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Abstract—Adaptive Boosting, or AdaBoost, is an algorithm
aimed at improving the performance of ensembles of weak
learners by weighing the data itself as well as the learners. Two
versions of AdaBoost—AdaBoost-R2 and AdaBoost R∆—are ap-
plied in this project, as well as a third novel algorithm combining
ideas of these two methods, to the problem of predicting crop
yield and protein content in support of precision agriculture.
All three algorithms use Feedforward Neural Networks (FFNN)
trained with backpropagation as the weak model. Data from four
different fields were gathered as a result of on-farm experiments
of different nitrogen rate applications using randomly stratified
trials based on previous years’ yield and protein. The three
AdaBoost algorithms are compared to a simple FFNN with
a single hidden layer. The results confirm previous findings
in different fields, where ensemble methods outperform single
models. The results are improved by 3 to 10 units for yield
prediction, and by a small percentage for protein prediction.

I. INTRODUCTION

Adaptive Boosting (AdaBoost) trains several weak models
on the same data but with different sampling weights for
each model and combines the predictions across all models
for the final prediction [7]. AdaBoost was first proposed to
solve classification problems using decision trees but has since
been applied to several different classification and regression
problems using different models as the weak learners. In
this paper, two existing versions of AdaBoost—AdaBoost.R2
and AdaBoost.R∆—are applied to a real-world problem in
Precision Agriculture (PA), i.e. yield and protein prediction. A
third novel algorithm combining ideas of these two versions is
also applied. All three algorithms use single layer Feedforward
Neural Networks (FFNN) trained with backpropagation [21]
as the weak model. Ensembles of FFNNs are not common in
PA, and to our knowledge, AdaBoost has not yet been ap-
plied to the problem of yield prediction. Furthermore, protein
prediction has not been widely studied in PA in general.

PA focuses on applying new technology to farming to
decrease cost, increase net return, and maintain or improve
environmental impact. This is not only beneficial to the farmer,
but directly impacts food supplies and water quality. There
has been substantial work in yield monitoring and fertil-
izer optimization [13], [19], [20]; however, comprehensive
decision-support tools for site-specific crop management are
still lacking, especially systems that are adaptable across farms
and flexible for farmer use [15]. (See [11] for an overview of

decision support systems in Precision Agriculture.) Pedersen
and Lind [17] discuss the progress in PA and conclude there is
need for better information management and decision support
systems, together with better integration of fertilizer plans into
these systems. Recently, the importance and value of a well
built site-specific decision support tool has become apparent.
To this end, a project focusing on on-farm experimentation was
initiated in Montana, with the goal of creating an economic-
based decision model to increase yield, decrease cost, and
improve environmental impact [10], [14], [18].

The goal of our work is to improve yield and protein predic-
tion of winter wheat using both non-spatial and spatial data.
We analyze farmer-provided data for specific fields, including
previous years’ yield and protein, and freely available data on
the field and crops (e.g., elevation, slope, topological position
index, precipitation, and the normalized difference vegetation
index (NDVI)). All of this data is combined and analyzed
to create site-specific experiments and to perform economic
optimization. The experiments aim to create a nitrogen pre-
scription map. The yield and protein points are discretized into
bins, and different nitrogen rates are evenly prescribed across
the cells in the field. An example of such a prescription map
is shown in Figure 1. The farmers then use these prescription
maps to apply nitrogen to their fields and provide back the
resulting crop data, creating a spatio-temporal data set.

An economic model is used to optimize net return based
on probability distributions of nitrogen cost and crop prices,
as well as yield and protein predictions. As net return opti-
mization is the ultimate goal, achieved by minimizing nitrogen
costs and optimizing yield, accurate predictions of yield and
protein are an essential aspect of the problem. A description
of the yield and protein prediction methodology is given in
Section V. The entire workflow can be seen in Figure 2.

II. RELATED WORK

A. AdaBoost and Neural Networks

Using neural networks as the weak learner in AdaBoost
has become more prevalent over the past years. In [22],
Schwenk and Bengio apply AdaBoost to classifier ANNs for
character recognition, showing the decrease in error rates for
boosted NNs. In later work, Schwenk and Bengio compare
three different sampling weight update methods for AdaBoost,



Fig. 1: Example prescription map for field “sec35mid.” Nitro-
gen rates 0, 20, 40, 80 and 120 pounds per acre correspond
to red, orange, blue, light green, and dark green respectively.

also using ANNs as the weak model [23]. In resampling, a
new sub-sample is chosen randomly from the original data set
using the calculated probability distribution of the data points.
The first method samples a subset once before training the
neural network while not updating the sample set through the
training process; the second approach uses a different training
set for each epoch; and the third approach directly weighs the
cost function. The results indicate that applying AdaBoost has
less of an impact on data sets needing larger networks, and
all three sampling methods perform similarly.

Liu et al. [12] compare four neural network models with
different training methods for wind-speed prediction. The four
training methods are Gradient Descent and Gradient Descent
with Momentum with Adaptive Learning Rate Back Propa-
gation (GD-ALR-BP and GDM-ALR-BP respectively), Con-
jugate Gradient Back Propagation with Fletcher-Reeves Up-
dates (CG-BP-FR), and the BroydenFletcherGoldfarbShanno
(BFGS) algorithm. They apply AdaBoost using the four mod-
els as the weak learners and compare the single model results
to the ensemble results. Applying AdaBoost improves results
for all four training methods, where the CG-BP-FR training
method has the best performance overall. In [27] Zhou et al.
suggest that it could be more beneficial to combine many of the
weak models as opposed to all the models. In other words, if
20 neural networks are trained, it could improve results if only
19 out of 20 models are combined for the final predictions,
where the excluded model satisfies certain constraints. For
this purpose, the authors propose a new ensemble method—
GASEN (Genetic Algorithm based Selective ENsemble)—that
selects a subset of networks and compares it to bagging and
boosting methods. Their results show that ensemble methods
outperform a single neural network; however, GASEN does
not always perform better than the other ensemble methods.

B. Yield Prediction

Overall, the goal of PA is to improve crop management
while maintaining or improving environmental impact. It does
this by analyzing specific fields and crops and proposing
improvements to the farming process, for example, by speci-
fying fertilizer and pesticide application, providing an optimal
irrigation strategy, or developing more efficient machinery.
Optimizing fertilizer application is a widely studied problem,
as decreasing the amount of nitrogen while maintaining and
potentially improving crop profitability is a relatively simple
way to lower costs [2]. The optimal application of a fertilizer
such as nitrogen not only impacts profit, but influences the
environment as well [4].

Artificial neural networks (ANNs) and many of their adapta-
tions have been applied successfully to different PA problems.
What follows is a limited overview of the application of ANNs
to yield prediction of various crops. Kaul et al. [9] use ANNs
to determine corn and soybean yield for farms in Maryland
under typical climate conditions, specifically precipitation. The
results using the ANN were promising compared to multiple
linear regression. ANNs were used by Panda et al. [16] to look
at the influence of including four different spectral indices—
NDVI, green vegetation index (GVI), soil adjusted vegetation
index (SAVI), and perpendicular vegetation index (PVI)—for
corn yield prediction. The authors found that using PVI gives
more favorable results than the other indices and confirm the
usefulness of using ANNs for yield prediction.

Using image data for yield prediction is also fairly common
practice in PA. You et al. [25] use remote sensing data, which
is available worldwide, to predict soybean crop yield in the
U.S. In their research, images are transformed into histograms
of pixel counts, effectively performing dimensionality reduc-
tion, and are then used as input to Convolutional Neural
Networks (CNNs) and Long-Short Term Memory networks
(LSTMs) for yield prediction. In addition to these ANNs,
a Gaussian process layer is applied to account for spatio-
temporal dependencies. Their method outperforms decision
trees and a 3-layer neural network for large-scale yield predic-
tion. Raw image data of apple fruit and tree canopies are used
in [3] for early yield prediction. The images are split into
fruit, foliage, and background through image segmentation
techniques and the resulting features—cross-sectional areas of
fruit, small fruits, and foliage, as well as number of fruits—
provide the input into the FFNN. The FFNN, in combination
with the extracted features, was shown to achieve desirable
results for early yield prediction of fruit.

In a preliminary paper [18], Stacked Autoencoders (SAE)
[8] and FFNNs were applied to a simple spatial representation
of the data and compared to a simple non-spatial data set. In
general the SAE in combination with a spatial representation
performed better than the simple FFNN and non-spatial data.
However, the predictive results were not satisfactory for the
final goal of the project, thus motivating the current study by
using the FFNNs as a weak model in an ensemble method, as
this has been a successful technique in other fields.



Fig. 2: Flowchart of the optimization process for field profit maximization. The “Data organization and analysis” stage is
highlighted to indicate the main focus of this paper.

III. ADABOOST BACKGROUND

AdaBoost was first introduced by Freund and Schapire in
1996 for binary classification [7]. The basic algorithm takes
a data set with N d-dimensional samples, {xi ∈ Xd}Ni=1,
and corresponding labels yi ∈ {0, 1} as input, as well as
the number of models T to be learned. The initial weight
vector or probability distribution p0 = [ 1

N , ...,
1
N ]> is set to a

uniform distribution across all points. For each weak learner,
the weight vector is provided to select a subset of data based
on the distribution or to assign a weight to each data point as
the model is being trained. A hypothesis ht is returned after
training and is then used to calculate the model’s loss εt. If
εt > 0.5 the iteration is aborted; otherwise, the loss is used to
update the weights:

pt+1
i = ptiβ

1−|ht(xi)−yi|
t ,

where βt = εt/(1 − εt), and the distribution is normalized
using a normalization factor Z. The final hypothesis is a
weighted majority vote of all weak learners’ hypotheses.

Basic AdaBoost was improved and adapted for regression
problems by the same authors in 1997 [6]. Their first re-
gression adaptation is called AdaBoost.R and reduces the
regression problem to binary classification as follows,

hc(x, y′) =

{
0, if y′ < y

1, otherwise
,

where y′ is the predicted value from h(x). The weak models
are combined to determine the final hypothesis by calculating
the weighted median based on the β value of each model [6].

Drucker proposed a new adaptation for regression called
AdaBoost.R2 (Algorithm 1) [5]. The hypothesis is changed
to be able to use any loss function as long as L ∈ [0, 1]. The
loss for each training sample is calculated using three different
candidate loss functions (linear, square and exponential), and
the overall model loss is the average of each point’s loss Li
times its probability pi. The weight is then updated as:

pt+1
i = ptiβ

1−Li
t .

Algorithm 1 AdaBoost.R2
Input:
• Dataset xi ∈ X , i = 1, 2, . . . , N
• Number of models T
1) Initialize the probability distribution pi ∈ D where pi =

1/N , i = 1, 2, . . . , N
2) For t = 1 to T :

a) Fit a weak learner ht(X) to the training data using
weight distribution D.

b) Compute loss

Lt =

∑N
i=1 Li
N

.

where,

Linear: Li =
|ht(xi)− yi)|

sup(ht : x −→ y)

Square: Li =

(
|ht(xi)− yi)|

sup(ht : x −→ y)

)2

Exponential: Li = 1−exp

(
− |ht(xi)− yi)|

sup(ht : x −→ y)

)
where,

ht : x −→ y = |ht(xi)− yi| for i = 1, ..., N.

c) Compute βt = Lt/(1− Lt).
d) Set

pt+1
i =

pti
Zt
× β(1−Li)

t

where Zt is the normalization factor
3) Output:

H(x) = inf

y ∈ Y :
∑
t:ht≤y

log(
1

βt
) ≥ 1

2

∑
t

log(
1

βt
)





The final hypothesis is still obtained by calculating the
weighted median of all model hypotheses.

AdaBoost.RT was proposed in 2004 by Solomatine and
Shrestha [24] and uses a threshold for prediction accuracy. If
the loss or error rate goes above 0.5, the iteration is no longer
aborted but continues until the set number of weak learners
has been trained. Instead of calculating the loss, AdaBoost.RT
calculates the error by summing probability distribution Dt(i)
for all points, as long as the error rate εi is larger than the
provided threshold δ. Then

εi =

∣∣∣∣ht(xi)− yiyi

∣∣∣∣ .
The probability distribution is then updated in the same way
as the original AdaBoost for classification but where βt = ε2t ,
and a point is “classified” as correct if its error is below or
equal to the threshold value. If the difference is above the
threshold, the weight remains the same. The final hypothesis
is the result of computing the weighted average as opposed to
the weighted median.

An obstacle to using AdaBoost.RT is that it requires the
threshold value to be chosen correctly for the best perfor-
mance. Zhang et al. [26] developed a method to infer the
threshold parameter for each weak learner by looking at the
scaled standard deviation of the approximation errors.

A further adaptation known as AdaBoost.R∆ was proposed
by Bertoni et al. [1]. AdaBoost R∆ also uses a threshold
value but creates a binary classification of 0 or 1, multiplies
this binary outcome with the corresponding probability pi, and
sums these to obtain the model error εt. That is,

εt =

N∑
i=1

pi ×HS(||ht(xi)− yi|| − δ)

where,

HS(x) =

{
1, if x ≥ 0

0, otherwise
,

and ||·|| denotes a norm. The full implementation can be found
in Algorithm 2.

AdaBoost.R∆ calculates the final hypothesis as

H(x) = arg max
y∈[0,1]m

∑
y

αtHS(δ − ||ht(xi)− yi||)

where αt = log 1
βt

. But for calculating predictions on a test
set, this hypothesis calculation is not possible, as the actual
value yi is not known. Therefore, we calculate the weighted
average to determine the final hypothesis.

IV. APPROXIMATE ADABOOST

Here, we propose a new approach to applying AdaBoost
to ANNs for regression, which we call “Approximate Ad-
aBoost” or AdaBoost.App (Algorithm 3). The idea behind
AdaBoost.App is to combine the loss function error calcu-
lation from AdaBoost.R2 with the threshold approach from
AdaBoost.R∆ and AdaBoost.RT. Theoretically, when a data
point falls within the threshold, the weight would be set to 0.

Algorithm 2 AdaBoost.R∆

Input:
• Dataset xi ∈ X , i = 1, 2, . . . , N
• Number of models T
• Threshold δ
1) Initialize the probability distribution pi ∈ D where pi =

1/N , i = 1, 2, . . . , N
2) For t = 1 to T :

a) Fit a weak learner ht(X) to the training data using
probability distribution D.

b) Compute

εt =

N∑
i=1

pi ×HS(||ht(xi)− yi|| − δ)

where,

HS(x) =

{
1, if x ≥ 0

0, otherwise

If
εt > 0.5

T = t− 1 and abort loop.
c) Compute βt = εt/(1− εt).
d) Set

pt+1
i =

pti
Zt
× β1−HS(||ht(xi)−yi||−δ)

where Zt is the normalization factor
3) Output:

H(x) =

T∑
t=1

βtht(x)

The biggest difference lies in the error calculation and weight
updates. The error of a single data point εi is calculated as:

εi =

{
|ht(xi)− yi|, if |ht(xi)− yi| > δ

0, otherwise
.

The final errors are normalized using a normalization factor
Z. The model error εt is calculated in the same way as
AdaBoost.R2 by summing the errors and dividing by the
length, and βt = εt/(1− εt). The probabilities pi are updated
based on εi for i = 1, 2, . . . , N as follows:

pt+1
i =

{
pti × β−εi , if εi > 0

0, otherwise
.

While AdaBoost.RT maintains the weight of wrongly classi-
fied points and updates the weights of the correctly classified
points, AdaBoost.App sets the probability of a correctly classi-
fied point to 0 and changes the weight of incorrectly classified
points based on how far off they are. The intuition behind
this approach is that it is more important to emphasize points
that are further away from the target value. Unfortunately, the
implemented neural network is unable to train on a sparsely



Algorithm 3 AdaBoost.App
Input:
• Dataset xi ∈ X , i = 1, 2, . . . , N
• Number of models T
• Threshold δ
1) Initialize the probability distribution pi ∈ D where pi =

1/N , i = 1, 2, . . . , N
2) For t = 1 to T :

a) Fit a weak learner ht(X) to the training data using
weight distribution D.

b) Compute

εt =

∑N
i=1 εi
N

.

where,

εi =

{
|ht(xi)−yi|

Zt
, if |ht(xi)− yi| > δ

0, otherwise
,

where Zt is the normalization factor ensuring εi ∈
[0, 1].

c) Compute βt = εt/(1− εt).
d) Set

pt+1
i =

{
pti × β−εi , if εi > 0

0, otherwise
.

3) Output:

H(x) =

T∑
t=1

βtht(x)

weighted data set, thus the weights are set to 10−6 when
classified correctly, to minimize their influence effectively. The
final model is then a weighted average over the weak models.

V. METHODOLOGY

Four different yield and protein data sets were chosen, each
representing a different field from a different farmer, totaling
eight data sets. An overview of the number of points for each
of these data sets is given in Table I. For each yield and protein
point, the data included the following features:

• Previous years’ nitrogen application
• Field slope
• Field elevation
• Topographic Position Index (TPI)
• Field aspect at the specified point
• Precipitation (in inches of rainfall)
• Normalized Difference Vegetation Index (NDVI)
• Growing Degree Day (GDD) value.

The number of protein points is significantly less for the
protein data sets, as the protein monitors mounted on the
harvesters were unable to sample at as high of a rate as the
yield monitors. Yield is measured in bushels per acre, for
winter wheat this means 60 lbs of wheat per bushel. Protein
is represented as a percentage of the total grain.

Fig. 3: Neighborhood configurations for cell “C”: von Neuman
is left, Moore is right for sampling.

TABLE I: Number of data points for each field.

sec35mid sre1314 davidson carlin
yield points 17873 24646 11802 15621
protein points 1019 2998 560 655

The available field data is transformed into a grid structure
for the prescription maps (Figure 1); therefore, using this grid
structure for spatial sampling is a logical consequence. There
are two different spatial sampling strategies that make use of
a grid structure: the von Neumann neighborhood (Figure 3
left) and the Moore neighborhood (Figure 3 right). Data points
are laid out throughout the field, each data point belonging
to a specific grid cell. Each of the neighborhood sampling
methods looks at certain neighboring cells of the center cell, to
which a data point belongs. The von Neumann neighborhood
only looks at the cardinal directions, whereas the Moore
neighborhood includes the primary intercardinal directions. To
use as much information as possible, the Moore neighborhood
was chosen as the spatial sampling method for the results
reported here. We chose to only use data points that have
data in all eight neighboring cells.

To determine the parameters of the neural networks, a
limited grid search was performed with 10 fold cross validation
for each parameter combination. Each neural network uses a
single hidden layer, as this is sufficient for universal approx-
imation of non-linear functions. Three different parameters
were tuned: number of epochs (200, 300, 400, and 500),
gradient descent optimizer (Adam and Root Mean Square
Propagation (RMSProp)), and numbers of hidden nodes (5,
10, 20, 50, 75, 100). As both Adam and RMSProp adapt the
learning rate during training, extensive tuning of the learning
rate was less important. We therefore chose to set the learning
rate to 0.01. We applied RMSProp over 400 epochs across all
data sets. The best number of hidden nodes varied between 5,
10, 50, 75, and 100 as shown in Table II.

Each AdaBoost method was run on each of the data sets
with the number of models ranging from 0 to 20. Two
examples of such runs are shown in Figure 4. These results
indicate that increasing the number of models too far tends to
diminish the predictive quality for this specific problem. Based
on these results, each AdaBoost method was applied with 5,



TABLE II: Chosen number of hidden nodes (one hidden layer) for each field.

sec35mid sre1314 davidson carlin
Yield Protein Yield Protein Yield Protein Yield Protein

Spatial 100 10 10 5 50 5 5 100
Non-Spatial 50 50 10 50 75 5 5 5

10, and 20 weak learners across all data sets. Weight sampling
was performed by assigning a weight to each data point as
the neural network was being trained, directly influencing the
loss function. This method was chosen because it is closest to
the original AdaBoost algorithm and was shown by Schwenk
and Bengio to perform well given sufficient epochs [23].
The weak learners use mean squared error (MSE) as the
loss function for training. The threshold δ was set to 1.5
for AdaBoost.R∆ and AdaBoost.App. Each of the algorithms
was run using 10-fold cross validation, and the results for the
test predictions were evaluated using the root mean squared
error (RMSE) on the unnormalized values. The RMSE values
averaged over the ten folds were then compared using a
paired t-test to determine whether or not observed differences
were statistically significant at a confidence level of 0.05.
The results from the t-tests indicated significant differences
between spatial and non-spatial results, as well as between
different AdaBoost methods that train a different number of
weak models. There were also statistical differences between
all single neural network results and the AdaBoost results.

VI. RESULTS

Tables III and IV show the average RMSE scores for
yield and protein data using the three different AdaBoost
implementations for 5,10, and 20 models. Both the spatial and
non-spatial data results are given. The best results are carried
over into Table V, which compares the simple FFNN results
to the AdaBoost results.

In general, the original hypothesis that spatial results will
increase performance, as stated in the preliminary paper [18],
holds for the yield data. There is one notable exception for
sec35mid. As shown in Table III, the spatial AdaBoost model
consistently performs worse than the AdaBoost model using
the non-spatial data on this field. The spatial analysis can
only consider data points that belong to cells that have eight
surrounding cells, as each data point has to have the same
dimensions to be used by the predictive models. Because the
field in question consists of two separated parts (Figure 1), the
number of data points reduces more than for other fields, as
there are two parts that lose the edge cells on the field (edge
cells are the cells on the borders that are not fully surrounded
by other cells). This data point reduction could explain why
the spatial analysis for this field is not as effective.

Similarly, for protein data, using spatial data does not
always improve results. Table I shows that the number of
data points for protein is much smaller than for yield. Certain
spatial data sets could therefore suffer from the curse of
dimensionality. The number of features becomes much larger
when adding in the spatial information, but there may not be

enough data to analyze the data properly, thereby negatively
influencing predictive power.

Second, note that applying AdaBoost improves over, and in
two cases maintains, results from a single FFNN across all
fields and data sets (Table V). This confirms our hypothesis
that the AdaBoost ensemble method can improve predictive
results. For yield, even if the prediction error only drops by
one unit, this means that it is 60 pounds of yield per acre closer
to the actual value. The results show that there is a drop in
error of 3 to 10 units, or 180 to 600 lbs of yield per acre, which
is a non-negligible amount. The protein results are improved
by smaller numbers, as this indicates the percentage of protein
in a single grain, which is inherently a small number.

It also seems that combining a smaller number of weak
models seems to perform better than increasing the number of
models (this can be seen in Tables III and IV and Figure 4).
This is in line with the idea that “many may be better than
all” [27], where increasing the number of models may tend to
increase the error, perhaps through some form of over-fitting.
However, instead of training all the models and selecting from
those models, simply training fewer models may have a similar
effect while needing less time.

When comparing the different AdaBoost methods, no one
method seems to outperform the others. It is interesting to note
that AdaBoost.R2 and AdaBoost.App both seem to work much
better with a smaller number of models, whereas results for
AdaBoost.R∆ vary across the number of models (Figure 4).
This may be due to the way the model error εt is calculated and
the individual points’ weights are updated for AdaBoost.R∆.
As the probability distribution of incorrectly classified data
points is updated based on their previous probability, the
distribution may not be changed substantially. This could
have resulted in relatively small differences between models’
weights. Then, even if later models have a larger influence
(i.e., a heavier weight) on the end result, the difference in
model weight may be small enough such that initial models,
which should be correctly predicting easier data points, still
play an important role in calculating the final values.

Finally, note when comparing the different implementations
that the similarity in predictions between AdaBoost.R2 and
AdaBoost.App, especially for yield predictions. We believe
this may be due to improper tuning of the threshold value
for AdaBoost.App, resulting in only a small number of data
points falling below that threshold, effectively resulting in
very similar predictions for both models. When looking at
figure 4b, there is a clear difference in the performance of
the two models. This indicates that the threshold was more
appropriately set for the protein data for AdaBoost.App.



(a) Field sec35mid non-spatial yield prediction. (b) Field carlinwest non-spatial protein prediction.

Fig. 4: RMSE values for two of the fields studied for the three different AdaBoost methods.

TABLE III: Yield prediction RMSE for the AdaBoost methods, each training 5,10, and 20 models, across all fields using
spatial and non-spatial data.Results in italics are carried over into Table V. Bolded results are the lowest score for that field.

AdaBoost.R∆ AdaBoost.R2 AdaBoost.App
5 10 20 5 10 20 5 10 20

sre1314 spatial 9.674 9.546 9.508 9.828 11.095 11.923 9.920 11.018 11.938
non-spatial 10.478 10.509 10.489 10.469 10.668 11.031 10.462 10.737 10.989

sec35mid spatial 19.998 21.462 21.898 20.241 13.840 10.209 19.722 13.898 10.092
non-spatial 8.998 8.657 8.612 8.591 8.545 9.077 8.471 8.388 9.026

davidson spatial 8.008 7.929 7.889 7.815 8.140 8.480 7.821 7.990 8.467
non-spatial 14.049 13.766 13.778 13.433 13.865 14.573 13.420 13.906 14.590

carlin spatial 5.425 5.467 5.652 5.638 6.779 7.885 5.691 6.795 8.436
non-spatial 7.893 6.850 6.877 6.437 6.596 7.570 6.625 6.781 7.576

TABLE IV: Protein prediction RMSE for the AdaBoost methods, each training 5,10, and 20 models, across all fields using
spatial and non-spatial data. Results in italics are carried over into Table V. Bolded results are the lowest score for that field.

AdaBoost.R∆ AdaBoost.R2 AdaBoost.App
5 10 20 5 10 20 5 10 20

sre1314 spatial 0.981 0.977 0.994 0.956 0.934 0.974 0.970 0.954 0.974
non-spatial 1.019 0.994 0.981 0.978 0.971 0.985 0.983 0.992 1.132

sec35mid spatial 2.185 1.920 1.850 2.211 2.199 2.210 2.171 2.119 2.356
non-spatial 1.636 1.602 1.320 1.609 1.494 1.377 1.498 1.412 1.406

davidson spatial 1.706 1.720 1.849 1.709 1.737 1.721 1.746 1.701 1.680
non-spatial 1.551 1.527 1.926 1.594 1.627 1.754 1.609 1.686 1.688

carlin spatial 1.739 1.676 1.891 1.852 1.599 1.454 1.730 1.527 1.426
non-spatial 2.741 2.657 3.485 2.696 5.545 6.516 1.244 6.236 4.641

TABLE V: Yield and protein prediction RMSE for a single FFNN, next to the best AdaBoost result from Tables III and IV.

sre1314 sec35mid davidson carlin
Yield Protein Yield Protein Yield Protein Yield Protein

Spatial FFNN 12.546 1.184 14.606 1.964 17.735 1.641 9.712 1.307
AdaBoost 9.508 0.934 10.092 1.850 7.815 1.680 5.425 1.454

Non-spatial FFNN 12.141 1.187 14.916 2.320 22.836 6.945 10.607 7.452
AdaBoost 10.489 0.971 8.388 1.320 13.766 1.527 6.596 1.244

VII. CONCLUSION AND FUTURE WORK

Finding a way to improve nitrogen rate application for
specific crops and fields is an important challenge in the
field of Precision Agriculture. Yield and protein prediction
can help this process by providing information for subsequent
crop fertilization. Previous research in this field has mainly

used simple models and has not looked at a boosted ensemble
method. This paper compared a simple single layer FFNN
to three different AdaBoost methods, each using single layer
FFNNs as the weak learner, and used both spatial and non-
spatial data to train these models. Our results confirm that
spatial data tends to improve predictions, but that the amount



of available data can negatively influence performance. Con-
sistent with findings from other studies, ensemble methods can
also improve predictions compared to the simple model. In our
case, yield predictions improved by between 3 to 10 units,
meaning the error was reduced by 180 to 600 lbs of yield per
acre. When comparing results from different AdaBoost runs,
the three implementations performed similarly. AdaBoost.R∆
seemed to handle an increase in the number of weak learners
to be combined better than the other two implementations.

In terms of the novel AdaBoost.App method, the results
indicated the importance of correctly setting the threshold
value when calculating the error. To this end, we would like to
research ways to automatically set the threshold value. Aside
from implementing the method proposed by [26], devising a
method using the values of bias nodes in a neural network
might be a good way to determine the magnitude of the
threshold value. Creating an automatic threshold calculation
avoids the addition of an extra tuning parameter and could
improve overall predictive power of the model. In order to
properly evaluate the performance of the model compared to
other AdaBoost implementations, a study using benchmark
data as well as the PA data would have to be performed.

For future work, we plan to incorporate the results obtained
through the prediction process into the economic model for
actual profit optimization (Figure 2), as the work here is only
a small part of a larger decision model. For future research
directions, we would like to look at random forests (RF), as
these are widely applied for yield prediction. Implementing an
RF and adapting the random forest structure to neural networks
could further improve results. Furthermore, the lack of data
points for some of the spatial analysis, could be addressed by
performing other forms of spatial analysis such as kriging.
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