
Using Winning Lottery Tickets in Transfer Learning
for Convolutional Neural Networks

Ryan Van Soelen
Department of Computer Science

Johns Hopkins University
Baltimore, MD, USA

rvansoe2@jhu.edu

John W. Sheppard
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

john.sheppard@montana.edu

Abstract—Neural network pruning can be an effective method
for creating more efficient networks without incurring a signif-
icant penalty in accuracy. It has been shown that the topology
induced by pruning after training can be used to re-train a
network from scratch on the same data set, with comparable
or better performance. In the context of convolutional neural
networks, we build on this work to show that not only can
networks be pruned to 10% of their original parameters, but
that these sparse networks can also be re-trained on similar
data sets with only a slight reduction in accuracy. We use
the Lottery Ticket Hypothesis as the basis for our pruning
method and discuss how this method can be an alternative to
transfer learning, with positive initial results. This paper lays
the groundwork for a transfer learning method that reduces the
original network to its essential connections and does not require
freezing entire layers.

I. INTRODUCTION

When applied to complex problems such as image recog-
nition, neural network architectures tend to be very large,
requiring large amounts of computational resources for train-
ing, inference, and storage. The large number of parameters
also require a sufficiently large data set to properly train
the network. This data and hardware burden constrains the
applicability of methods based on deep learning. To remedy
this issue, many researchers have turned to transfer learning,
in which the learned features of a pre-trained network are
applied to a new task. A common approach to transfer learning
involves using frozen versions of the weights of the lower
layers, while retraining the higher layers with the new data.
At most, the lower layers are only adjusted through a process
of fine-tuning. This work considers an alternative approach in
which a large network is distilled to a smaller size, such that
it can be retrained from scratch on a new but related problem
using the original networks initial parameters.

The basis of this approach stems from the Lottery Ticket
Hypothesis, introduced by Frankle and Carbin [2]. The hy-
pothesis argues that the strength of a neural network stems
only from a subset of their connections. This sub-network,
called the winning ticket, was by chance initialized in just the
right way to allow for good convergence on the data. The
authors demonstrate a way of pruning networks into these
sparse winning tickets, which can be retrained to achieve a
higher performance than the original network.

We propose adapting this lottery ticket-based approach to
transfer learning. Rather than transferring the lower-level fea-
tures of a network, the winning ticket sub-network is extracted
and is then retrained on the new data. This allows the important
connections to be transferred from the original network, but
also allows all layers to be adjusted to the new data set. We
observe than the lottery ticket can be pruned to up to 10%
of its initial parameters, and that retraining with these small
networks can achieve comparable performance to the original
architecture when trained on the new data set, depending on
the severity of the pruning.

Beyond improved performance of the trained network, there
are many other benefits to using this ticket-transfer approach.
Assuming the appropriate hardware and software implemen-
tations are used, pruned networks are more efficient both
in storage and in inference time. This makes the networks
more applicable to hardware-limited devices such as mobile
platforms or embedded systems.

II. RELATED WORK

A. The Lottery Ticket Hypothesis
As previously stated, the foundation of this work is based

on the Lottery Ticket Hypothesis [2]. Frankle and Carbin show
that randomly initialized dense neural networks can contain
sub-networks called winning tickets, which when trained in
isolation achieve comparable or better test accuracy in a
comparable number of iterations. When trained on image
data, winning tickets were found in fully-connected networks,
convolutional networks, Visual Geometry Group (VGG)-style
networks, and Residual Neural networks (ResNets). However,
in the case of VGG-style networks and ResNets, the discovery
of a winning ticket was conditioned on the training hyper-
parameters, meaning that some networks may not have win-
ning tickets.

The standard approach for finding the winning ticket is as
follows [2]:

1) Randomly initialize a neural network with parameters
~θ0

2) Train the network for k iterations, resulting in parame-
ters ~θk

3) Prune s% of the network by masking the lowest mag-
nitude parameters to 0



4) Reset the remaining parameters to ~θ0, creating what is
referred to as the winning ticket

5) Retrain the winning ticket network using the same data
There are two variants of this process: one-shot pruning

and iterative pruning. In one-shot pruning, the network is
pruned once to the desired sparsity level. In iterative pruning,
the network is incrementally pruned and re-trained, until the
desired sparsity level is reached. Although taking longer to
prune, iterative pruning was found to be capable of creating
smaller winning tickets. The existence of a winning ticket
implies that the connections outside the ticket do not sig-
nificantly contribute to the classification performance of the
network. Instead, these low-magnitude weights degrade the
performance. The results in Frankle and Carbin [2] suggest
that, ideally, these connections should be 0, but due to the
stochastic nature of the optimization, they instead settle on
low-magnitude noise. However, more work needs to be done
to confirm this conjecture. Very recently, Frankle and Carbin
built upon the original Lottery Ticket Hypothesis, introducing
the concept of late resetting. For larger networks, the authors
found that the winning ticket was more likely to be found and
more stable if the weights after a small amount of training
were used instead of the initial weights [3]. Late resetting is
not explored in this work, but it may be useful to employ when
transferring from larger networks.

B. Other Model Compression Techniques

There is a growing interest for designing small, efficient
neural networks [4, 5, 12]. Smaller networks take up less
space, making them easier to store and deploy to hardware sys-
tems. They can also have faster inference times and consume
less power. Furthermore, because there are fewer parameters,
they may require less data while still avoiding overfitting.

There are two primary approaches for designing small
neural networks. The first involves specially designing a new
architecture that can achieve levels of performance similar
to its larger counterpart. MobileNets and SqueezeNets are
examples of this. MobileNet is a specialized image recognition
architecture designed for mobile and embedded devices [4]. It
is designed to approximate the standard convolutional layer
with a more efficient “depth-wise separable convolution.”
Rather than applying a unique set of filters to each of the M
input channels and summing the result, depth-wise separable
convolutions apply a single filter to each channel M times and
then combine the results using a 1× 1 convolution. This has
the effect of requiring far fewer arithmetic operations without
sacrificing accuracy. Furthermore, two hyperparamters can be
adjusted to select the appropriate trade-off between accuracy
and efficiency.

Similarly, SqueezeNet uses alternating convolutional layers
with 1 × 1 filters (called squeeze layers) and layers with a
mix of 1 × 1 and 3 × 3 filters (called expand layers) [5].
This introduces a series of bottlenecks in the network that
cut down on the number of parameters. The SqueezeNet
architecture was able to meet AlexNet-Level accuracy with
50× less parameters.

Fig. 1: Ten randomly chosen images from the ten classes in
CIFAR-10 [6].

The second approach for creating efficient networks is to
incur some sparsity in the network, such that although the
network might take up the same volume overall, many of its
connections are zero and can be ignored. This approach is
closer to the work done in this paper. One common way of
inducing sparsity in a model is by incorporating regularization
into the training process. A common regularizer to promote
sparsity is the L1 regularizer [7].

Another approach involves pruning all low magnitude
weights after training. It is commonly believed that low magni-
tude weights are less significant and can therefore be removed
without significantly degrading the model [2, 12]. Zhu and
Gupta [12] presents a slightly different approach to pruning
in which connections are gradually pruned during training
rather than after. Periodically, the low magnitude weights of
the network are masked to meet a specific sparsity level. That
sparsity level is gradually increased over time until the desired
sparsity of the network is met. This is similar to the iterative
pruning strategy used by Frankle and Carbin [2] to extract
winning tickets, but it is done within a single training session
rather than over multiple sessions. Zhu and Gupta [12] claim
that the networks can be reduced to have 10% of their original
number of parameters without a significant loss in accuracy.
Furthermore, the sparse networks can consistently out-perform
small dense networks with the same memory footprint.

C. Transfer Learning

Besides model compression, our work seeks to investigate
how winning tickets trained on one data set can be applied
to another. This is very similar to transfer learning, in which
some of the parameters of a network (most commonly from
the lower layers) pre-trained on source a data set are used
in another network for better convergence on a similar target
data set. Transfer learning is usually employed when the
target data set is too small to train a deep network from
scratch, or when computational resources for training are



limited. The transferred parameters are typically frozen while
other parameters of the network are trained from random
initialization. The transferred parameters can also be fine-tuned
to the new data by allowing them to change during training,
possibly with a smaller learning rate. The advantage of transfer
learning is that general-purpose models can be adapted to
new data without having to train the entire architecture from
scratch. Furthermore, Yosinski et al. [11] found that initializing
a network with transferred parameters from any number of
layers can produce a generalization that lasts even after fine-
tuning. However, the degree to which transfer learning is
applicable depends on how similar the tasks are. Specialization
of higher layers on the original task can degrade performance.
Furthermore, neurons between layers can become co-adapted,
meaning that severing their connection will negatively impact
performance if fine-tuning is not done [11].

D. Transfer Learning with Model Compression

Similar to this work, model compression can be performed
in conjunction with transfer learning. Molchanov et al. [9]
achieves this by iteratively applying pruning as the model is
transferred. First, a pre-trained source network is fined tuned
on the target data set until convergence. Then, the neurons
of the network are pruned based off of a relevancy criteria.
The process of fine-tuning and pruning are repeated until the
desired trade-off between sparsity and accuracy is met. The
novelty of the authors’ approach is in their relevancy criteria.
Rather than using weight magnitudes, the relevance of each
”neuron” is defined as the change in the loss function if the
”neuron” were pruned. For this approach, ”neuron” can mean
an individual weight, a convolutional kernel, or a set of kernels
that form a feature map. The authors pruned at the feature map
level, pruning one set of feature map kernels each iteration.
To efficiently compute this change in loss, the loss function is
approximated by its first order Taylor expansion. The authors
also normalize the relevancies within each layer to account
for different magnitude scales at different layer depths. Using
this approach, the authors were able to transfer the VGG-16
network trained on ImageNet to the Caltech-UCSD Birds 200-
2011 data set Similar to this work, model compression can be
performed in conjunction with transfer learning. Molchanov
et al. [9] achieves this by iteratively applying pruning as the
model is transferred. First, a pre-trained source network is
fined tuned on the target data set until convergence. Then, the
neurons of the network are pruned based off of a relevancy
criteria. The process of fine-tuning and pruning are repeated
until the desired trade-off between sparsity and accuracy is
met. The novelty of the authors’ approach is in their relevancy
criteria. Rather than using weight magnitudes, the relevance of
each ”neuron” is defined as the change in the loss function if
the ”neuron” were pruned. For this approach, ”neuron” can
mean an individual weight, a convolutional kernel, or a set
of kernels that form a feature map. The authors pruned at the
feature map level, pruning one set of feature map kernels each
iteration. To efficiently compute this change in loss, the loss
function is approximated by its first order Taylor expansion.

The authors also normalize the relevancies within each layer
to account for different magnitude scales at different layer
depths.

Liu et al. [8] takes a slightly different approach by using
a three-stage method for producing a sparse, transferred net-
work. In the first stage, a pre-trained source network is pruned
to what is called the Sparse-SourceNet. In the second stage,
the Sparse-SourceNet is modified into a hybrid network called
Hybrid-TransferNet that splits into two branches. The main
branch outputs a prediction the source domain, while the extra
branch outputs a prediction in the target domain. Furthermore,
the higher layers of the main branch are made dense and
randomly reinitialized. As images from the target domain are
fed in, the network is trained to minimize the loss of its
prediction in the target domain compared to ground truth labels
and the loss of its prediction in the source domain compared
to what the original source network would have predicted if
fed the same image. This hybrid training is done so that the
lower levels of the network are can retain implicit knowledge
from the source domain that is relevant to the target domain. In
the third stage, the main branch of the Hybrid-TransferNet is
transformed into the Sparse-TargetNet and again pruned, since
the higher levels of the main branch were made dense in the
previous step. The extra branch is still retained during pruning
so that the total loss as defined in the Hybird-TransferNet can
be used when fine-tuning in between pruning iterations.

The common theme between Molchanov et al. [9] and Liu
et al. [8] is that the process of training the target network
begins using the final weights of the source network. In
contrast, this work seeks to investigate whether the latent
information in the initial weights of the source network’s
winning ticket would be useful in transfer learning. In this
way, the network can be trained from the ground up using a
much smaller network, rather than being fine-tuned from the
final weights of the source network. In cases when the size of
the target data set is small, the reduced number of parameters
is also believed to mitigate against overfitting.

III. EXPERIMENTAL SETUP

The goal of this paper is to examine whether winning tickets
can be transferred to other data sets. Specifically, we hypoth-
esize that winning tickets can provide a basis for transfer
learning, whereby we are able to use the winning tickets in
a new but related context to yield comparable classification
accuracy with substantial decrease in required computational
resources (i.e., time and space). To demonstrate this, the ten
classes of the CIFAR-10 data set [6] were randomly partitioned
into two data sets of five classes each. Example images of each
of the classes are shown in Figure 1. A dense convolutional
neural network was trained on Data Set 1, the source data set.
Then, the winning ticket of the dense network was extracted
using one-shot pruning. Rather than retraining on Data Set 1,
the sub-network was retrained on Data Set 2, the target data
set. During training, each network was periodically evaluated
using a test set. The accuracy of the transferred winning ticket
was then compared to that of the original architecture trained



TABLE I: Network architecture for winning ticket transfer.

Input Layer 0 28x28, 3 Channels
Convolutional Layer 1 64 5x5 filters, stride 1
ReLU Activation 1 -
Max Pooling 1 3x3 windows, stride 2
Local Response Normalization 1 depth radius 4
Convolutional Layer 2 64 5x5 filters, stride 1
ReLU Activation 2 -
Max Pooling 2 3x3 windows, stride 2
Local Response Normalization 2 depth radius 4
Fully Connected Layer 3 384 output
ReLU Activation 3 -
Fully Connected Layer 4 192 output
ReLU Activation 4 -
Fully Connected Output Layer 5 5 output
Softmax Activation 5 -

TABLE II: Winning Ticket Network Top-1 Test Accuracy

Network Mean
Accuracy

Standard
Deviation T-value P-value

25% Sparsity Net 0.797 0.0488 0.942 0.371Dense Net 0.796 0.0479
50% Sparsity Net 0.792 0.0479 1.84 0.0982Dense Net 0.796 0.0449
75% Sparsity Net 0.783 0.0538 2.27 0.0491Dense Net 0.794 0.0470
90% Sparsity Net 0.768 0.0535 4.98 0.000758Dense Net 0.791 0.0466

on Data Set 2. This was repeated for 10 unique splits of the
CIFAR-10 classes yielding a 10 × 2 cross-validation type of
design. We then applied target sparsity levels of 25%, 50%,
75%, and 90% for the non-bias parameters in each layer.

Although the method for extracting the winning ticket
closely followed that in Frankle and Carbin [2], there were
some slight differences. Rather than masking s% of the entire
network’s parameters as a whole, each layer was individually
pruned by s%. This prevented the process from only pruning
layers that overall have lower magnitude weights than other
layers. Since bias terms were suspected of behaving differently
than other connections, the bias terms of each layer were ex-
cluded from pruning. However, the observed network accuracy
did not significantly vary in other experiments where the bias
connections were included. The most significant difference is
the fact that the winning ticket was not trained on the same
classes as the original network, but on the classes from Data
Set 2.

Table I describes the network architecture used in our exper-
iments, which is based on a design by Krizhevsky and Hinton
[6]. All convolutions used padding such that the dimensionality
of the feature maps remained the same. The networks were
trained using traditional stochastic gradient descent with cross-
entropy loss, a learning rate of 0.01, and a batch size of 256.

IV. RESULTS AND DISCUSSION

A. Transferring the Winning Ticket

Figure 2 shows the networks’ learning curves from one
of the five different class splits used. More examples of the

TABLE III: Random Sparse Network Top-1 Test Accuracy

Network Mean
Accuracy

Standard
Deviation T-value P-value

25% Sparsity Net 0.807 0.0315 1.33 0.217Dense Net 0.811 0.0360
50% Sparsity Net 0.804 0.0320 5.20 0.000565Dense Network 0.813 0.0355
75% Sparsity Net 0.803 0.0318 5.63 0.000324Dense Net 0.815 0.0362
90% Sparsity Net 0.799 0.0338 3.55 0.00621Dense Netw 0.811 0.0346

learning curves can be found in Appendix A. The results
confirm the ability of the pruned network to be re-trained on a
new data set without sacrificing much accuracy. In each class
split, the winning ticket network was able to be retrained and
achieve comparable accuracy to the dense network. However,
the winning ticket overall did not out-perform the dense
network trained on the same data set. In many cases, both
the winning ticket and dense network converge to close to
the same accuracy level, depending on the degree of pruning.
However, sometimes the winning ticket converges at a slower
rate.

The accuracy of both networks at the end of training was
compared at different levels of sparsity using the paired sample
t-test. This tested whether the difference in mean accuracy
over the 10 class label splits was statistically significant (p-
value below 0.05). Table II summarizes these findings, mark-
ing p-values above 0.05 in bold. The difference in accuracy
was shown to be statistically significant for sparsity levels
of 0.90 and 0.75, but could not be shown to be statistically
significant for sparsity levels of 0.25 and 0.50. This indicates
that high levels of pruning will slightly degrade accuracy, but
low to moderate levels will not have a significant impact.

There are two factors that might explain these results. The
first is that for high levels of sparsity, the winning ticket might
be over-pruned. Over-pruning would cut out beneficial parts
of the network, causing a degradation of performance. This
is supported by the fact that many of the instances where the
dense network out-performs the winning ticket is when the
ticket is pruned to 90% sparsity. For the given problem; more
than 10% of the network may still be needed to fully perform
the classification task.

The second factor might be that for this specific problem,
a small, randomly initialized network can easily re-learn any
latent information that would be transferred by the winning
ticket. To evaluate this idea, this experiment would have to be
done using either a larger data set like ImageNet [1], or using
a deeper, more complex network.

B. Evaluating Randomly Initialized Sparse Networks

According to Frankle and Carbin [2], the performance
of the wining ticket depends on whether or not the initial
weights from the original training are used when re-training
the winning ticket. To verify this requirement, we repeated
the previous experiment, but we first randomly initialized the



(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 2: Test accuracy as the network trains. Data Set 1: automobile, airplane, frog, cat, bird. Data Set 2: truck, ship, dog,
horse, deer

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 3: Test accuracy as the network trains with a randomly initialized pruned network. Data Set 1: horse, automobile, frog,
airplane, dog. Data Set 2: ship, bird, deer, truck, cat

winning ticket such that it has the same topology as the
pruned original network, but with randomized weights. Figure
3 shows a set of learning curves for a particular class split,
and Appendix B shows more examples of the learning curves.

Interestingly, whether or not the initial weights were used
did not have a strong impact on the performance of the
network. The randomly initialized sparse network achieved
a comparable accuracy to the dense network trained on the
same data. There are a number of reasons why this might
be the case. Since each network is trained on five classes, it
might be that the features required to classify those classes are
not general enough to be useful when they are transferred. It
also might be that for the given problem and architecture, the
sparse network was able to learn the necessary features from
scratch, regardless of the initialization. Since winning tickets
are not always discovered in networks, it is also possible that
a strong winning ticket did not exist but the sparse network
was still able to sufficiently learn the task.

The paired sample t-test was also performed for this ex-
periment as well, summarized in Table III. It was found
that the differences in accuracy between the randomly initial-
ized sparse network and the dense network were statistically
significant for sparsity levels greater than or equal to 50%.
Interestingly, the p-value dropped sharply between 25% and
50% sparsity. Although both variants of the sparse network
tended to perform worse than the dense network at high levels
of sparsity, the randomly initialized network’s performance
was much more sensitive to the sparsity level. This indicates
that the transferred initial weights did in fact provide an
advantage over random initialization. This effect may have

been more pronounced on a more challenging learning task
in which the network could have benefited more from the
transferred information.

C. Limitations and Future Work

The idea of lottery ticket networks is still very new, and this
work is predominately exploratory. Therefore, it is important
to point out areas that this study does not address as potential
avenues for new research. First, this work only focused on
image data, and specifically on transferring networks between
different partitions of the CIFAR-10 data set. Work has yet
to be done transferring between two distinct image data sets,
between non-image data sets, or on data sets with a large
number of classes such as ImageNet. Furthermore, only a
specific architecture has been explored so far. More work could
be done using fully-connected (non-convolutional) networks,
networks with skip connections, and recurrent networks. Ex-
cluding the work using late resetting, Frankle and Carbin [2]
has stated that the existence of winning tickets in ResNets and
VGG-style networks is dependent on the choice in training
hyperparameters, which suggests that the transferability of
winning tickets may also depend on the architecture and
hyperparameter choice.

Another simplification made during this work was in setting
the number of classes equal for both partitions of the CIFAR-
10 data set. This was done to avoid the need to retrain a new
output layer with a different shape than the original output
layer. In practice, most data sets will have a different number
of classes than the original data set. Although the information
from the hidden layers would be retained, it is not known



if the randomly initialized output layer would impact the
retraining of the rest of the winning ticket. If so, the new
output layer might have to be trained using traditional transfer
learning before the full winning ticket can be extracted. More
work should be done analyzing the theoretical justification for
lottery ticket networks and how the winning tickets encode the
important information from the data set they were trained on.

To evaluate the practical efficacy of lottery ticket transfer
learning, the method should be benchmarked against similar
transfer learning techniques that also employ model compres-
sion. Comparing this method to similar works also presents
the opportunity to consider how some of the ideas from those
works can be combined with lottery ticket transfer learning.
For, example rather than using the magnitude of each connec-
tion to determine its importance, the approximated change in
loss could be used similar to Molchanov et al. [9]. Another
idea is that a variant of the Hybrid-TransferNet introduced in
Liu et al. [8] could be used when training the lottery ticket on
the target domain. Since the secondary output of the Hybird-
TransferNet is meant to retain implicit knowledge from the
source domain, it might encourage weights to take a path in
weight space similar to the path taken when originally trained
in the source domain. Finally, recent improvements to the
Lottery Ticket Hypothesis like late resetting [3] can also be
employed to better enable lottery tickets to be transferred from
larger networks.

V. CONCLUSION

The results of our experiments support our hypothesis that
winning tickets can be transferred and thereby speed up
training on new (but related) classification problems. While
these results are preliminary in nature, we are encouraged by
these results.

There are many advantages of transferring winning tickets
to new data sets. The resulting networks would take up less
memory and have a faster execution time, allowing them to
be trained quickly. Since the winning ticket would be sampled
from a network pre-trained on a similar task, the ticket’s initial
conditions might help it train better than random initialization.
However, due to the scope of this study, we are only able to
advocate tentatively for the merits of this approach. More work
needs to be done in a few areas to flesh out this novel concept.
Larger, more diverse data sets need to be used.

This method should also be tested on more network ar-
chitectures as well, including well known high performance
networks like Inception [10]. Lastly, more controls should be
set to ensure that the pruned network is actually benefiting
from the prior training, and is not just learning from scratch.
This paper demonstrates that these more involved experiments
are worth exploring. If the method does prove to be practical,
it will serve as an attractive alternative to standard transfer
learning.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR, 2009.

[2] Jonathan Frankle and Michael Carbin. The
lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference
on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

[3] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M
Roy, and Michael Carbin. The lottery ticket hypothesis
at scale. arXiv preprint arXiv:1903.01611, 2019.

[4] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[5] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[6] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Master’s thesis,
University of Toronto, 2009.

[7] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall
Tappen, and Marianna Pensky. Sparse convolutional
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 806–814, 2015.

[8] Jiaming Liu, Yali Wang, and Yu Qiao. Sparse deep
transfer learning for convolutional neural network. In
Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[9] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. Pruning convolutional neural
networks for resource efficient transfer learning. arXiv
preprint arXiv:1611.06440, 3, 2016.

[10] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1–9, 2015.

[11] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. How transferable are features in deep neural
networks? In Advances in neural information processing
systems, pages 3320–3328, 2014.

[12] Michael Zhu and Suyog Gupta. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
arXiv preprint arXiv:1710.01878, 2017.



APPENDIX A
TRAINING WITH WINNING TICKETS

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 4: Test accuracy as the network trains. Data Set 1: ship, bird, frog, airplane, truck. Data Set 2: cat, automobile, horse,
deer, dog

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 5: Test accuracy as the network trains. Data Set 1: airplane, deer, ship, dog, automobile. Data Set 2: horse, truck, bird,
cat, frog

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 6: Test accuracy as the network trains. Data Set 1: frog, dog, airplane, cat, deer. Data Set 2: truck, ship, bird, automobile,
horse

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 7: Test accuracy as the network trains. Data Set 1: frog, dog, ship, airplane, automobile. Data Set 2: cat, deer, truck,
bird, horse



APPENDIX B
TRAINING WITH RANDOMLY INITIALIZED WINNING TICKETS

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 8: Test accuracy as the network trains. Data Set 1: ship, cat, truck, dog, frog. Data Set 2: airplane, bird, horse, deer,
automobile

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 9: Test accuracy as the network trains. Data Set 1: cat, truck, dog, airplane, automobile. Data Set 2: ship, deer, bird,
frog, horse

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 10: Test accuracy as the network trains. Data Set 1: horse, automobile, frog, airplane, dog. Data Set 2: ship, bird, deer,
truck, cat

(a) 25% Sparsity (b) 50% Sparsity (c) 75% Sparsity (d) 90% Sparsity

Fig. 11: Test accuracy as the network trains. Data Set 1: truck, airplane, automobile, dog, deer. Data Set 2: ship, horse, frog,
bird, cat


