 
equations. There have also been approaches specifically for continuous-time filtering in CTBNs [15,16].

As a data-driven model, algorithms have been developed for model learning, both with learning the network structure 
[17], as well as learning and maturing the model parameters [18]. These algorithms define the sufficient statistics for 
the nodes of the CTBN and define the log-likelihood that can be used to measure how well the network structure and 
the parameters match the data. They also support learning in the presence of missing data, leading to an expectation 
maximization algorithm for CTBNs. For a more comprehensive tutorial on CTBNs, see [19].

2.6. CTBN applications and extensions

CTBNs have found use in several applications. For example, CTBNs have been used for inferring computer users’ presence, 
activity, and availability over time [20]; monitoring robotic systems [16]; modeling server farm failures [21]; modeling 
social network dynamics [22,23]; modeling sensor networks [24]; building intrusion detection systems [25–27]; predicting 
the trajectory of moving objects [28,29]; diagnosing cardiogenic heart failure and anticipating its likely evolution [30,31]; 
modeling and inferring about gene networks [32,33]; and diagnosing and prognosing equipment [34]. The CTBN has also 
been extended to support decision-making, resulting in structured continuous-time Markov decision processes [35].

The CTBN model has also undergone several specializations and generalizations. The Generalized CTBN (GCTBN) of [36]
combines the conditional probability tables of BNs and the conditional intensity matrices of CTBNs, allowing nodes to 
be either what they call “delayed” variables or “immediate” variables. They show how inference can be performed when 
combining the conditional probabilities of the immediate nodes with the intensity matrices of the delayed nodes. The 
CTBN classifier (CTBNC) of [37–42] is an instance of the GCTBN, adding a parent-less immediate class node, with marginal 
probabilities over the class label, for classifying a static object given continuous-time evidence about that object. The work 
of [43,44] changes the representation of the CTBN to be partition-based, using what they call conditional intensity trees and 
conditional intensity forests. This is analogous to representing the conditional probabilities in BNs as decision trees [45]. 
The Erlang–Coxian CTBN (EC-CTBN) of [46] replaces the exponential distribution of the sojourn times with Erlang–Coxian 
distributions. Nodelman showed how combinations of nodes in the CTBN could represent Erlang–Coxian distributions [10,
47], but the EC-CTBN replaces this with a single node and introduces a generalized conditional intensity matrix. Lastly, the 
asynchronous dynamic Bayesian network (ADBN) of [48] maintains a CTBN, converting the conditional intensity matrices to 
conditional probability tables to perform inference. The idea is that the parameters of the DBN will be populated from the 
continuous-time evidence for the CTBN, avoiding the assumption of a uniform interval of time between all the timesteps of 
the DBN. After converting the conditional intensity matrices to conditional probability tables, inference can be performed 
over the DBN instead of the CTBN.

3. Types of evidence

While we use the terms “system” and “sensor” to describe the semantics of different types of evidence, these terms 
should be taken in their general sense through this paper. We use the term “system” to refer to whatever the model rep-
resents. These could be such varied systems as computer systems, vehicle systems, sensor networks, groups of people or 
individuals—just to name a few. We use the term “sensor” to refer to any means by which evidence about the system is 
gathered. These could be electrical or mechanical sensors (calibrated/drifting/noisy?), direct human observations (trustwor-
thy/biased/adversarial?), educated guesses (with how much certainty?), or even hypothetical scenarios (if we observed the 
system to be in some given state, what would likely happen next?).

In this section we describe the types of evidence currently used in inference with BNs, which include certain, uncertain, 
and negative evidence. We then review the types of evidence currently defined for CTBNs. Finally, we define uncertain and 
negative types of continuous-time evidence for use in CTBNs.

3.1. Evidence in Bayesian networks

We start by reviewing the types of evidence used in Bayesian networks.
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Fig. 2. Example of virtual evidence for node X .

3.1.1. Certain positive evidence
Traditional evidence in a BN corresponds to certain evidence. That is, the observations are trusted with complete confi-

dence, and the observations are of specific states. Suppose that we had a set of observations e. To perform inference with 
this evidence, we would compute the posterior probabilities P (X|e). Once we observe the state of a variable, the probability 
of that state for that variable becomes 1. From this, we can generalize to uncertain evidence, in which the probabilities of 
observed states can become less than 1.

3.1.2. Uncertain positive evidence
One approach for uncertain evidence in Bayesian networks is called virtual evidence [49]. One way to represent this type 

of uncertain evidence is to add a node as a child to an observed node, as shown in Fig. 2. This child node then becomes 
the node that is observed, and the conditional probabilities of this child are set to match the strength of the evidence. In 
effect, virtual evidence sets up a ratio of likelihoods to represent the confidence of an observation observing a particular 
state. Suppose the uncertain evidence for node X with states x1, . . . , xn is given as η. Then for xi we set

P (η|X = xi) = λi, (3)

where λi is the likelihood of the evidence for xi . The child node is conditionally independent of all other nodes given X . 
That is, for any event α in the probability space,

P (η|X = xi,α) = P (η|X = xi). (4)

Then the probability of event α given the uncertain evidence η is

P (α|η) =

n∑
i=1

λi P (α, X = xi)

n∑
i=1

λi P (X = xi)

. (5)

By so doing, virtual evidence weights the marginal probabilities P (X) by the likelihood of the evidence λi for xi .
Another approach for representing uncertainty in an observation is through what is called soft evidence [50,51]. Soft 

evidence uses Jeffrey’s rule as a generalization of conditioning on observed variables to condition on an observation of 
a probability distribution, in which the observed distribution holds the uncertainty of the observations. Suppose that the 
evidence is specified by a set of probabilities

P ′(X = xi) = qi . (6)

Then the new posterior distribution for event α is calculated as

P ′(α) =
n∑

i=1

qi
P (α, X = xi)

P (X = xi)
=

n∑
i=1

qi P (α|X = xi). (7)

As shown by Equation (6), soft evidence actually transforms the marginal distribution of X from P (X) to P ′(X) such that it 
conforms exactly to the probability of the evidence.

Because each approach specifies uncertain evidence differently, virtual evidence and soft evidence yield different proba-
bilities given the same values for qi and λi , but conversions exist to derive the resulting probability of one given the other 
[49].

3.1.3. Certain negative evidence
In a Bayesian network, certain negative evidence is just a special case of uncertain positive evidence. If we observe the 

variable to not be in some states, this is the same as uncertain evidence in which there is zero probability of those states 
and the remaining probabilities for all other states are re-normalized.
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Let A be a subset of states of X that can be ruled out. Negative evidence states that X /∈ A. We can use virtual evidence 
to support negative evidence in Bayesian networks by choosing c > 0 and setting

λi =
{

0 for xi ∈ A

c for xi /∈ A
. (8)

It follows that for every event α given uncertain evidence η that the states of A can be ruled out with likelihoods λi given 
above,

P (α|η) =

n∑
i=1

λi P (α, X = xi)

n∑
i=1

λi P (X = xi)

=
c

∑
x/∈A

P (α, X = x)

c
∑
x/∈A

P (X = x)
= P (α, X /∈ A)

P (X /∈ A)
= P (α|X /∈ A). (9)

Thus, when dealing with a static Bayesian network, uncertain evidence is sufficient to represent negative evidence.

3.2. Evidence in CTBNs

While static BNs use evidence as observations of states, evidence in CTBNs must include temporal information. We use 
the notation X(t) to denote the state of X at an instantaneous point in time t , while the notation X([t1, t2)) denotes the 
state of X on the half-open interval from t1 to t2. For example, X([t1, t2)) = x means that X(t) = x ∀ t ∈ [t1, t2), while 
X([t1, t2)) �= x means that X(t) �= x ∀ t ∈ [t1, t2). Three types of evidence in CTBNs have been defined in the literature so far: 
point, transition, and interval.

The first inference algorithms defined for CTBNs supported only point evidence [2]. Certain point evidence in a CTBN is 
defined formally as follows.

Definition 3.1 (Certain point evidence). Let t be an instantaneous point in real-valued time. Let X be a node in the CTBN, and 
let x be a state of X . Certain point evidence is an observation of an event of the form X(t) = x.

Point evidence would result when the system cannot be monitored continuously, and sensors can only “poll” the state 
at various instantaneous points in time. For example, blood test results might be most appropriately cast as point evidence, 
as they provide a current “snapshot” of the system but cannot continuously observe the state between tests.

Unlike a static model, the states of the CTBN could be changing throughout time. When monitoring a system, we might 
be able to detect changes in the state of the system. We would like to be able to incorporate this transition information 
into our inference procedures. Certain transition evidence in a CTBN is defined formally as follows.

Definition 3.2 (Certain transition evidence). Let t be an instantaneous point in real-valued time, and let ε be an arbitrarily 
small positive value. Let X be a node in the CTBN, and let x1 and x2 be two distinct states of X . Certain transition evidence 
is an observation of an event of the form, X([t − ε, t)) = x1 ∧ X(t) = x2.

Transition evidence would result when sensors can detect certain changes in the system. For certain transition evidence, 
the sensors can detect exactly when and how the change occurs. Note that if the sensors can detect every state change, 
they can observe the complete path of the system.

For continuous-time systems, however, evidence at an instantaneous point in time is not powerful enough. We might be 
monitoring the system continuously and be able to make claims about the state of the system throughout an interval of 
time. When this idea was first introduced, it was called negative evidence, but the “negative” referred to transitions rather 
than states [46]. The idea was that a transition did not occur over an interval of time. Since then, it has changed to be 
referred to as continuous evidence or interval evidence. Certain interval evidence in a CTBN is defined formally as follows.

Definition 3.3 (Certain interval evidence). Let t1 and t2 be instantaneous points in real-valued time such that t1 < t2. Let 
X be a node in the CTBN, and let x be a state of X . Certain interval evidence is an observation of an event of the form 
X([t1, t2)) = x.

Interval evidence would result when the system is able to be monitored throughout a continuous interval of time. For 
example, a nurse could observe that a patient was breathing normally throughout the entire time the nurse was in the 
room. The evidence would be an interval of a single state (normal breathing). Outside of that interval (when the nurse was 
outside the room and no longer observing the patient), the state might have transitioned multiple times.

Certain interval evidence is able to approximate both certain point and certain transition evidence [6]. For point evidence, 
we set t2 = t1 + ε for some infinitesimal value ε . For certain transition evidence, this becomes two successive instances of 
infinitesimally short interval evidence such that on a real-valued interval of time [t − ε, t), node X was observed to be in 
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Fig. 3. Examples of evidence for a CTBN.

state x1, while on a real-valued interval of time [t, t + ε), the state of node X was observed to be in state x2. Because of 
this, in the remainder of this paper we focus on supporting interval evidence for CTBN inference algorithms.

Fig. 3 shows examples of these three evidence types for a two-state node. The figure also shows two possible complete 
sample paths that conform to the evidence. The evidence can be thought of as a partial sample path, a sequence of state 
and time pairs with gaps during which the state becomes unknown. In the example, point evidence at time t = 1 observes 
the node to be in state 0. Transition evidence at time t = 2 observes the state to transition from state 1 to state 0. Interval 
evidence from time t = 3 to t = 4 observes the state to remain in state 0.

3.3. Extending evidence in CTBNs

As seen with the progression from point evidence to transition and interval evidence, the temporal nature of the model 
gives rise to more varied types of continuous-time evidence. Uncertain evidence, as used in BNs, has not yet been extended 
to CTBNs. Furthermore, the introduction of time adds another dimension. We can differentiate between positive and negative 
evidence when the evidence becomes temporal, because now evidence must be defined in terms of both state and time. 
Temporal evidence introduces subtleties between uncertain evidence and negative evidence, and they become two distinct 
types of evidence when defined in continuous time. We now present the first definitions for these types of evidence in the 
CTBN.

3.3.1. Uncertain positive evidence
In this section, we define and describe uncertain positive evidence for CTBNs. First, we have uncertain point evidence, 

defined formally as follows.

Definition 3.4 (Uncertain point evidence). Let t be an instantaneous point in real-valued time. Let X be a node in the CTBN, 
and let λi be a likelihood for state xi of X . Uncertain point evidence is an event η such that

P (η|X(t) = xi) = λi for i = 1, . . . ,n. (10)

When we condition on this uncertain point evidence η for any event α, the probabilities are reweighted as

P (α|η) =

n∑
i=1

λi P (α, X(t) = xi)

n∑
i=1

λi P (X(t) = xi)

. (11)

Uncertain point evidence would result when “polling” sensors can only be trusted to a certain degree. For example, 
many medical tests have quantifiable false positive and false negative rates. With uncertain point evidence, these uncertain 
snapshots of the system can be formalized and incorporated into the temporal inference process.

The likelihoods are analogous to λi of Equation (3). Because the observation is at a single instant in time, uncertain point 
evidence is also sufficient to represent negative point evidence.

We can also have uncertainty in an observed transition. Uncertain transition evidence is used when the source and/or 
destination of a transition is known only with some probability. Uncertain transition evidence in a CTBN is defined formally 
as follows.
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Definition 3.5 (Uncertain transition evidence). Let t be an instantaneous point in real-valued time, and let ε be an arbitrarily 
small positive value. Let X be a node in the CTBN, and let λi, j be the likelihood for a transition from xi to x j . Uncertain 
transition evidence is an event η such that

P (η|X([t − ε, t)) = xi, X(t) = x j) = λi, j for i, j = 1, . . . ,n. (12)

When we condition on this uncertain transition evidence η for any event α, the probabilities are reweighted as

P (α|η) =

n∑
i=1

n∑
j=1

λi, j P (α, X([t − ε, t)) =i, X(t) = x j)

n∑
i=1

n∑
j=1

λi, j P (X([t − ε, t)) = xi, X(t) = x j)

. (13)

Uncertain transition evidence would result when a sensor is able to determine only partially the source and/or desti-
nation state. The set of likelihoods can also be used to represent uncertainty that the state actually changed. That is, the 
uncertainty in the transition evidence could allow for non-zero probability that no transition occurred. This is done by 
setting λi,i to be non-zero. Because a state does not transition to itself in a continuous-time model, this implies that the 
state simply remained in state xi at time t . For example, the shell game could give rise to uncertain transition evidence. 
The player cannot distinguish between shells but relies on tracking changes (transitions) in their position (state). However, 
by the nature of the game, the player may become uncertain about which shell transitioned to which state. The player’s 
confidence in knowing the final state will be influenced by the uncertainty of the observed transitions.

The definitions above represent uncertainty in the state. However, we could have uncertainty in the timing information 
as well. Therefore, for completeness, we can formally define temporally uncertain transition evidence as follows.

Definition 3.6 (Temporally uncertain transition evidence). Let t1 and t2 be instantaneous points in real-valued time such that 
t1 < t2. Let X be a node in the CTBN, and let xi and x j be two distinct states of X . Temporally uncertain transition evidence 
is an observation of an event of the form X(t1) = xi ∧ X(t2) = x j .

Temporally uncertain transition evidence would result when the sensor is able to detect state changes in the system, 
but not instantaneously. The sensor might have a non-constant time delay before the state change is detected. Note that 
temporally uncertain transition evidence does not rule out multiple transitions during the unknown period. The evidence 
merely gives the beginning and end states over that period.

Lastly, we have uncertain positive interval evidence. In this case, uncertain interval evidence cannot be used for negative 
interval evidence, because uncertain interval evidence holds the state constant over the interval while negative interval 
evidence only rules out states over the interval (but transitions may occur between other states). Therefore, uncertain 
interval evidence must be identified as either positive or negative. Negative interval evidence is discussed in the next 
section, while uncertain positive interval evidence is defined formally as follows.

Definition 3.7 (Uncertain positive interval evidence). Let t1 and t2 be instantaneous points in real-valued time such that t1 < t2. 
Let X be a node in the CTBN, and let λi be a likelihood of the evidence for state xi . Uncertain positive interval evidence is 
an event η such that

P (η|X([t1, t2)) = xi) = λi for i = 1, . . . ,n, (14)

P (η| ∧n
i=1 ¬X([t1, t2)) = xi) = 0. (15)

When we condition on this uncertain positive interval evidence η for any event α, the probabilities are reweighted as

P (α|η) =

n∑
i=1

λi P (α, X([t1, t2)) = xi)

n∑
i=1

λi P (X([t1, t2)) = xi)

. (16)

Uncertain positive interval evidence would result when the sensor is able to detect changes in the system but is unable 
to determine the state over the interval with certainty. For uncertain interval evidence, the state of node X is known to be 
in exactly one state over the entire interval, but the identity of that state is only known with some likelihood.

3.3.2. Negative evidence
In CTBNs, uncertain evidence is distinct from negative evidence. Uncertain interval evidence, for example, says that the 

system was in different states with different likelihoods, but whichever state it was, the system stayed in that state over 
the whole interval. Negative evidence is saying something different. Negative interval evidence, for example, says that the 
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system was never in a certain state over an interval; however, the system could have experienced multiple transitions 
between the other states over that interval. Formally, we define negative point, transition, and interval evidence as follows.

Definition 3.8 (Negative point evidence). Let t be an instantaneous point in real-valued time. Let X be a node in the CTBN, 
and let X ′ be a proper subset of the states of X . Negative point evidence is an observation of an event of the form X(t) /∈ X ′ .

Negative point evidence rules out one or more states at a single point in time, meaning it does not always positively 
identify the actual state at that point in time. Returning to the shell game example, suppose that the operator, while 
shuffling the shells, shows one of the shells as empty. The player can incorporate this as negative point evidence, because 
the player can rule out that shell at that instant with complete certainty.

Definition 3.9 (Negative transition evidence). Let t be an instantaneous point in real-valued time, and let ε be an arbitrarily 
small positive value. Let X be a node in the CTBN, and let X S and XE be non-empty proper subsets of the states of X such 
that X S ∪ XE includes every state of X . Negative transition evidence is an observation of the form X([t − ε, t)) /∈ X S ∧ X(t) /∈
XE .

Negative transition evidence is an observation of a transition but can only rule out one or more source and/or destination 
states, meaning it does not always positively identify both source and destination states of the transition. For example, 
consider a security camera that is able to monitor a section of a hallway to multiple rooms. The camera observes only some 
of the doors along the hallway (states). If an individual walks into view of the camera from the hallway (transition), the 
camera observes the change, and we can rule out that the individual came from those rooms whose doors are in view of 
the camera.

Definition 3.10 (Negative interval evidence). Let t1 and t2 be instantaneous points in real-valued time such that t1 < t2. Let X
be a node in the CTBN, and let X ′ be a proper subset of the states of X . Negative interval evidence is an observation of an 
event of the form X([t1, t2)) /∈ X ′ .

Negative interval evidence rules out one or more states on an interval of time, meaning it does not always positively 
identify the actual state on that interval. Consider the security camera example again, assuming that adjoining rooms may 
have doors between them. While the security camera is on and observing an empty hallway, we can rule out anyone in the 
hallway during that period. However, an individual may be moving between rooms (states) that the camera cannot observe.

Note that uncertain and negative evidence are not mutually exclusive. We could have uncertainty in our negative ev-
idence, in which we can rule out some states only with a certain probability. For instantaneous evidence, such as point 
evidence and transition evidence, uncertain evidence is sufficient to represent these, as shown earlier. Uncertain positive 
interval evidence, on the other hand, cannot represent uncertain negative interval evidence, which is defined formally as 
follows.

Definition 3.11 (Uncertain negative interval evidence). Let t1 and t2 be instantaneous points in real-valued time such that 
t1 < t2. Let X be a node in the CTBN, and let λi be a likelihood of the evidence for state xi where ∃i, λi < 1. Uncertain 
negative interval evidence is an event η such that

P (η|X([t1, t2)) �= xi) = 1

2 − λi
(17)

P (η|¬X([t1, t2)) �= xi) = 1 − λi

2 − λi
(18)

When we condition on this uncertain negative interval evidence η for any event α, the probabilities are reweighted as

P (α|η) =

n∑
i=1

(1 − λi)P (α,¬X([t1, t2)) �= xi)

n∑
i=1

(1 − λi)P (¬X([t1, t2)) �= xi)

. (19)

Uncertain negative interval evidence rules out states on an interval of time but only with some level of certainty. Consider 
the security camera example again but assume that it also has facial recognition software that tries to track the movement 
of a specific individual. Suppose the facial recognition algorithm returns a confidence level for recognizing each face. While 
people walk through the hallway, the facial recognition software tries to track whether one of them is the specific individual. 
While the facial recognition software does not detect the individual’s face, we can rule out the individual being in the 
hallway during that period with some level of certainty. We cannot be completely certain about the interval in this case, 
because there is some probability that the facial recognition software did not detect the individual when the individual 
walked through.
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Fig. 4. Relationships between types of continuous-time evidence.

3.4. Relationships between types of evidence

Given these definitions, note that, unlike with Bayesian networks, uncertain evidence is insufficient to represent all types 
of negative evidence. Uncertain evidence introduces uncertainty in the state, not the duration of the evidence. In other 
words, for an interval of uncertain evidence e of node X on [ts, te),

P (X(t1)|e) = P (X(t2)|e), ∀ t1, t2 ∈ [ts, te). (20)

On the other hand, for an interval of negative evidence e of node X on [ts, te), we can say that

P (X(t) ∈ A|e) = 0, ∀ t ∈ [ts, te), (21)

but the probabilities P (X(t) = x|e) for x /∈ A could be changing throughout [ts, te). Therefore negative interval evidence is 
not necessarily a special case of uncertain positive interval evidence.

As already seen, the various types of evidence are related, whether through special cases or combinations. These rela-
tionships are summarized in Fig. 4. The solid arrows show when the parent type is a special case of the child type, while 
the dashed arrows show when the parent type can be approximated by the child type. Proof sketches for these relationships 
are given in Appendix A.

4. CTBN inference algorithms with extended evidence types

The types of continuous-time evidence defined up to this point are only useful if we can incorporate them when per-
forming inference over the system. In this section, we show how exact inference and importance sampling can be extended 
to support the new types of evidence. Because interval evidence types can be used to approximate point and transition 
evidence types, we focus on extending inference algorithms to handle the uncertain and negative interval evidence. Once 
these are implemented, uncertain and negative variations for point and transition evidence types can also be simulated by 
special cases and combinations of the interval types.

We note that we cannot represent uncertain and negative evidence simply by modifying the network itself. This is in 
contrast to the dynamic Bayesian network (DBN) with virtual evidence, for example. When unrolled, the DBN has distinct 
nodes in each timestep to which the virtual evidence nodes can be attached. In a CTBN, there is a single node for each 
variable that persists throughout the entire process. Therefore, the uncertain evidence must be applied to the node at the 
right time during the inference process itself. We now show how exact inference and importance sampling can be extended 
to reason with uncertain and negative evidence.

We demonstrate the extended types of evidence on a real-world CTBN learned from the British Household Panel Survey 
dataset [52] as used previously by [5,15,17]. The network is shown in Fig. 5. The dataset recorded major life changes 
collected annually from a set of approximately 8000 British citizens. The nodes with an “H_” prefix are binary hidden 
variables that allow modeling of phase-type distributions, which can represent more complex sojourn time distributions 
than a single exponential distribution. The Smoking node has two states, {non-smoker, smoker}, the Married node has two 
states, {single, married}, the Children node has three states, {0, 1, 2+}, and the Employed node has three states, {student, 
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Fig. 5. British Household Panel Survey network.

employed, unemployed}. Three-state nodes allow us to show uncertain transitions and to show how negative evidence rules 
out one of those states and renormalizes the probability between the other two states. Nodes with parents and children also 
allow us to show how the new types of evidence affect the probabilities of nodes around the observed node. We assume 
that the initial states at time t = 0 are non-smoker, single, 0, and student. For each demonstration of different evidence types, 
we query the probabilities at 25 points placed uniformly along 10-year span.

4.1. Exact inference for uncertain and negative evidence

Exact inference for CTBNs can be achieved by amalgamating all of the nodes into the full joint intensity matrix and 
performing the forward–backward algorithm for Markov processes [6]. Because the size of the full joint intensity matrix is 
exponential in the number of nodes, this algorithm quickly becomes intractable. We still show how to include uncertain 
and negative evidence with exact inference to provide a baseline for comparison to approximate methods, although even 
approximate inference in CTBNs, like exact inference, is known to be NP-hard [53].

First, consider when there is no evidence. Let P (X(0)) be the initial distribution, and let Q be the full joint intensity 
matrix. The distribution at any point in time t can be calculated as

P (X(t)) = P (X(0))exp( Q t), (22)

where the matrix exponential is defined by the power series

exp( Q t) =
∞∑

n=0

( Q t)n

n! . (23)

Note that, although the matrix exponential is defined as above, there are more efficient and robust ways of computing it 
[54].

When continuous-time evidence is added, the matrix exponential is partitioned, resulting in a product of matrices 
that alternate between matrix exponentials over the segmented intervals and transition matrices between segments. The 
continuous-time evidence is given as a partial sample path. Let the partial sample path over the interval of time [0, T ) be 
denoted as σ[0,T ) . Suppose the evidence partitions σ into N segments, [ti, ti+1), for i = (0, N − 1). Let Q i denote the full 
joint intensity matrix for segment i, meaning that the rows and columns of Q i that do not conform to the evidence of 
segment i are zeroed out. Let Q i, j denote the transition probabilities between segments i and j. If a transition is observed 
on the boundary between segments i and j, the rows and columns of Q i, j are zeroed out except for the transition inten-
sities from non-zero rows in Q i to non-zero rows in Q j . Otherwise, segments i and j will differ only in what states are 
becoming observed or unobserved (instead of transitions being observed), in which case Q i, j is the identity matrix. The 
segmentation of the matrix multiplications can then be defined recursively. Let αt and βt denote the forward and backward 
probability vectors, defined as

αt = P (X(t),σ[0,t]), (24)

βt = P (σ[t,T )|X(t)). (25)

Let α0 be the initial distribution P (X(0)) over the states of X , and let βT be a vector of ones. Let �i, j be an n × n matrix 
of zeros except for a one in position i, j. The recursive definitions for αti and βt j

are

αti+1 = αti exp( Q i(ti+1 − ti)) Q i,i+1, (26)

βti
= Q i−1,i exp( Q i(ti+1 − ti))βti+1

. (27)

The distribution over state k of the CTBN at time t ∈ [ti, ti+1) given evidence σ[0,T ) can be computed as
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P (X(t) = k|σ[0,T )) = 1

Z
αti exp( Q i(t − ti))�k,k exp( Q i(ti+1 − t))βti+1

, (28)

where Z is the normalizing constant.
The matrices Q i and Q i−1,i are modified to include the evidence for segment i. Let Q [l, m] denote entry (l, m) of 

matrix Q . Let Q [l, ∗] and Q [∗, m] denote row l and column m of matrix Q , respectively. Let x denote a state of a node 
X in the CTBN, and let I(x) denote the set of indices in Q i and Q i−1,i that include state x in their state combination. Let 0
denote a row vector of zeros.

4.1.1. Exact inference with uncertain positive interval evidence
For uncertain evidence over node X on segment i, the rows and columns representing transitions between the states of 

X are zeroed out, because the uncertain evidence knows that the state is constant during the interval but is uncertain as 
to the identity of that state. For uncertain positive interval evidence on X , we iterate over all pairs of states x j and xk of X
such that x j �= xk . For each pair l ∈ I(x j) and m ∈ I(xk) such that l �= m:

Q i[l,m] ← 0 (29)

Q i[m, l] ← 0 (30)

The matrix Q i−1,i starts as the identity matrix. The diagonal elements corresponding to each state of X are multiplied 
by the uncertain evidence for that state. This weights the transition into each state according to the uncertainty in the 
evidence. For each x j ∈ X and for each l ∈ I(x j):

Q i−1,i[l, l] ← λ j · Q i−1,i[l, l] (31)

We demonstrate uncertain positive interval evidence and certain negative interval evidence together in the next section 
as the latter is a special case of the former.

4.1.2. Exact inference with certain negative interval evidence
Negative evidence is a straightforward extension for exact inference. In this case, the rows and columns of Q i are zeroed 

out in accordance with the negative evidence. For certain evidence, all but one state of X are zeroed out. For negative 
evidence, there can be multiple states of X that are not zeroed out in Q i . The matrix Q i−1,i starts as the identity matrix 
as before. Formally, for each x ∈ X ′ , and then for each l ∈ I(x):

Q i[l,∗] ← 0 (32)

Q i[∗, l] ← 0T (33)

Q i−1,i[l, l] ← 0 (34)

To demonstrate the effects of uncertain positive interval evidence and certain negative interval evidence, we vary the 
likelihood of the system being in state student over the interval [3.0, 7.0) from 0.0 to 1.0 in increments of 0.2 and divide 
the remaining probability uniformly between employed and unemployed (the likelihood of 0.0 with uniformly dividing the 
likelihood among the remaining states demonstrates negative interval evidence). The bottom-most curve of Fig. 6a shows 
when student can be ruled out with complete certainty. The top-most curve of Fig. 6a shows when student is observed with 
complete certainty. As expected, the uncertain positive observation of Employed affects the probability of the states of other 
nodes as well. Fig. 6b shows the evolving probabilities of state single given the same varying uncertain positive observations 
to Employed. The bottom-most curve of Fig. 6b shows the effect on single when student can be ruled out with complete 
certainty, while the top-most curve shows the effect on single when student is observed with complete certainty.

4.1.3. Exact inference with uncertain negative interval evidence
Uncertain negative interval must be handled differently, because we need to keep track of which states have been visited 

on the interval and weight the first-time transitions into the states according to the evidence. To do this, we create an 
augmented state matrix Q′

i representing the original states combined with flags for which states in the uncertain negative 
evidence have been visited so far on the interval.

Formally, let E be the set of indices for the uncertain negative evidence states over an interval of time for node X . Let V
be a set of Boolean values defined over the indices in E , {v j} j∈E . A value for v j of true means that state x j has been visited, 
while value for v j of false means that state x j has not yet been visited. For each state x j ∈ X , we create new states x〈 j,V 〉
for each possible combination of true/false assignments to the Boolean values in V (except for ¬v j when j ∈ E , because if 
the state is x j then v j must be true). Let v j ∈ V and v ′

k ∈ V ′ . The entries of Q′
i are populated as follows:

q′
〈k,V 〉,〈k,V ′〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q j, j if j = k ∧ V = V ′

q j,k if j �= k ∧ V = V ′ ∧ (k /∈ E ∨ v ′
k)

q j,k · (1 − λk) if j �= k ∧ (∀l �=k vl = v ′
l

) ∧ ¬vk ∧ v ′
k

.

0 otherwise



L. Sturlaugson, J.W. Sheppard / International Journal of Approximate Reasoning 70 (2016) 99–122 111
Fig. 6. Uncertain positive interval evidence.

The evidence does not change the sojourn rates, so the q j, j are copied over for each state as shown in the first case. The 
transition rates q j,k into state xk are unchanged if the state is not part of the evidence or if the state has already been visited 
as shown by the second case. If the state is transitioning into state xk for the first time, and if xk is part of the evidence, 
then the transition is weighted according to the negative evidence for that state as shown by the third case. Note that the 
transition is forced into a state in which visited flag vk is changed from false to true while all other flags remain the same 
(because the node cannot simultaneously transition into multiple states, changing multiple flags). All other transitions are 
set to zero as shown by the fourth case. These entries represent impossible transitions, such as a visited state transitioning 
to the non-visited state or states having multiple different flags that would imply simultaneous transitions.

The matrix Qi−1,i is expanded into Q′
i−1,i with the same states as Q′

i . The diagonal entries of Q′
i−1,i are also weighted 

according to the uncertain evidence:

q′
〈 j,V 〉,〈 j,V ′〉 =

⎧⎨
⎩

1 if j /∈ E

1 − λ j if j ∈ E ∧ (∀k �= j¬vk
) ∧ (∀k �= j¬v ′

k

) ∧ v j ∧ v ′
j

0 otherwise

.

The vector αti is also expanded to match the dimensions with the new Q′
i−1,i . For this, entries with state x j map to states 

〈x j, V 〉 such that v j ∈ V (if j ∈ E) and ∀ j �=k,k∈E¬vk ∈ V . In other words, the flag that x j has been visited is set to true, 
while all other states in the evidence are set to false. The probabilities for the interval of evidence are calculated by taking 
the matrix exponential of Q′

i instead of Qi . The state probabilities for each x j are recovered by combining the probabilities 
across all of the flag settings 〈x j, V 〉. This approach is using to find probabilities of states within the interval of evidence as 
well as to recover βti+1

with compatible dimensions as the original matrix Qi+1,i .
Note that X may have parents and/or children in the network. When X has parents, the process is used to augment the 

states for each of the conditional intensity matrices of X . When X has children, each of the children’s conditional intensity 
matrices remain conditionally dependent on each of the x j ’s only and not on any of the values in V .

To demonstrate uncertain negative evidence, we vary the probability of state student being ruled out over the interval 
[3.0, 7.0), from 0.0 to 1.0 in increments of 0.2. The top-most curve of Fig. 7a shows when student cannot be ruled out with 
any certainty, which is the same as no observation. The bottom-most curve of Fig. 7a shows when student can be ruled 
out with complete certainty. Hence, the probability of student is exactly 0.0 for the entire interval [3.0, 7.0). As above, the 
uncertain negative observation of Employed affects the other nodes. Fig. 7b shows the evolving probabilities of state single
given the same varying uncertain negative observations to Employed. The top-most curve of Fig. 7b shows the effect on 
single when student cannot be ruled out with any certainty, while the bottom-most curve shows the effect on single when 
student can be ruled out with complete certainty.
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Fig. 7. Uncertain negative interval evidence.

As already discussed, uncertain and negative evidence become distinct types of evidence when the evidence is temporal. 
The difference between them becomes apparent when comparing Figs. 6 and 7. Uncertain positive evidence observes the 
state to be constant over the interval, shown by the constant probability of Fig. 6a on the interval [3.0, 7.0). However, the 
uncertain negative evidence rules out states with some probability, but does not rule out state transitions. Therefore, as 
time progresses, the state probability might also vary, even if it has a non-zero probability of being ruled out.

4.1.4. Exact inference with uncertain and negative point evidence
For point evidence, we modify only the Q i−1,i matrix where ti is the time of the point evidence, but we modify it the 

same way as uncertain positive interval evidence or certain negative interval evidence. Specifically, Equation (31) is used for 
uncertain point evidence, and Equation (34) is used for negative point evidence.

To demonstrate the effects of uncertain and negative point evidence, we vary the likelihood of the system being in state 
student at t = 5.0 from 0.0 to 1.0 in increments of 0.2 and divide the remaining probability uniformly between employed and 
unemployed (the likelihood of 0.0 with uniformly dividing the likelihood among the remaining states demonstrates negative 
point evidence). The bottom-most curve of Fig. 8a shows when student can be ruled out with complete certainty. The 
top-most curve of Fig. 8a shows when student is observed with complete certainty. As before, the uncertain and negative 
observations of Employed affect the probability of the states of other nodes as well. Fig. 8b shows the evolving probabilities 
of state single given the same varying uncertain positive observations to Employed. The bottom-most curve of Fig. 8b shows 
the effect on single when student can be ruled out with complete certainty, while the top-most curve shows the effect on 
single when student is observed with complete certainty. The curves in Fig. 8b are understandably similar (but not identical) 
to Fig. 6b because the duration of the evidence is different (a point versus an interval).

4.1.5. Exact inference with uncertain and negative transition evidence
For transition evidence, we again modify only the Q i−1,i matrix where ti is the time of the transition. For uncertain 

transitions, we have likelihoods λ j,k for transitioning from x j to xk . For λ j, j > 0, this implies a non-zero probability that no 
transition occurred if the state was in x j . Negative transition evidence is accomplished by using λ j,k = 0. For each l ∈ (x j)

and for each m ∈ I(xk):

Q i−1,i[l,m] ← λi, j · Q i−1,i[l,m] (35)

Fig. 9 shows the state probabilities of Employed when an uncertain transition is observed at time t = 5.0. Fig. 9a shows 
the probabilities when the state is known to transition from state student, but the destination state is unknown (the destina-
tion state likelihoods are uniform). Fig. 9b shows the probabilities when the state is known to transition to state employed, 
but the source state is unknown (the source state likelihoods are uniform).
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Fig. 8. Uncertain and negative point evidence.

The transition probabilities between the states of Employed are determined by the current state of its parent. Thus, Fig. 9a 
takes into account the probable state of the parent at time t = 5.0, in addition to Employed’s own transition probabilities. 
Fig. 9b shows that, reasoning over the probable state of H_E at time t = 5.0, a transition to employed most likely originated 
from student.

4.2. Importance sampling for uncertain and negative interval evidence

The size of the matrices in the forward–backward algorithm are exponential in the number of nodes in the CTBN. For 
uncertain and negative evidence to be useful, we need to extend existing approximation algorithms to be able to handle 
these new types of evidence.

In this paper, we extend the importance sampling algorithm [6]. The algorithm generates a set of weighted samples that 
conform to a partial sample path e taken as evidence. The algorithm samples a proposal distribution P ′ that conforms to 
the evidence to fill in the unobserved intervals, generating a complete sample path. Because the samples are drawn from 
P ′ to force each sample to be consistent with the evidence, each complete sample path σ is weighted by the likelihood of 
the evidence, calculated as w(σ ) = P (σ ,e)

P ′(σ )
, with the cumulative weight as W = ∑

σ∈S w(σ ). After generating a set of i.i.d. 
samples S , the algorithm approximates the conditional expectation of any function f given the evidence e as:

Ê( f |e) = 1

W

∑
σ∈S

w(σ ) f (σ ) (36)

While the extended importance sampling algorithm is similar in structure to the original algorithm of [6], the introduc-
tion of uncertain and negative evidence requires several modifications that must be made throughout the entire algorithm. 
Because of these differences, we present the extended importance sampling algorithm in full. The pseudocode for the main 
loop is given in Algorithm 1. This algorithm calls several helper methods, given in Algorithms 2 through 5. Asterisks mark 
substantial differences in the pseudocode from the original importance sampling algorithm that must be introduced to 
handle uncertain and negative evidence. The algorithm uses the following notation:

• t is the current time of the sample.
• σ is the sample path, consisting of a sequence of timestamp/state pairs.
• w is the likelihood (weight) of the sample.
• e′ is a set of certain and/or uncertain observations, while e is a set containing only certain observations.
• 〈X, E, [ts, te), type〉 is a certain observation and can be an element of either e′ or e. The variable type has a value of 

either pos or neg for positive and negative evidence, respectively. X identifies the node being observed, and E is the 
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Fig. 9. Uncertain transitions to and from a given state.

observed state (for positive evidence) or the set of states being ruled out (for negative evidence). The interval [ts, te) is 
the time during which this evidence holds for node X .

• 〈X, θ, [ts, te), type〉 is an uncertain observation and can be an element of e′ . The meaning of the variables match those 
above but with θ being a vector of size |X |. When type is pos, θ is a vector of likelihoods for observing each state on 
the interval. When type is neg, θ is a vector with values on [0, 1], and each value gives the relative likelihood with 
which each state can be ruled out on the interval.

• eval
X (t) is the value of X at time t according to the evidence or null if X has no evidence at time t . In the case of 

negative evidence, eval
X (t) could be a set of values.

• etype
X (t) is the type of evidence for X at time t , with values pos and neg for positive and negative evidence, respectively.

• θBX |paB(X)
is the prior probability distribution of X given the parents of X in B.

• Time[X] is the proposed transition time of node X .
• etime

X (t) is the first time after t when eval
X (t) is defined.

• eend
X (t) is the first time after or equal to t when eval

X (t) changes value or becomes null.
• qX(t)|uX (t) is the exponential parameter of node X in state X(t) given the parent states of X at time t .
• θX(t)|uX (t) is the transition probabilities out of state X(t) given the parents’ state of X at time t .

• econf
X (X(t), t) is the soonest time at which the current state conflicts with upcoming evidence, either positive or negative, 

or null if there is no future evidence or the current state matches the soonest positive evidence.

The method Constrain(θ, e) takes the probabilities for a multinomial distribution θ , zeroes out the states in θ listed in e, 
and then re-normalizes θ . The method Append(σ , 〈X, t〉) adds a transition, given as a state X at time t to the end of the 
sample path σ .

The main method CTBN-Importance-Sample(N , e′, tend) generates a single, weighted sample path σ that conforms to the 
evidence e′ and is weighted according to the likelihood of that evidence. Line 1 initializes the current time t to 0, while 
line 2 initializes the set of proposed transition times. Line 3 samples any uncertain evidence in e′ . During the generation 
of this sample, the sampled evidence in e is treated as certain evidence. Line 4 generates the initial states for all nodes 
according to the prior distribution β while conforming to any evidence in e defined at t = 0. The weight of the sample 
is updated according to the likelihood of this evidence. Lines 5–36 continue to generate transitions until the duration of 
the sample path is at least tend . Line 6 ensures all nodes have potential transition times. Line 7 gets the node with the 
soonest potential transition time. In lines 8–37, if that time is later than tend the sample path is finished. The weight is 
updated through the last segment up until tend , and the sample path and its likelihood are returned. Otherwise, lines 11–13
update the weight over the current segment. Line 14 updates the current time to the end of the segment. A transition may 



L. Sturlaugson, J.W. Sheppard / International Journal of Approximate Reasoning 70 (2016) 99–122 115
Algorithm 1 CTBN-Importance-Sample(N , e′, tend).
1: t ← 0
2: Time ← null
3: e ← Sample-Evidence(e′) *
4: 〈X, σ , w〉 ← Sample-Initial-States(N , e)

5: loop until termination
6: Time ← Sample-Transition-Times(Time, N , e)

7: X ← arg minX∈X[Time[X]]
8: if Time[X] ≥ tend

9: w ← Update-Weight(X, w, t, tend, N , e)

10: break
11: else
12: w ← Update-Weight(X, w, t, Time[X], N , e)

13: end if
14: t ← Time[X]
15: if eend

X (t) = t ∧ (eval
X (t) = null ∨ X(t) = eval

X (t) ∨ etype
X (t) = neg) *

16: Time[X] ← null
17: else
18: if etype

X (t) = pos ∧ eval
X (t) �= null ∧ X(t) �= eval

X (t) ∧ eend
X (t) − t < ε *

19: w ← w · θX(t)|uX (t)[eval
X (t)]

20: X(t) ← eval
X (t)

21: else
22: θ ← θX(t)|uX (t)

23: if (etype
X (t) = neg) *

24: w ← w · (1 − ∑
e∈eval

X (t) θ[e]) *

25: Constrain(θ, eval
X (t)) *

26: end if *
27: X(t) ∼ Multinomial(θ)

28: end if
29: X ← X(t)
30: Append(σ , 〈X, t〉)
31: Time[X] ← null
32: for each Y for which X ∈ Pa(Y )

33: Time[Y ] ← null
34: end for
35: end if
36: end loop
37: return 〈σ , w〉

Algorithm 2 Sample-Evidence(e′).
1: e ← ∅
2: for each 〈X, θ, [ts, te), type〉 ∈ e′
3: if type = pos
4: x ∼ Multinomial(θ)

5: e ← e ∪ 〈X, x, [ts, te), pos〉
6: else
7: do
8: E ← ∅
9: for x ∈ X

10: if Uniform(0, 1) < θ[x]
11: E ← E ∪ {x}
12: end if
13: end for
14: while E = X
15: e ← e ∪ 〈X, E, [ts, te), neg〉
16: end if
17: end for
18: return e

not always occur at the end of the segment (hence the term “potential transition time”). A transition will not occur if the 
end of the segment falls on a change in evidence, such that the current time falls on the end or beginning of a segment 
of positive evidence for this node or the evidence is negative. In this case, lines 15–16 reset the potential transition time 
for this node and the process returns to line 5. Otherwise, a transition will occur. Lines 18–20 handle the case when the 
evidence specifies the transition. This occurs when there is positive evidence at the current time (or within ε of the current 
time) and the current state of the node does not match the evidence. Thus, to conform to the evidence, a transition is 
forced in line 20. Line 19 updates the weight with the likelihood of that transition. Otherwise, the node can transition to 
multiple states and the destination state must be sampled. If there is negative evidence, lines 23–26 zero out the transition 
probabilities for these states and update the weight with the likelihood that the node did not transition to these states. In 
line 29, the state of the node is updated. Because a transition has occurred, line 30 adds the transition to the sample path. 



116 L. Sturlaugson, J.W. Sheppard / International Journal of Approximate Reasoning 70 (2016) 99–122
Algorithm 3 Sample-Initial-States(N , e).
1: σ ← null, w ← 1
2: for each variable X ∈ X
3: if eval

X (0) �= null

4: if etype
X (0) = pos *

5: X(0) ← eval
X (0)

6: w ← w · θB
X(0)|paB(0)

7: else *
8: θB ← θB

X(0)|paB
*

9: Constrain(θB, eval
X (0)) *

10: X(0) ∼ Multinomial(θB) *
11: w ← w · (1 − ∑

e∈eval
X (0)

θβ [e]) *

12: end if *
13: else
14: X(0) ∼ Multinomial(θB

X |PaB(X))

15: end if
16: X ← X(0)

17: Append(σ , 〈X, 0〉)
18: end for
19: return 〈X, σ , w〉

Furthermore, lines 31–34 reset the potential transition times for the node and all of its children, as the change of state 
in the parent changes the current intensity matrix of each child. The process returns to line 5 to generate new potential 
transition times.

The helper method Sample-Evidence(e) given by Algorithm 2 handles uncertainty in the evidence, whether positive or 
negative. The states of any uncertain evidence are re-sampled before the generation of each sample. This applies to both 
uncertain positive and uncertain negative evidence. The method also checks to make sure the evidence sampled is feasible. 
For example, uncertain negative evidence must not rule out every state. Thus, for each sample generated by the sampling 
algorithm, all of the evidence can be treated as certain. However, the certain evidence could change between samples, 
according to the uncertainty of the evidence, and the weights of the final set of samples will reflect this in the given query.

The helper method Sample-Initial-States(N , e) is given in Algorithm 3. The method is responsible for sampling the initial 
states of the sample path while conforming to the evidence. Line 1 creates an initially empty sample path σ and initializes 
the weight w . Lines 2–18 loop over all nodes in N . Lines 3–12 handle the case when the node has evidence set at t = 0. 
If the evidence is positive, lines 4–6 set the node to that state and update the weight with the likelihood of that evidence. 
If the evidence is negative, lines 7–12 zero out the transition probabilities for these states and update the weight with the 
likelihood that the node did not transition to these states. If no evidence is specified for this node at t = 0, line 14 samples 
from the prior distribution, and no weighting is necessary. Line 16 sets the initial state of the node, and line 17 adds the 
initial states to the sample path. The current states, the current sample path, and the current weight are returned in line 19.

The helper method Sample-Transition-Times(Time, N , e) is given in Algorithm 4. The method is responsible for generating 
proposed transition times that conform to the evidence. These are only proposed transition times, and transitions are not 
guaranteed to occur at these times. For example, whenever a parent node transitions, the children’s proposed transition 
times will be re-sampled to account for their new conditional intensity matrix and the proposed transition times will 
change. If a node is currently within an interval of positive evidence or has upcoming positive evidence, the proposed 
transition times will be the start or end of the interval, respectively. However, a transition will not occur, because the state 
must be kept constant during the interval of positive evidence. Lines 1–19 loop over all nodes in N , while line 2 checks 
whether the current node needs a new proposed transition time. Line 3 checks whether the node is currently within positive 
evidence. If so, line 4 sets the node’s proposed transition time as the end of the evidence. This does not mean that the node 
will transition immediately after the interval of positive evidence, but will have its proposed transition time sampled again 
once it becomes unobserved. If the node is not currently observed, then line 6 gets the soonest time (if it exists) at which 
the current state of the node conflicts with upcoming evidence. Line 7 checks whether the current state conflicts with 
upcoming evidence (if the time of the soonest conflict is set). This could be positive evidence (the current state will need to 
transition to the observed state at some point) or negative evidence (the current state will need to transition away from the 
set of states that are ruled out). In either case, the proposed transition time must be sampled from a truncated exponential 
distribution, shown in line 8, to condition on the upcoming evidence. Otherwise, line 10 simply samples from an exponential 
distribution. While the current state could be conforming to upcoming evidence, the sampled transition time could be past 
the end of the upcoming evidence. Thus, line 11 gets the time of the next change in the evidence, and lines 12–14 make 
sure the sampled transition time does not exceed this time. Line 17 sets the proposed transition time for this node, and the 
set of proposed transition times for all nodes are returned in line 20.

The helper method Update-Weight(Y , w, t1, t2) is given in Algorithm 5. The method is responsible for weighting the 
likelihood of the transition times, whether the state was observed over an interval or the transition time was sampled from 
a truncated exponential to conform to upcoming evidence. Lines 1–14 loop over all nodes in N . Line 2 gets the time of the 
next change in observation for this node. Line 3 checks whether the state of the node is currently known but will become 
unobserved before transitioning to another state. If this is the case, line 4 updates the weight by the likelihood that the 
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Algorithm 4 Sample-Transition-Times(Time, N , e).
1: for each X ∈ X
2: if Time[X] = null
3: if eval

X (t) �= null ∧ etype
X (t) = pos *

4: �t ← eend
X (t) − t

5: else
6: tconf ← econf

X (X(t), t) *
7: if tconf �= null *
8: �t ∼ Exponential(qX(t)|uX (t)) given �t < (tconf − t) *
9: else

10: �t ∼ Exponential(qX(t)|uX (t))

11: te = etime
X (t)

12: if X(t) = eval
X (te) ∧ t + �t > te

13: �t ← te − t
14: end if
15: end if
16: end if
17: Time[X] ← t + �t
18: end if
19: end for
20: return Time

Algorithm 5 Update-Weight(Y , w, t1, t2, N , e).
1: for each X ∈ X
2: te ← eend

X (t1)

3: if eval
X (t1) �= null ∧ etype

X (t1) = pos ∧ (eval
X (te) = null ∨ etype

X (te) = neg) *
4: w ← w · exp(−qX(t1)|uX (t1)(t2 − t1))

5: else
6: tconf ← econf

X (X(t), t) *
7: if tconf �= null *
8: if X = Y
9: w ← w · (1 − exp(−qX(t1)|uX (t1)(te − t1)))

10: else
11: w ← w · 1−exp(−qX(t1 )|uX (t1 )(te−t1))

1−exp(−qX(t1 )|uX (t1 )(te−t2))

12: end if
13: end if
14: end for
15: return w

node remained in the state for at least the interval observed. Otherwise, if the state was unknown, the transition time might 
have been sampled from a truncated exponential distribution. Line 6 gets the time at which the current state of this node 
conflicts with upcoming evidence, if it exists. Line 7 checks whether this time is set, i.e., whether the most recent proposed 
transition time for this node was sampled from a truncated exponential distribution. If the current node was the node with 
the soonest proposed transition time, the weight is updated with the likelihood of sampling the transition time from the 
truncated exponential, line 9. Otherwise, the proposed transition time must be later and the weight is updated according to 
line 11. The weight for this segment over all of the variables is finally returned in line 15.

The algorithm is extended to support uncertain and negative interval evidence. As mentioned, combinations of infinites-
imal interval evidence can approximate uncertain and negative point and transition evidence. While the algorithm could be 
modified to handled points and transitions exactly, this introduces additional conditional branching for switching between 
points, transitions, and intervals. We also note that the algorithm could be extended further by incorporating uncertainty 
in the evidence into the generation of the sample through predictive look-ahead. This would address situations in which 
sampled combinations of uncertain evidence are highly unlikely given the network parameters and a high proportion of 
generated samples have relatively low weights. However, an efficient and general predictive look-ahead algorithm is un-
likely to exist as, depending on the network parameters, future evidence for any ancestors and/or descendants could force 
an arbitrarily low weight, and the algorithm would have to check all combinations of uncertain evidence and compare each 
with the parameters of all ancestors/descendants to compute the likelihood of that evidence. Nevertheless, an extension for 
limited, local, and/or heuristic predictive look-ahead may be useful in certain cases but is left as future work.

5. Experiments

We demonstrate the extensions to the importance sampling algorithm by comparing the results with the exact inference 
evidence demonstrations from Section 4.1. We vary the number of samples from 100 to 1 000 000 and calculate the average 
KL divergence for all nodes and query times on the interval. Fig. 10 plots both the number of samples and the average KL 
divergence on a log scale to demonstrate convergence of importance sampling to the exact algorithm.

We also want to test how the evidence scales as more evidence is applied. We construct a ring network consisting of n
three-state (s0, s1, s2) nodes connected as follows:
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Fig. 10. Log of average KL divergence versus log of number of samples for demonstration evidence on BHPS network.

Fig. 11. Number of interval evidence versus average number of samples to reach 0.001 KL divergence across 100 trials on the ring network.

X1 → X2 → ·· · → Xn → X1.

Let each rk
i, j be an independent sample from a uniform distribution over the interval (0.5, 1.5). The conditional intensity 

matrices for the nodes are defined as follows (for ease of definition, X0 and Xn denote the same node):
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Each node is given a uniform prior distribution.
For the first scaling experiment, we test importance sampling with an increasing amount of evidence on a ring of size 

n = 2. We generate evidence uniformly along the interval (0.0, 10.0). For each instance of evidence, we choose a random 
node and interval from a (0.0, 0.5) uniform distribution. For certain evidence, we choose a random state for the chosen 
node. For uncertain evidence, we create an uncertain evidence vector in which each entry is drawn from a (0.0, 1.0) uniform 
distribution. For the uncertain positive interval evidence, we normalize this vector to sum to 1.0.

For each type of evidence and count of evidence, we run 100 independent trials. Each trial is a newly sampled ring 
network and newly sampled set of evidence. For each trial, we sample a random time at which to query the probability of a 
random node. We compute the KL divergence between the importance sampling algorithm and the exact algorithm for this 
query and average the KL divergence across all trials. We continue to generate samples until the KL divergence is less than 
0.001.

Fig. 11 shows the results for n = 2. The plot shows that negative evidence (both certain and uncertain) is easier to 
incorporate than tradition certain positive evidence. Negative evidence rules out one or more states, which can be less 
restrictive than certain positive evidence, which forces one particular state. Thus the samples with negative evidence are 
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Fig. 12. Size of network versus number of samples and sample complexity to reach 0.001 KL divergence across 100 trials with one interval of evidence.

likely to have a higher weight than samples with certain positive evidence, and fewer samples are needed to reach the 
target KL divergence. The opposite holds true between uncertain positive evidence and certain positive evidence, in which 
uncertain positive evidence is more difficult to sample and will likely have a lower weight. Thus more samples are usually 
needed for uncertain positive evidence to reach the same level of accuracy as those with certain positive evidence.

For the second scaling experiment, we test importance sampling with an increasing network size from n = 1 to n = 6. 
We generate one interval of evidence starting at t = 5.0. We choose a random node and interval from a (0.0, 0.5) uniform 
distribution. For certain evidence, we choose a random state for the chosen node. For the uncertain positive interval evi-
dence, we create an uncertain evidence vector in which each entry is drawn from a (0.0, 1.0) uniform distribution, and then 
we normalize this vector to sum to 1.0. For uncertain negative interval evidence, we choose a random state and random 
evidence for this state from a (0.0, 1.0) uniform distribution. We continue to generate samples until the KL divergence is 
less than 0.001.

Fig. 12a shows that the number of samples required to converge to the target KL divergence was roughly constant across 
network sizes. Nevertheless, Fig. 12b shows that the complexity of generating a single sample is directly proportional to the 
number of times that the algorithm has to sample from a multinomial or exponential distribution. In this experiment in 
which the amount of evidence is fixed, the complexity of generating the samples is shown to scale linearly with the size of 
the network.

6. Conclusion and future work

Continuous-time systems allow for much greater variety in the types of evidence (as opposed to DBNs, for example) that 
would be useful to know about the system. For CTBNs, evidence can be over an interval or at a single point, corresponding 
to the system being observed in a particular state. The types of continuous-time evidence can be generalized further to 
include uncertain and negative evidence. Uncertain and negative evidence in continuous-time systems represents a novel 
and useful generalization of evidence that makes the models more applicable and versatile.

We presented the first definitions for uncertain and negative variations with point, transition, and interval evidence 
in CTBNs and showed the relationships between these evidence types. We showed how to extend the forward–backward 
algorithm for CTBNs and the CTBN importance sampling algorithm to support all of these evidence types. As discussed in 
Section 2.5, there are several other CTBN inference algorithms that have been developed, each with their own strengths 
and weaknesses. Thus, to give the greatest flexibility to CTBN modelers who have evidence that is uncertain or negative (or 
both), it would be useful to extend these algorithms to support uncertain and negative evidence as well.
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Appendix A. Proof sketches of relationships between types of evidence

Proposition 1. Certain interval evidence is a special case of uncertain positive interval evidence.

Proof. Let state xi be the observed state. Set

λ j =
{

1 if j = i

0 otherwise
. �

Proposition 2. Negative interval evidence is a special case of uncertain negative interval evidence.

Proof (Sketch). Set

λi =
{

1 if xi ∈ X ′

0 otherwise
. �

Proposition 3. Certain interval evidence is a special case of negative interval evidence.

Proof (Sketch). Let state xi be the observed state. Set X ′ as all states of X except xi . �
Proposition 4. Uncertain positive interval evidence approximates uncertain point evidence.

Proof (Sketch). Set t2 = t1 + ε for infinitesimal value ε . �
Proposition 5. Uncertain negative interval evidence approximates uncertain point evidence.

Proof (Sketch). Set t2 = t1 + ε for infinitesimal value ε . �
Proposition 6. Negative interval evidence approximates negative point evidence.

Proof (Sketch). Set t2 = t1 + ε for infinitesimal value ε . �
Proposition 7. Certain interval evidence approximates certain point evidence.

Proof (Sketch). Set t2 = t1 + ε for infinitesimal value ε . �
Proposition 8. Negative point evidence is a special case of uncertain point evidence.

Proof (Sketch). Set

λi =
{

0 if xi ∈ X ′
1

|X |−|X ′| otherwise
. �

Proposition 9. Certain point evidence is a special case of negative point evidence.

Proof (Sketch). Let xi be the observed state. Set X ′ as all states of X except xi . �
Proposition 10. Two instances of certain point evidence represent temporally uncertain transition evidence.

Proof (Sketch). Let distinct states xi and x j be observed by the two instances of certain point evidence. Set t1 and t2 as the 
times of the two instances of certain point evidence. �
Proposition 11. Two instances of uncertain point evidence approximate uncertain transition evidence.
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Proof (Sketch). Let t1 and t2 be the times of the two instances of uncertain point evidence. Set t1 = t2 − ε for infinitesimal 
value ε . �
Proposition 12. Certain transition evidence is a special case of temporally uncertain transition evidence.

Proof (Sketch). Set t1 = t2. �
Proposition 13. Negative transition evidence is a special case of uncertain transition evidence.

Proof (Sketch). Set

λi, j =
{

0 if xi ∈ XS ∨ x j ∈ XE

1
|X |2−|XE |−|X S | otherwise

. �

Proposition 14. Certain transition evidence is a special case of negative transition evidence.

Proof (Sketch). Let state xS be the observed source state and xE be the observed destination state. Set X S as all states of X
except xS and XE as all states of X except xE . �
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