Fast Classifier Learning under Bounded
Computational Resources using Partitioned
Restricted Boltzmann Machines

Hasari Tosun
Department of Computer Science
Montana State University
Email: hasari@gmail.com

Abstract—We develop a Partitioned Restricted Boltzmann
Machine (PRBM) for classification. We demonstrate that this
method provides both speed and accuracy. Specifically, because it
is partitioned into smaller RBMs, all available data can be used
for training, and individual RBMs can be trained in parallel.
Moreover, as the number of dimensions increases, the number
of partitions can be increased to significantly reduce runtime
computational resource requirements. All other recently devel-
oped methods using RBMs for classification suffer from some
serious disadvantage under bounded computational resources;
one is forced to either use a subsample of the whole data, run
fewer iterations (early stop criterion), or both. Our Partitioned-
RBM method provides an innovative scheme to overcome this
shortcoming.

I. INTRODUCTION

The Boltzmann Machine (BM) was initially designed as a
parallel network for constraint satisfaction [1]. A Restricted
Boltzmann Machine (RBM) is a variant of a Boltzmann ma-
chine in which hidden and visible nodes constitute a bipartite
graph: there are no probabilistic dependencies among visible
nodes or among hidden nodes. Though this restriction allows
more efficient computation still RBMs were not practical for
a long time. Increased computational power and the develop-
ment of an efficient training technique Contrastive Divergence
(CD), based on Gibbs Sampling [2], have made RBMs appli-
cable to many machine learning tasks. After being proposed
as building blocks of Deep Belief Networks (DBNs), they
attracted much attention from the machine learning community
[31-[5].

Restricted Boltzmann Machines are used to form a DBN
where the network is trained layer-wise while minimizing
reconstruction error. This is a form of unsupervised pre-
training. Once all layers have been trained, the resultant
network can then be used in different ways, including adding
a new output layer and running a standard gradient descent
algorithm to learn a supervised task such as classification. The
aim of stacking RBMs in this way is to learn features in order
to obtain a high level representation.

Recent developments in the field of DBNs have led to a
renewed interest in applying RBMs as a standalone learning

John Sheppard
Department of Computer Science
Montana State University
Email: john.sheppard @montana.edu

technique in addition to their wide usage as powerful fea-
ture extractors. For example, RBMs have successfully been
applied to Collaborative Filtering [6]. These authors developed
efficient learning and inference procedures using RBMs and
successfully applied them to the Netflix data set containing
over 100 million user/movie ratings. Because the user-movie
matrix has lot of missing entries, the authors designed one
RBM per user. However, the RBMs share weights and biases
for common movies.

One of the most significant current research achievements
with RBMs is to apply them as standalone classifier by
Larochelle et al. [7]-[9]. In combination with a generative
objective function, Larochelle et al. developed a discrimina-
tive objective function to train RBMs as classifiers. It was
demonstrated that when a hybrid objective function is used, the
classification accuracy can be increased significantly. However,
interestingly, as demonstrated in Section III, the results could
not be replicated due to an overflow when computing the
gradient of the discriminative objective function. We will
discuss this in more detail in Section III.

Schmabh et al. took a different approach in applying RBMs
to classification tasks: instead of using a monolithic RBM to
represent all classes, the authors trained one RBM per class la-
bel [10]. However, a major drawback of this approach is that it
cannot model latent similarities between classes. Nonetheless,
a most interesting result of their study is the demonstration
that the generative training can improve discriminative perfor-
mance even if all data are labeled. Studying two methods of
training, one almost entirely generative and one discriminative,
the authors found that a generatively trained RBM yielded
better discriminative performance for one of the two tasks
studied.

We previously proposed a novel algorithm, Partitioned-
RBM, for training RBMs that splits a single RBM into mul-
tiple partitions. Each partition is then trained on a subsection
of the data instances. In our experiments, we found that
this training process improves the performance in terms of
both generative power and speed [11]. After applying spatial
statistical analysis tools, we found that traditional RBMs are
insensitive to spatially local structure in the input [12], whereas

Partitioned-RBMs are sensitive to local structure. We further
evaluated statistical features in the context of DBNs. The ex-
perimental results showed that spatial statistics are completely
lost when traditional RBMs are used [13]. However, in the case
of Partitioned-RBMs, spatial features are preserved in higher
layers of the network while maintaining high reconstruction
accuracy. This conclusion led us to believe that a Partitioned-
RBM may be used as an efficient standalone learning method
for classifications tasks as well.

In this paper, we introduce a variant of the Partitioned-
RBM for classification tasks. We believe that far too little
attention has been paid to runtime performance and far too
much attention has been paid to obtaining higher classification
accuracy rates or lower classification error rates. To the best
of our knowledge, using RBMs with bounded computational
resources, namely CPU time, has not been considered previ-
ously. Hence, the goal of this paper is to find out if there
exists a method for improving the runtime performance of
RBMs without significantly degrading classification accuracy.
When we developed the Partitioned-RBM to obtain better
reconstruction accuracy, we noticed that runtime performance
was also superior to regular RBMs [11]. Thus, our previous
results suggest that Partitioned-RBMs can perform well under
bounded computational resources.

Another key aspect of our Partitioned-RBM is that the
training process introduces an intrinsic sparsity by design.
At each training stage, the weights only inside individual
partitions are optimized; the weights connecting the visible
layer of one partition to the hidden layer of another are
untouched. Thus, the Partitioned-RBM weights are inherently
sparse. This is important because Larochelle et al. showed that
a sparse version of the hybrid RBM significantly outperforms
all other techniques in terms of classification error rates; the
results were even better than Deep Belief Network results
reported in the literature [8]. Larochelle et al. introduced
sparsity by subtracting a small constant § value, a hyper-
parameter, from biases after each parameter update. In our
case, the training of smaller partitions and gradually piecing
them together accomplishes a similar result.

The rest of this paper is organized as follows: In Section II,
we briefly introduce the Boltzmann Distribution and describe
our training method as a generative model. In Section III, we
describe the extension of Partitioned-RBMs for classification
and show experimental results in Section IV. Finally, we
discuss future work in Section V.

II. PARTITIONED RESTRICTED BOLTZMANN MACHINES

The RBM network was first proposed by Smolensky [14] in
1986. As a type of Hopfield Network, an RBM is a generative
model with visible nodes (x) and hidden nodes (h). As a
complete bipartite graph, there are no dependencies among
hidden nodes, nor among visible nodes. This model can be
represented as a Boltzmann energy distribution [15], in which
the joint probability distribution is given as follows:

plx) = exp(~ E(x, b))

where the partition function, Z defines configurations over all
possible states of x and h.

Z = exp(—E(x,h))
x,h

Calculating p(x, h) is not tractable due to the presence of
the partition function. Thus, training algorithms were initially
very inefficient. RBMs did not gain popularity for many years
until Hinton et al. developed Contrastive Divergence (CD), a
method based on Gibbs Sampling [2]. Gibbs sampling makes
use of the conditional probability, p(h|x), which has a simple
form as presented in Equation 1. Thus, with development
of the CD technique, RBMs became widely used as basic
components of deep learning algorithms [3]-[5].

p(hlx) = p(x,h)/ Y p(x, W) (D
h,

The CD method provides a reasonable approximation to
the likelihood gradient of the energy function, and the CD-1
algorithm (i.e, Contrastive Divergence with one step) has been
shown to be sufficient for many learning applications [16],
[17], including classification tasks [7]-[9], [18] and other tasks
such as Collaborative Filtering [6].

In order to preserve spatially local features in the dataset
and improve the performance of RBMs, Tosun and Shep-
pard developed a Partitioned-RBM [11]. The Partitioned-RBM
partitions a traditional RBM into multiple smaller RBMs,
which are trained independently (and, ideally, in parallel).
The training involves multiple stages, where each stage has
progressively fewer partitions until one all-inclusive partition
is left. In other words, partitions at successive stages cover a
progressively larger portion of the RBM weights and biases,
until the final stage looks just like a traditional RBM, but uses
as initial weights the ones learned in the earlier stages.

Each stage of a Partitioned-RBM is trained using a set of
sub-vectors partitioned from the training instances; in effect,
each “sub-RBM?” is trained on instances that contain only the
features that correspond to the input nodes assigned to that
RBM. Once they have been trained, a new partitioning with
fewer splits is created, which forms the basis for the next stage.
Figure 1 shows an example where the first stage has 4 distinct
RBMs, the second stage has 2, and the final stage has 1.

Performance gains come from all training stages sharing the
same weight matrix. As each RBM covers its own part of the
globally shared weights and biases, this method enables data-
independent parallelization of earlier stages. The later stages,
while allowing less parallelization, begin their training with
weights that have been pre-trained in the earlier stages. This
has several advantages. First, when RBMs have fewer nodes
and weights to be updated, they can be trained more quickly;
for each Gibbs step, CD-1 involves O(S x H x V') probability
calculations per iteration where S, H and V' are number of
samples, hidden nodes, and visible nodes respectively. Thus,
we estimate that the total number of Markov chain calculations
for a regular RBM is approximately

ChainOps ~O(I-S-H-V)

visible hidden visible hidden visible hidden

) : .. : , :
*® o @ ¥ g
& rlbm 1 @

c) rbm @ - o
e . ® >
G @ @ @ v v
.. rbm 2 @ -
0. " -0 |0 bm ©
. . - 1-4 »
.rbm 3 "/
L J tbm
" tbm 4 3-4 - -

Fig. 1. Example partitioning approach for an RBM

where [is the number of iterations for the complete training.
Fewer chain operations translate into less CPU time. Since
Partitioned-RBM is split in each stage and run in parallel, the
number of samples for a stage can be configured to improve
runtime performance. Therefore, we estimate that the total
number of Markov chain calculations for a Partitioned-RBM
is

ChainOps ~O [I-H-V- Y %)
n€{ng,n1,...,1} *
SE{50,51,--+s}

where n,; represents number of splits in stage ¢ and s;
represents number of samples used at each stage for training.
If we keep I, H, and V constant, we can vary the number of
samples used in each stage and/or the number of partitions to
improve runtime performance. We show that such a scheme
works without degradation of the classification accuracy of the
model.

III. CLASS PARTITIONED RBMS

Larochelle et al. carried out a comprehensive study of
RBMs in classification tasks and successfully applied RBMs
as a standalone learning technique, classRBM [18]. In ad-
dition to a generative training objective function for the CD
algorithm, the authors developed a discriminative training ob-
jective function as well. Furthermore, combining two objective
functions, they created a hybrid objective function that was
then used for the gradient calculations. The authors reported
that the hybrid method produced excellent results. However,
we could not replicate their results because the discriminative
training objective function calculations resulted in an overflow
for reasonably large networks. The discriminative objective
function involves the following equation

plylx) = exp(dy+3F s(c;+Usy+3, Wyiws))
Zy*e{l,...,c} eXP(dy"FZf’ s(c;+Ujyx+32; Wjizi))

S I I XIXX)

~ .,

- e
v W
-
EOIOIONN X X X X I

Fig. 2. Class RBM Network

where c is the weight vector for the bias on the hidden
nodes, and U is the weight vector between hidden nodes and
class nodes. Finally, s(z) = log(1 4 exp(x)) is the softplus
function. An example network is shown in Figure 3. Here,
x, h, and y represent visible, hidden, and class label nodes
(output nodes), respectively. Class nodes are all set to 0 except
the for the node corresponding to the target class label, which
is set to 1.0. For instance, when there are 10 classes and a
specific data instance has the third label, the corresponding
output vector, y, is [0,0,1.0,0,0,0,0,0,0].

Unfortunately, this conditional distribution can only be com-
puted exactly and efficiently when there is a reasonably small
number of classes. Otherwise, the denominator will result in
an exponential number of terms, as we have to sum over all
classes. A more serious weakness with this method, however,
is that in practice it suffers from computational overflow.

For each y; value, ignoring c¢ biases and U, the value in
softplus function is a vector of Wy yxy,1. If the W matrix
is initialized with values randomly chosen between ﬁ

and % and for H = 1500 and V = 784, the resulting
matrix values will be distributed uniformly between —0.00067
and 0.00067. Thus, the value for exp(x) in softplus function
ranges from 0.9993 to 1.0007. The log(l + %) expression
results in values around 0.69. Then, ignoring d,, the) (x)
expression has value of H x 0.69. Finally, it results in
exp(H x0.69). Thus, with H = 1500, we have exp(1035). But
for modern CPUs, exp(710.0) results in overflow (infinity).
Therefore, the maximum number of hidden nodes one can use
is around 710.0/0.69, that is 1028 nodes.

It should be noted that we ignored many variables in this
formula to simplify the analysis. Thus, even for 1028 nodes, it
is not guaranteed that the overflow will not happen. Overflow
can be encountered when one uses 1000 nodes or fewer. In
addition to the overflow, the time complexity of an RBM
increases with addition of the discriminative gradient.

As we could not use classRBM for some reasonably sized
experiments, we propose a model where we train partitions as
described in Section II in an unsupervised fashion except for
the last stage. As shown in Figure 3, class nodes are added to
the visible vector of the final stage with one node per class.
Thus, we train the final stage in a supervised fashion.

Algorithm 1 is a slightly modified version of the CD-1
training technique for classification tasks. On line 2-6, we
calculate hidden node activations. When the training is done
for the classification (when there are class nodes), we add the
contribution of the class input nodes by multiplying with U

visible hidden visible hidden visible hidden
..) ..)
@ bm 1.]] : o -
rbm -
e ... ® >
2 @ @ @ v -
. rbm 2. @ o o
€] @ * |l rbm ¥
. . - 1-4 -
.rbmS -
. . o
00000000 rbm -
rbm 4 3-4 - -
C]
class nodes
——0
*

Fig. 3. Class Partitioned-RBM

matrix. In other words, the squashing function that calculates
hidden node activations, in addition to Wx, has the Uy
component. On line 7, new probabilities are sampled from
the hidden activations. Using sampled probabilities, the new
values for x and y are calculated on lines 8-11. Using new
predicted values of x and y, new hidden activation probabil-
ities are obtained on lines 12-16. Depending on whether the
network is trained for classification or not, the contribution of
the Uy is added to the probability calculations as described
above. Finally, all network parameters are updated on line 17-
23. Of course for CD-£, this process is repeated k steps before
updating parameters.

Tieleman improved the Contrastive Divergence method by
making Markov chains persistent [16]. In other words, the
Markov chain is not reset for each training example or batch.
This has been shown to significantly outperform Contrastive
Divergence with one step, CD-1, with respect to classification
accuracy. However, it does not address the problem of training
speed. To alleviate the runtime performance issues of the
Contrastive Divergence with multiple chains, Brekal et al.
introduced an algorithm using parallel Markov chains [19].
However, the resulting Markov chains need to share messages,
and the gradient is estimated by averaging chains. Also, this
method does not improve the runtime performance of CD-1.

Finally, to classify a new data sample, the input vector will
be constructed with all class nodes set to 0. Then, the input
vector will be propagated to the hidden layer using Equation 1.
A new visible vector will be sampled from the model based
on the activation of hidden nodes. Since the visible vector
contains class nodes as well, the class nodes’ values will be
used to predict the class label. In other words, the class node
with the highest activation value determines the class label.

Algorithm 1 Class Partitioned-RBM

1: W: weight matrix from hidden nodes to visible nodes, U:
weight matrix from hidden nodes to output nodes. b: bias
on visible nodes, c: bias on hidden nodes, d: bias on class
nodes. e€: is the learning rate. x ~ p means x is sampled
from p. o(x) = 1-&-%

. if classification then

hi < o(ci+ 32 Wijz; + 32,5 Uijy;s)
else
h; < O'(Ci + Zj Wij.%‘j)

: end if

: hs1 ~ p(h;) {sample h;; from a binomial distribution
given h;}

g o(by £) Wijhi)

s xj1 o~ p(rg)

10: y; < O'(dj + Zz Uijhil)

1 yj1 ~ p(y;)

12: if classification then

13: hio %J(Ci +Zj Wijéﬂjl +Zj Uijyjl)

14: else

15: hio <—O‘(Ci +Zj Wijle)

16: end if

Update parameters:

17: W<+ W+ E(hill‘j — hgile)

18: b+ b+ 6((Ej — le)

19: c 4 c+ E(hil — hlg)

20: if classification then

21: U+U-+ e(hilyj — hgiyjl)

22: d<+—d+ E(yﬂ — yig)

23: end if

RN o

O 0

IV. EXPERIMENTAL RESULTS

We used the MNIST dataset for our experiments due to its
wide use in evaluating RBMs and deep learning algorithms.
The MNIST database (Mixed National Institute of Standards
and Technology database) is a database of handwritten digits,
constructed from NIST’s SD-1 and SD-3 databases. MNIST
has 60,000 training instances; rather than using the pre-defined
test set of 10,000 images, we repeatedly split the training
dataset for our cross-validation experiments. Each image is
28 x 28 pixels, and encodes a single handwritten digit (0 to
9). The raw digit images are scaled to fit in a 20 x 20 region
(original aspect ratio maintained), and are then centered in
the final 28 x 28 image, resulting in a white border around
every image. This dataset was introduced in [20], and can be
obtained from [21].

Unless stated otherwise, for all experiments, we trained
models for 20 iterations. Moreover, when we compare methods
in terms of the significance of results, we compare them using
a paired t-test with 99% confidence intervals.

Table I shows the results of our RBMs with 1500 hidden
nodes. In the configuration column, Single RBM represents the
traditional RBM and Partitioned-RBM represents a Partitioned
RBM. The number of partitions in each training stage is
defined in parentheses; (16-4-1) indicates that we trained the

TABLE I
CLASSIFICATION ACCURACY RATES

TABLE III
PARTITIONED-RBM CLASSIFICATION ACCURACY

Chain

Configuration ‘ Samples (103) ‘ Accuracy (%) ‘

Chain

Configuration ‘ Samples (10°) ‘ Accuracy (%) ‘

Operations (101°) Operations (1019)
Single RBM 54 96.97 3171 Partitioned-RBM-(16-4-1) 54-50-30 97.18 7842
Partitioned-RBM-(16-4-1) 54-50-30 97.18 78.42 Partitioned-RBM-(16-1) 54-30 96.78 71.07
TABLE II TABLE IV
CLASSIFICATION F1 SCORES CLASSIFICATION ACCURACY RATES WITH SAMPLES
l Labels [PRBM (%) [Single RBM (%) l ‘ Configuration ‘ Samples (103) ‘ Accuracy (%) ‘ op eragl(:::isn(mlo)
0 98.27 98.49 Single RBM 20 96.43 T7.04
1 98.00 98.13 Single RBM 10 95.47 23.52
5 97.01 06.99 Single RBM 5 94.15 11.76
Partitioned-RBM-(16-4-1) 54-10-20 96.90 49.02
i gg';? gg'gg Partitioned-RBM-(16-4-1) 54-10-10 96.25 25.50
: : Partitioned-RBM-(16-4-1) 54-10-5 95.44 13.74
5 96.67 97.34
6 98.32 98.09
7 97.09 96.94 o o _ _
g 05.51 96.12 of degradation in classification accuracies. In the following
9 95.17 95.75 experiments, we ran Partitioned-RBM with fewer stages. Table

RBM first with 16 splits, then 4, and finally trained it as a
single partition. Note that each successive Partitioned-RBM
configuration starts with the output of the previous configura-
tion, as described in Section II. The Samples column gives the
number of training instances, selected at random from the total
training set, that were used to train the given RBM. As the
number of partitions decreases, we decrease the training set
size to match the time complexity of the full Partitioned-RBM
training process to that of the Single RBM. Each RBM was run
for 20 iterations, and the classification accuracy rates reported
are the mean values from 10-fold cross-validation (not using
MNIST’s predefined split between training and test data). As
shown, Partitioned-RBM significantly outperforms the Single
RBM.

By design, the computational complexity of the Partitioned-
RBM is significantly better than that of the Single RBM
trained on the entire dataset; it is evident that less computation
would have been necessary for the Partitioned-RBM to yield
superior performance. Based on Equation 2 we could tune
the number of samples used in each stage and/or the number
of partitions, in order to adjust the runtime performance.
We emphasize that our aim is not to obtain the highest
classification accuracy or lower error rates reported in the
literature. Rather, we are seeking ways to obtain reasonable
classification accuracy rates under bounded resources. Nev-
ertheless, Partitioned-RBM significantly outperforms Single
RBM as shown in Table I in terms of classification accuracy
with significantly lower CPU requirements.

Table II shows F'1 scores (which is harmonic mean of
the precision and recall) for all class labels. Partitioned-
RBM results are comparable to Single RBM if not better.
This indicates that Partitioned-RBM has robust accuracy even
though we partition the whole network into atomic partitions.

Indeed, when Partitioned-RBM has a smaller number of
stages, the runtime performance will improve. However, ide-
ally, the runtime performance gain should not be at the cost

IIT demonstrates that classification accuracy is still comparable
but runtime is less. This is important, because training the
model with many samples in the first stage will optimize the
weights sufficiently; one does not have to use more samples
when there are fewer splits to maintain a reasonable accuracy.

The purpose of the current study was to determine if
RBM can be a viable learning technique under bounded
computational resources. We can claim that increasing the
number of partitions in the first stage is sufficient to optimize
network weights to a degree that fewer samples or fewer
training epochs are required in the last stage. In other words,
the last stage with one split does not need to run on the
whole dataset. Most of the computational effort is spent in the
last stage when there is only one split, because the training
needs to cover the whole weight matrix. We ran a series of
experiments to determine the effects of sample size in last
the stage and compared the results with Single RBM. As
seen in Table IV, keeping runtime approximately the same,
Partitioned-RBM performs significantly better than Single
RBM for all experiments when the sample size decreases.
This is not surprising, since Partitioned-RBM uses the full
data set in the first stage. However, the result is important
because the number of computations in the first stage is
insignificant compared to the total number of operations. Thus,
the following conclusions can be made: 1) if dimensions of the
data are too high, increasing the number of partitions or splits
will improve the runtime performance. 2) If the volume of
data is too high, using more samples in early stages and fewer
samples in later stages with fewer partitions will improve
runtime performance.

Finally, to show how fast Partitioned-RBMs optimize
weights, we ran experiments with different training epochs.
As seen in Table V, Partitioned-RBM performs significantly
better than Single RBM when trained for fewer epochs (for all
experiments). This again demonstrates that Partitioned-RBM
can perform well under bounded computational resources. On
the other hand, Single RBM must run many iterations in
order to obtain reasonable accuracy. The evidence from this

TABLE V
CLASSIFICATION ACCURACY RATES WITH ITERATIONS

Configuration Samples (103) | iterations | Accuracy (%) Operaﬁ:z;n(1010y
Single RBM 54 1 93.72 6.59
Single RBM 54 5 96.50 32.93
Single RBM 54 10 96.89 65.86
Partitioned-RBM-(16-4-1) 54-50-50 1 94.30 6.27
Partitioned-RBM-(16-4-1) 54-50-50 5 96.67 31.37
Partitioned-RBM-(16-4-1) 54-50-50 10 97.26 62.73

experiment suggests that if one cannot afford to train a regular
RBM for many iterations, there is a need to partition to allow
it to run for many iterations.

V. DISCUSSION AND FUTURE WORK

This study set out to improve the runtime performance
of RBMs without significant cost to precision and recall
rates. From the results of our experiments, we are led to the
conclusion that the Partitioned-RBM performs as well or better
than a Single RBM with less CPU time. Table I demonstrates
that the Partitioned-RBM has significantly better accuracy than
Single RBM, with only about half the CPU time. This is
important because Partitioned-RBM can run on very high
dimension and high volume datasets. A single RBM can not
be run efficiently on high volume data, while Partitioned-RBM
can use all samples in the first stage, with many partitions
running in parallel. When weights are optimized in early stages
with many samples, the final stage requires a smaller number
of samples.

Under bounded computational resources, with Partitioned-
RBM we can either increase the number of splits and train
it on many data samples, or adjust sample size and number
of iterations to obtain better runtime performance, as seen in
Tables III, IV, and V. We demonstrated that regular RBM, in
general, requires many iterations and many training samples.
However, this is not practical when computational resources
are bounded.

One might ask why we did not add class nodes in early
stages. Our initial results indicated that such a scheme does not
provide any advantage. It appears that when weights between
hidden nodes and class nodes, U, are updated by all partitions,
the weight matrix takes a long time to be optimized; one
partition changes the effect of a previous partition. However,
we are planning to investigate having each partition optimize
its own U matrix, and we need to find a better mechanism to
combine all U matrices when we move to the next stage in
the training process.

To see our method perform even better, we need to run it on
a dataset with high volume and high dimensions. We speculate
that a single RBM cannot be trained optimally unless it runs
many iterations, which will take days to train. On the other
hand, Partitioned-RBM can run many iterations in the first
stage with all data samples efficiently. We are planning to use
this scheme to run classification tasks on many datasets with
high dimensions and high volume.

Better runtime performance also enables us to create an
ensemble of Partitioned-RBM. Thus, we plan to run ex-

periments using ensembles. We speculate that an ensemble
of Partitioned-RBMs will result in even better classification
accuracy rates.

The results of the present study also suggest that Partitioned-
RBM will provide even better runtime improvement when used
as a component of a DBN. In other words, as we stack up more
layers of RBMs, the runtime performance becomes more rel-
evant. Our preliminary experiments indicate that Partitioned-
RBM has comparable classification accuracy rates with Single
RBM when used in DNBs. But, the results were not signifi-
cantly better. Moreover, we found that DBN does not increase
accuracy rates drastically as compared a regular RBM. It is
possible this is because of the relative simplicity of the MNIST
data set. Hence, we plan to 1) improve classification accuracy
of Partitioned-RBM when used as a component of DBN, 2)
investigate why DBN does not drastically improve accuracy
rates, and 3) investigate alternative data sets.

Finally, in our previous study with DBNs, we showed that
Partitioned-RBM preserves statistical spatial features in all
layers of the network, while regular RBMs diffuse all spatially
local features. We plan to carry out further experiments to
determine whether preserving statistically local features will
result in higher classification accuracy.

ACKNOWLEDGMENTS

We would like to thank Ben Mitchell who contributed to
discussions about the material covered in this paper. We also
like to thank Numerical Intelligent Systems Laboratory(NISL)
members for their feedback.

REFERENCES

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm
for boltzmann machines,” Cognitive science, vol. 9, no. 1, pp. 147-169,
1985.

[2] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771-1800, 2002.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in Neural Information
Processing Systems, vol. 19, pp. 153-160, 2007.

[4] G. Hinton and R. Salakhutdinov, “Discovering binary codes for docu-
ments by learning deep generative models,” Topics in Cognitive Science,
vol. 3, no. 1, pp. 74-91, 2011.

[5]1 G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
2006.

[6] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann
machines for collaborative filtering,” in Proceedings of the 24th Inter-
national Conference on Machine Learning. ACM, 2007, pp. 791-798.

[71 G. E. Dahl, R. P. Adams, and H. Larochelle, “Training restricted
Boltzmann machines on word observations,” in Proceedings of the 29th
International Conference on Machine Learning. ACM, 2012, pp. 679—
686.

[8] H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted Boltzmann machines,” in Proceedings of the 25th International
Conference on Machine Learning. ACM, 2008, pp. 536-543.

[9] J. Louradour and H. Larochelle, “Classification of sets using restricted
Boltzmann machines,” in Uncertainty in Artificial Intelligence. AUAI,
2011, pp. 463-470.

[10] T. Schmah, G. E. Hinton, S. L. Small, S. Strother, and R. S. Zemel,
“Generative versus discriminative training of rbms for classification of
fmri images,” in Advances in neural information processing systems,
2008, pp. 1409-1416.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Tosun and J. W. Sheppard, “Training restricted Boltzmann machines
with overlapping partitions,” in Proceedings of the European Conference
on Machine Learning-Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD). Springer, 2014, vol. 8726, pp. 195-208.
B. Mitchell, H. Tosun, and J. Sheppard, “Deep learning using partitioned
data vectors,” in Proceedings of the International Joint Conference on
Neural Networks (IJCNN). 1EEE, 2015, pp. 1-8.

H. Tosun, B. Mitchell, and J. Sheppard, “Assessing diffusion of spatial
features in deep belief networks,” in Submitted to International Joint
Conference on Neural Networks (IJCNN)(IJCNN). IEEE, 2016.

P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” in Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1, D. E. Rumelhart and
J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986, pp.
194-281.

D. S. Lemons, A student’s guide to entropy. Cambridge University
Press, 2013.

T. Tieleman, “Training restricted boltzmann machines using approxima-
tions to the likelihood gradient,” in Proceedings of the 25th International
Conference on Machine Learning. ACM, 2008, pp. 1064-1071.

Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, “Learning
algorithms for the classification restricted boltzmann machine,” The
Journal of Machine Learning Research, vol. 13, no. 1, pp. 643-669,
2012.

P. Brakel, S. Dieleman, and B. Schrauwen, “Training restricted boltz-
mann machines with multi-tempering: Harnessing parallelization,” in Ar-
tificial Neural Networks and Machine Learning—ICANN 2012. Springer,
2012, pp. 92-99.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database
of handwritten digits. Accessed 2014-01-15. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

