
Assessing Diffusion of Spatial Features in Deep
Belief Networks

Hasari Tosun
Department of Computer Science

Montana State University
Email: hasari@gmail.com

Ben Mitchell
Department of Computer Science

Johns Hopkins University
Email: ben@cs.jhu.edu

John Sheppard
Department of Computer Science

Montana State University
Email: john.sheppard@montana.edu

Abstract—Deep learning has recently gained popularity in
many machine learning applications, but a theoretical grounding
for the strengths, weaknesses, and implicit biases of various
deep learning methods is still a work in progress. Here, we
analyze the role of spatial locality in Deep Belief Networks
(DBN) and show that spatially local information is lost through
diffusion as the network becomes deeper. We then analyze an
approach we developed previously, based on partitioning of
Restricted Boltzmann Machines (RBMs), to demonstrate that our
method is capable of retaining spatially local information when
training DBNs. Specifically, we find that spatially local features
are completely lost in DBNs trained using the “standard” RBM
method, but are largely preserved using our partitioned training
method. In addition, reconstruction accuracy of the model is
improved using our Partitioned-RBM training method.

I. INTRODUCTION

The technique of Deep Learning has gained tremendous
popularity in recent years as it has been demonstrated to
provide state-of-the-art performance on a wide range of ma-
chine learning tasks. In spite of these successful applications,
however, there are still deep theoretical questions about why
and how deep learning techniques work. The fact that fea-
tures represented by hidden nodes in Convolutional Networks
(ConvNets) explicitly represent localized regions suggests that
deep learning methods make use of spatially local statistical
information. However, after applying spatial statistics analysis
tools to RBMs (a standard training algorithm for Deep Belief
Nets), we showed that traditional RBMs are insensitive to
spatially local structure in the input [1]. In order to preserve
these spatial features, we developed Partitioned-RBMs. A
Partitioned-RBM partitions the traditional Restricted Boltz-
mann Machine (RBM) into multiple smaller RBMs, which
are trained independently before being re-joined in the final
model. We found that such Partitioned-RBMs exhibited high
reconstruction accuracy compared to traditional RBMs, so
long as the initial input data contained spatially local structure
[2]. We have also found that classification accuracy remains
competitive with traditional RBMs [3]. Moreover, as the
number of dimensions increases, the number of partitions can
be increased to significantly reduce computational resource
requirements. Other recently developed methods do not scale
well; one is forced to use only some of the available data (sam-
pling), run fewer iterations (stopping prior to convergence),

or both. Our Partitioned-RBM method provides an innovative
scheme to alleviate this problem.

In this paper, we extend our analysis to Deep Belief
Networks (DBNs) with two and three hidden layers. We
used the same spatial statistics tools of spatial variance and
correlation to examine the diffusion of spatially local statistical
information in DBNs trained using both traditional RBMs and
Partitioned-RBMs. We used t-SNE [4] as a complementary
tool in this analysis. We also studied the reconstruction per-
formance of these DBNs, in both the presence and absence of
spatially local structure.

A. Deep Learning

Modern deep learning techniques can be traced back to work
started by Fukushima [5], and later extended by Hinton, Ben-
gio, and LeCun (see [6]–[8]). In recent years, these techniques
have truly matured and are now used in a wide range of state-
of-the-art machine learning systems.

This rapid expansion of interest and application was en-
abled by a combination of improved learning algorithms and
improved computational resources, which allowed much more
complex models to be learned than had previously been
possible. While there are now a variety of models that can be
categorized as deep, they still tend to share a set of common
features that can be traced back to the earliest work in this
field. In particular, they tend to be connectionist networks
consisting of multiple hidden layers, arranged in a basically
feed-forward architecture.

It is the multiple hidden layers that gave rise to the label
“deep.” The mathematical power that comes from stacked
non-linear units has long been recognized, but historically
deep networks were difficult to train and scaled poorly. Using
standard error-backpropagation on a deep network leads to
gradient diffusion, resulting in a high probability of becom-
ing stuck in a shallow local optimum and generally poor
performance [9]. One answer to this problem is a technique
called pre-training, in which the weights in a network are
initially trained in a bottom-up fashion (i.e., one layer at a
time); these weights are then treated as the initial values when
performing standard gradient descent. The pre-training step
is frequently done in an “unsupervised” fashion, using some
form of compression-encoding as the optimization criterion



(e.g. using Autoencoders or RBMs to generate the weights
for each layer) [10].

Deep networks of this type have produced impressive results
on a number of problems that have historically been considered
difficult, particularly in the field of computer vision. Some
examples include handwritten character recognition [6], ob-
ject recognition [11], de-noising [12], and re-construction of
missing or obscured information [12].

There has been less theoretical work done on deep learning
than work on practical applications, but a few things seem
clear. Deep networks have a built-in regularization effect that
does not appear to weaken even in the face of large amounts of
data [13]; this gives them an advantage on data with noise (or
complexities difficult to distinguish from noise). In addition,
for partitioned deep models like ConvNets, exploiting spatially
local information is important to performance [14].

Partitioned deep models work by partitioning nodes within
layers of a network. This can be visualized as a feed-forward
network in which layers are not fully connected; instead the
nodes of each layer are broken into subsets, and each subset
of nodes is fully connected only with a subset of nodes in
the layer above. For instance, in a classic ConvNet a data
vector represents an input (e.g. an image), and is effectively
split into several small overlapping regions (image patches),
each of which is checked for similarity to a set of templates
(filters). In addition to ConvNets, several other deep learning
techniques fall under the classification of partitioned deep
learning, including [5], [15] and [16].

In partitioned learning models, the partitioning can be
thought of as a simplifying assumption that reduces both the
total number of parameters and the number of inter-parameter
dependencies, thus simplifying the learning process. If the data
conform to this assumption, this should provide an advantage.
We have tested the validity of this assumption by training
partitioned models on both “normal” images and “scrambled”
images (in which spatially local structure was intentionally
destroyed by permutation, but no statistical information was
lost if the full vectors were considered). As expected, the
performance of partitioned techniques is severely degraded if
the data badly violates the assumption of spatial structure, but
performance is increased on non-scrambled images [14].

One problem with these results is that they do not cover
all deep learning methods; DBNs, for example, do not nor-
mally take a partitioned approach, so there may be different
principles at play in their success. In this paper, we focus
on the question of whether DBNs are in fact making use of
spatially local statistical information, and if not whether we
can modify the training procedure to incorporate this spatial
locality prior and improve the performance of the network
(without modifying the overall architecture or operation of the
final DBN model).

B. Deep Networks

Autoencoders and RBMs are two standard methods used
as components for deep learning where these components are
stacked to form a deep network [10], [17]–[22]. Training is

done layer-wise where each layer of the RBM or Autoencoder
is trained individually.

An Autoencoder [18] is a feed-forward neural net that
predicts its own input. An Autoencoder often introduces one
or more hidden layers that have lower dimensionality than the
inputs so that it creates a more efficient code for representation
[23]. As a generative model, the Autoencoder encodes the
input x into some representation c(x) so that the input can
be reconstructed from the resulting code. Training is done by
updating model parameters (weights and biases) by minimize
reconstruction error [10].

Likewise, a Restricted Boltzmann Machine is used to form a
DBN where the network is trained layer-wise by compressing
input while minimizing reconstruction error. The training
method differs from Autoencoders (see below), but the goal
is the same. Once all layers have been trained, the resultant
network can then be used in different ways, including adding
a new output layer and running a standard gradient descent
algorithm to learn a supervised task such as classification.

The RBM was first proposed by Smolensky [24] in 1986.
As a type of Hopfield Network, an RBM is a generative model
with visible nodes (x) and hidden nodes (h). As a complete
bipartite graph, there are no unconditional dependencies be-
tween hidden nodes, or between visible nodes. This model
can be represented as Boltzmann energy distribution [25], in
which the joint probability distribution is given as follows:

p(x,h) =
1

Z
exp(−E(x,h))

where the partition function Z defines configurations over all
possible states of x and h.

Z =
∑
x,h

exp(−E(x,h))

Calculating p(x,h) exactly is not tractable due to the
partition function. Thus, training algorithms were initially
very inefficient. RBMs did not gain popularity for many
years until Hinton et al. developed Contrastive Divergence
(CD), a method based on Gibbs Sampling [26]. Gibbs sam-
pling makes use of the conditional probability, p(h|x) =
p(x,h)/

∑
h′ p(x,h′), which has a simple form. Since then,

RBMs are used widely as basic components of deep learning
algorithms [17], [18], [21].

The CD method provides a reasonable approximation to
the likelihood gradient of the energy function, and the CD-1
algorithm (i.e, Contrastive Divergence with one step) has been
shown to be sufficient for many learning applications [10], [27]
including classification tasks [28]–[30] and other tasks such as
Collaborative Filtering [31]. We use CD-1 in our experiments.

II. PARTITIONED RBMS

In order to preserve local features in the dataset and improve
the performance of RBMs, Tosun and Sheppard developed
a Partitioned-RBM [2]. The Partitioned-RBM partitions the
traditional RBM into multiple smaller RBMs, which are
trained independently (and ideally in parallel). The training



Fig. 1. Example partitioning approach for an RBM

involves multiple stages, where each stage has progressively
fewer partitions until one all-inclusive partition is left. In other
words, partitions at successive stages cover a progressively
larger portion of the RBM weights and biases, until the final
stage looks just like a traditional RBM but uses the initial
weights learned in the earlier stages.

Each stage of a Partitioned-RBM is trained using a set of
sub-vectors “partitioned” from full-length training instances.
In effect, each “sub-RBM” is trained on instances that contain
only the features that correspond to the input nodes assigned
to that RBM. Once they have been trained, a new partitioning
with fewer splits is created, which forms the basis for the next
stage. Figure 1 shows an example where the first stage has 4
distinct RBMs, the second has 2, and the final stage has 1.

Performance gains come from all training stages sharing the
same weight matrix. As each RBM covers its own part of the
globally shared weights and biases, this method enables data-
independent parallelization of earlier stages. The later stages,
while allowing less parallelization, begin their training with
weights that have been pre-trained by the earlier stages. This
has several advantages. First, when RBMs have fewer nodes
and weights to be updated, they can be trained more quickly;
for each Gibbs step, CD-1 involves approximately Ns×Nh×
Nv probability calculations where Ns is number of samples,
Nh number of hidden nodes and Nv number of visible nodes
or features. While the results of the disjoint training will not be
optimal (because they lack the full data vectors), they can go
through far more training iterations in a fixed amount of time,
allowing for either larger datasets or more training epochs in a
given time frame. At the later stages, as the RBMs covers more
links, the training requires many fewer epochs than normal to
converge because the weights are closer to their optimal values
than would be the case with random initialization. This enables
the overall Partitioned-RBM hierarchy to achieve the same or
higher performance in a fixed time period than a single RBM
trained all at once.

Since this is a technique for training an RBM, it can be

used to train a DBN without significant modification. Like
a normal DBN, a Partitioned-RBM trained DBN is trained
one layer at a time, using Partitioned-RBM training for each
layer. Unlike the Convolutional Deep Belief Network (CDBN)
model [32], the resulting network is still a traditional DBN in
its architecture and operation. Like Partitioned-RBM, a CDBN
uses partitioning for its filter-response units, but the partitions
are permanent and persist even in the final trained model.
The outputs are then combined with probabilistic max-pooling,
resulting in an architecture that looks more like a CNN than a
DBN. A CDBN is trained using standard sampling techniques.
What differs is the architecture and the novel probabilistic
max-pooling operation. Partitioned-RBM, on the other hand,
is not a new architecture, but rather a new method of training
a standard DBN. Thus, a Partitioned-RBM trained DBN can
be compared directly to a conventionally trained DBN. Doing
the same comparison with a CDBN is much less informative,
as the two models have different representational power.

III. ANALYSIS OF SPATIAL FEATURES

To analyze the spatial behavior of different learning algo-
rithms, we need tools to measure and describe spatial structure
in data. For this, we look primarily to the field of spatial
statistics. In this work, we apply two different methods for
detecting spatial structure. The first is to measure how inter-
feature variance and correlation changes with spatial distance
between features. This gives us a quantitative measure, but tells
us only about pair-wise relationships, and is only meaningful
as an average. The second is a more holistic qualitative
analysis that can be done by using dimensionality reduction
to embed the data in a plane so it can be visualized. This lets
us see what kind of clusters or structure exists in the data, and
compare the amount of structure present in different datasets.

A. Quantitative analysis

For quantitative analysis, we use a tool from spatial statistics
called a variogram, which lets us examine the relationship
between spatial distance and statistical correlation. Note again
that we use spatial in the sense of spatial statistics; the
distances here are between feature locations, not between
datapoints in Rn.

Given a spatial distribution Z, if we take two samples at lo-
cations s1 and s2, we can compare them for similarity. s1−s2
is the spatial distance between the locations where the samples
were taken, and Z(s1)− Z(s2) is the difference between the
sampled values. A variogram is a mapping between these two
quantities:

var(Z(s1)− Z(s2)) = 2γ(s1 − s2),∀s1, s2 ∈ D,

where D is the set of all possible sampling locations. Note
that this is a static, deterministic function of the distance
between two points. For γ(·) to be a well-defined function,
some fairly stringent assumptions must be met (the distri-
bution must be static and isotropic, among other things). If
such a γ(·) exists, then 2γ(·) is defined as the variogram
of the distribution. Generally, this function will be plotted



and examined to observe the relationship between distance
and difference. In geostatistics, where variograms are used
for predictive modeling, these assumptions are often closely
matched by the underlying problems.

Here, we use an empirical estimation of the variogram as a
descriptive analytic tool. We acknowledge that the assumptions
are violated by natural image data, so a “true” variogram is
not well defined. Instead, we calculate an “average” empirical
variogram. A “sample” in the context of image analysis is
basically a pixel, so the location of the sample is merely the
pixel location, and the value of the sample is the pixel value. In
this case, difference-as-a-function-of-distance will not be static
across a set of images, or even within a single image (there are
many pairs of pixels that are the same spatial distance apart),
so to get a static function we average across equidistant pixel
pairs in all the images in our dataset.

To generate the variogram plots in this paper (e.g. Fig. 3),
we compute the variance of each pair of features (computed
across all images in the set). For each pair of features (i.e.
pixels) (i, j), we have n samples (one per image in the
dataset); this can be thought of as two vectors of values, where
the length of the vector is n. We take the difference between
these vectors, and then compute the variance of the resulting
vector, var(Xi−Xj). This gives us one scalar term for each
pair of features. We then average together all feature pairs with
equal inter-feature distances.

We can make similar plots for any other pairwise statistical
measure. For example, we have done something similar using
correlation in place of variance-of-differences. In this paper,
we omit these mean correlation plots for the sake of space,
since they show results consistent with the variograms. Copies
of the mean correlation plots are available upon request.
For more details about variograms, correlograms, and spatial
statistics, the reader is directed to Cressie’s book [33].

B. Qualitative analysis

To embed our data in a 2-dimensional space for visualiza-
tion, we used t-Distributed Stochastic Neighbor Embedding
(t-SNE) [4]. t-SNE was chosen because it is a dimensionality
reduction technique that is particularly good for visualizing
high dimensional data. The method builds a map in which
distances between points reflect similarities in the data. It
embeds high-dimensional data in lower dimensional space
by minimizing the discrepancy between pairwise statistical
relationships in the high and low dimensional spaces.

For a dataset of n points, let i, j ∈ [1, n] be indices,
and let xi ∈ X and yi ∈ Y refer to the ith datapoint
of the original dataset and the low-dimensional equivalent
respectively. Given a candidate embedding, t-SNE first cal-
culates all pairwise Euclidean distances between data points
in each space. The pairwise Euclidean distance between xi
and xj is used to calculate a conditional probability, pj|i,
which is the probability that xi would pick xj as its neighbor.
This probability is based on a Gaussian centered at xi, with
a variance based on sampling density (in densely sampled
regions, the variance will be smaller than in more sparsely

sampled regions). Similarly, pairwise conditional probabilities
qj|i are calculated for each pair (yi, yj) in the low-dimensional
embedding. As an objective function, t-SNE tries to minimize
the discrepancies between the conditional probabilities for cor-
responding pairs in the high dimensional and low dimensional
spaces by using Kullback-Leibler divergence (KL divergence).
This is an intractable global optimization problem, so gradient
descent is used to find a local optimum.

One drawback of t-SNE is that for large, high-dimensional
datasets, even the local search can be quite slow. In such cases,
PCA is sometimes used as a pre-processing step to speed
up the computation and suppresses high-frequency noise. A
typical example might retain the top 30 eigenvectors, and
project the original data into the eigenbasis. t-SNE would then
be applied to this 30-dimensional dataset to reduce it to a 2-
dimensional set for visualization.

The resulting 2D plots make the structure (or lack thereof)
readily apparent. Since the optimization is done on pair-wise
vector distances, feature ordering (i.e. spatially local structure)
in the high-dimensional data does not significantly change the
qualitative properties of the low-dimensional data. Moreover,
since the mapping is non-linear and non-parametric, it is
relatively insensitive to whether information is encoded using
sparse or distributed representations. As a result, t-SNE allows
us to examine the presence of structure without having to
worry about the form of that structure impacting our analysis.

IV. EXPERIMENTS AND RESULTS

We used the MNIST dataset for our experiments due to its
wide use in evaluating RBMs and deep learning algorithms.
The MNIST database (Mixed National Institute of Standards
and Technology database) is a database of handwritten digits,
constructed from NIST’s SD-3 and SD-1 databases. MNIST
has 60,000 training instances; we repeatedly split this dataset
for our cross-validation experiments. Each image is 28 × 28
pixels, and encodes a single handwritten digit (0 to 9). The raw
digit images are scaled to fit in a 20×20 region (original aspect
ratio maintained), and are then centered in the final 28 × 28
image, resulting in a white border around every image. This
dataset was introduced in [6], and can be obtained from [34].

We measured the performance of the DBNs using recon-
struction error, which is defined to be the mean difference
between the original and reconstructed images. We used a
binary reconstruction error, with a fixed threshold value of
30 to map pixels in the range [0− 255] to a binary 1 or 0
for the original images. To get the reconstructed image from
the DBN, we propagate the image all the way to the last
hidden layer of Deep Belief Network, then reconstruct it by
reverse propagation to the visible layer. The resulting vector is
binarized and compared with the original vector to calculate
a reconstruction error, E. If x is the original vector, x′ is the
reconstruction, and both are of length n, then E is defined as:

E(x,x′) =
1

n

n∑
i=1

I(xi 6= x′i)



Fig. 2. Variogram and mean-correlation plots for the MNIST training set.

TABLE I
RECONSTRUCTION ERRORS FOR 2-LAYER DBN

Configuration Samples (103) Error (%)
Single RBM 60 2.59
Partitioned-RBM-(16-4-1) 60-50-30 1.05

To examine whether spatially local features are being dis-
rupted, we constructed a 2-layer deep belief network, where
each layer is composed of 784 hidden nodes. We calculated
the variogram for the output of hidden nodes at each layer.

Table I shows the results of our DBN with two layers. The
configuration column specifies training method used; “Single
RBM” indicates the traditional RBM and “Partitioned-RBM”
indicates a partitioned RBM. The number of partitions in each
training stage is defined in parentheses; (16-4-1) indicates that
we trained a Partitioned-RBM first with 16 splits, then 4, and
finally trained as a single partition. Note that each successive
Partitioned-RBM configuration starts with the output of the
previous configuration, as described in Section II. The Samples
column gives the number of training instances, selected at
random from the total training set, that were used to train
the given DBN. As the number of partitions decreases, we
decrease the training set size to match the time complexity of
the full Partitioned-RBM training process to that of the Single
RBM. Each RBM was run for 15 iterations, and the error rates

reported are the mean values from 10-fold cross-validation (not
using MNIST’s predefined training and test sets).

Partitioned-RBM significantly outperforms the Single RBM
(p > 99.99% using a paired t-test). By design, the compu-
tational complexity of the full stack of Partitioned-RBMs is
comparable to or faster than that of the Single RBM trained on
the entire dataset; however, it is evident that less computation
would have been necessary for the Partitioned-RBM to yield
superior performance.

We generated variogram plots as described in Section III-A.
Figure 2 shows the variogram and mean-correlation of the
original MNIST dataset; note that the latter part of the plots
is caused by the white “border pixels” that are an artifact
of MNIST. Figure 3 shows the variogram plots for subsets
of the data corresponding to digits 0, 5 and 9 (other digits
are omitted for brevity, but look similar). The first column
shows variograms of the raw input vectors for each subset,
the second column shows results of the Single RBM, and
the third shows results of the Partitioned-RBM. The y-axis
represents the mean variance of differences, and the x-axis
represents Euclidean pixel distance between points. For all
digits, Partitioned-RBM produces an “arch” pattern consistent
with the original digit plot. In comparison, the hidden layers of
the traditional RBM do not preserve the relationship between
distance and difference.

We also used t-SNE (as described in Sec. III-B) to visualize
the activations at the hidden nodes. To apply t-SNE to hidden
nodes, we generated sample points by setting a selected hidden
neuron to 1.0 and all other hidden nodes to 0.0, and then
computing corresponding input node activations. Thus, the
weights between that hidden node to all visible nodes captures
a “feature” (this can also be referred to as a filter, or template,
depending on context). For this experiment, we constructed
a 3-layer Deep Belief Network where each layer has 784
nodes. Results are shown in Figure 4. The first row shows
the results for the Partitioned-RBM and the second row for a
Single RBM. Columns corresponds to network layers 1–3. The
scatter plot of activations shows that the Partitioned-RBM has
some natural clusters, whereas the Single RBM output closely
approximates a zero-mean Gaussian.

To ensure that the t-SNE method is correctly accounting
for possible re-ordering of features, we applied t-SNE to both
permuted and non-permuted MNIST data. Figure 5 shows
results of these experiments. The left figure is for original data
and right figure corresponds to permuted data. The permuted
data generates a t-SNE plot with qualitatively similar structure
to that generated from the original data; importantly, this
resembles the output generated from the Partitioned-RBM, but
it does not resemble the Gaussian-like output generated from
the traditional RBM.

To explore how diffusion progresses across layers in the
Partitioned-RBM, we paused the training between stages (i.e.



Fig. 3. Variograms: labels 0, 5 and 9 (from top to bottom). Labels of the form N−P indicate data for hidden layer N of a Deep Belief Network based
on Partitioned-RBMs with P partitions. First column corresponds result of original digits. Second column corresponds to Single RBM and last column
corresponds to Partitioned-RBM

Fig. 4. MNIST t-SNE mappings for hidden node activations: 15 iterations



Fig. 5. MNIST t-SNE mappings for both original data and permuted data

just before the number of partitions was decreased). As the
number of partitions changed, we plotted the t-SNE mapping
for the first hidden layer of the DBN (first RBM). Figure
6 shows that structure continues to be present, though some
consolidation does take place as partitions are joined.

V. DISCUSSION

From the results of our experiments using spatial statistics
and t-SNE, we are led to the conclusion that the Partitioned-
RBM in a Deep Belief Network is making use of spatially local
information, where the Single RBM is not. The variograms
(Fig. 3) demonstrate that the Partitioned-RBM output has
broadly similar spatial statistics as the original dataset. While
the plots are not identical, similar overall trends are present.
Partitioned-RBM training preserves these statistical patterns
even in higher layers of the network. The same plots for Single
RBM training show that spatial locality is lost in the first
hidden layer.

Figure 5 shows what happens when the original data is
scrambled beforehand, by generating a random permutation,
and then applying it to each input vector. Despite the disruption
of spatial organization of features, the transformation is loss-
less, and structure obtained in the t-SNE projection is similar
to that for the original data. This suggests that if the Single
RBM had preserved any spatial features, we should see similar
structure in the t-SNE projection (even if the spatial orga-
nization of those features was not preserved). As the t-SNE
results show, there is no structure in the t-SNE projection after
the first layer of the Single RBM; the projected distribution
closely approximates a Gaussian (i.e. it is indistinguishable
from noise). This leads us to the conclusion that traditional
RBMs do not retain spatially local statistical information in
any recoverable form. As a result, any deep network trained
using standard RBMs will lose all spatial information in
the first hidden layer. On the other hand, the Partitioned-
RBM training technique preserves spatially local information,

meaning a deep network trained using this method can make
use of spatial patterns in all layers of the network.

This result, combined with the performance edge the
Partitioned-RBM has in practice, reinforces the hypothesis
that the MNIST data has relevant spatially local structure, and
that like other partitioned deep methods, the Partitioned-RBM
achieves its performance due to an implicit model bias that
assumes (and exploits) the presence of spatially local features.
DBNs trained with the standard RBM method lose spatially
local features, and are therefore at a disadvantage because
they are attempting to solve a harder problem. Without the
constraint imposed by the assumption of local structure, the
standard RBM training algorithm is left with a much larger
hypothesis space to search.

In spite of this, traditional DBNs achieve remarkable per-
formance when applied to classification, image recognition
and many other applications. We have begun to explore
applications where we can apply partitioned-data techniques,
and we are in the process of comparing a partitioned-data DBN
to a traditional DBN in terms of classification performance
(as opposed to the reconstruction task examined here). This is
important in two ways: 1) we would like to determine whether
preserving spatially local structure in higher layers of the
network can improve classification accuracy, and 2) we would
like to further explore how and why deep learning works,
by analyzing how traditional DBNs achieve their performance
even without exploiting any spatially local information.

Finally, it appears that Partitioned-RBM preserves local
structures by imposing some kind of ordering on hidden nodes.
As a result, it maintains similar structures in all layers. We plan
to evaluate whether this feature can be productively applied
to temporal applications and time-series data, as well as the
spatial data used here.

ACKNOWLEDGMENTS

We would like to thank Nathan Fortier, Shane Strasser,
and Logan Perreault, who all contributed to discussions about



Fig. 6. MNIST t-SNE mappings for hidden node activations: Partitions

the material covered in this paper, and Carey Priebe, for his
expert advice on spatial statistics. We would also like to thank
the Johns Hopkins University CS department for providing
financial support to Ben Mitchell while he completes his PhD.

REFERENCES

[1] B. Mitchell, H. Tosun, and J. Sheppard, “Deep learning using partitioned
data vectors,” in International Joint Conference on Neural Networks
(IJCNN). IEEE, 2015, pp. 1–8.

[2] H. Tosun and J. W. Sheppard, “Training restricted Boltzmann machines
with overlapping partitions,” in Machine Learning and Knowledge
Discovery in Databases,ECML PKDD, ser. Lecture Notes in Computer
Science. Springer, 2014, vol. 8726, pp. 195–208.

[3] H. Tosun and J. Sheppard, “Fast classification under bounded compu-
tational resources using partitioned-rbms,” in to appear in International
Joint Conference on Neural Networks (IJCNN). IEEE, 2016.

[4] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008.

[5] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[7] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algortihm for
deep belief nets,” Neural Computation, vol. 18, pp. 1527–1554, 2006.

[8] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep belief networks,” Advances in Neural Information
Processing Systems 19 (NIPS ’06), pp. 153–160, 2007.

[9] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, March 1994.

[10] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[11] Y. LeCun, F. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” Proceedings of
IEEE CVPR ’04, vol. 2, pp. 97–104, 2004.

[12] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 341–349.

[13] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, and P. Vincent, “Why
does unsupervised pre-training help deep learning?” Journal of Machine
Learning Research, vol. 11, pp. 625–660, 2010.

[14] B. Mitchell and J. Sheppard, “Deep structure learning: Beyond connec-
tionist approaches,” Proceedings of ICMLA ’12, pp. 162–167, 2012.

[15] S. Behnke and R. Rojas, “Neural abstraction pyramid: a hierarchical
image understanding architecture,” International Joint Conference on
Neural Networks (IJCNN), vol. 2, pp. 820–825, 1998.

[16] D. George and B. Jaros, “The HTM Learning Algorithm,” Numenta, Inc.
www.numenta.com, March 2007, March 2007. [Online]. Available:
www.numenta.com

[17] G. Hinton and R. Salakhutdinov, “Discovering binary codes for docu-
ments by learning deep generative models,” Topics in Cognitive Science,
vol. 3, no. 1, pp. 74–91, 2011.

[18] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[19] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann machines,” in
International Conference on Artificial Intelligence and Statistics, 2009,
pp. 448–455.

[20] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[21] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in Neural Information
Processing Systems, vol. 19, pp. 153–160, 2007.

[22] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” The Journal of Machine
Learning Research, vol. 10, pp. 1–40, 2009.

[23] B. A. Olshausen et al., “Emergence of simple-cell receptive field
properties by learning a sparse code for natural images,” Nature, vol.
381, no. 6583, pp. 607–609, 1996.

[24] P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” in Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1, D. E. Rumelhart and
J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986, pp.
194–281.

[25] D. S. Lemons, A student’s guide to entropy. Cambridge University
Press, 2013.

[26] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[27] T. Tieleman, “Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient,” in Proceedings of the 25th International
Conference on Machine Learning. ACM, 2008, pp. 1064–1071.

[28] G. E. Dahl, R. P. Adams, and H. Larochelle, “Training restricted
Boltzmann machines on word observations,” in Proceedings of the 29th
International Conference on Machine Learning. ACM, 2012, pp. 679–
686.

[29] H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted Boltzmann machines,” in Proceedings of the 25th International
Conference on Machine Learning. ACM, 2008, pp. 536–543.

[30] J. Louradour and H. Larochelle, “Classification of sets using restricted
Boltzmann machines,” in Uncertainty in Artificial Intelligence. AUAI,
2011, pp. 463–470.

[31] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann
machines for collaborative filtering,” in Proceedings of the 24th Inter-
national Conference on Machine Learning. ACM, 2007, pp. 791–798.

[32] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 609–616.

[33] N. A. C. Cressie, Statistics for Spatial Data. Wiley-Interscience, 1993.
[34] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database

of handwritten digits. Accessed 2014-01-15. [Online]. Available:
http://yann.lecun.com/exdb/mnist/


