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Abstract—In this paper, we seek to automate the evaluation of
explanations of image classification decisions made by complex
convolutional neural networks (CNN). Explanation frameworks
like Local Interpretable Model-agnostic Explanations (LIME)
treat complex machine learning models, such as deep neural
networks, as black boxes and generate human-interpretable
explanations of their decisions using linear proxy models. We
propose a pair of experiments to quantitatively evaluate the
quality of generated explanations by measuring their sufficiency
and salience. To test if a generated explanation contains sufficient
information for classification, we test the ability of a trained CNN
to classify that explanation properly. We test explanations for
salience by training two new CNNs, one using raw image data
and the other using explanations as training data, and comparing
their classification precision and recall on a common set of test
data. We use our new evaluation framework to test our hypothesis
that LIME is able to generate explanations that are both sufficient
and salient. Our results show that the generated explanations
have the potential to be sufficient and salient, provided that
the complexity of the explanations is enough to describe the
underlying classes.

Index Terms—explainability, sufficiency, salience, LIME

I. INTRODUCTION

In recent years, we have seen the use of machine learning
models become more widespread, even as the problems that
they are used to address have become increasingly complex.
However, in the process of improving models’ capabilities and
sophistication, we sometimes lose transparency into exactly
how they make decisions. Neural networks are prime examples
of models that can achieve high performance on complex
problems, but lack interpretability, effectively making the
trained models black box systems. This is acceptable for
applications where the repercussions of mistakes or system
exploitation are not too severe; however, for high-risk use
cases where undesirable behavior can lead to harm, injury,
or death, understanding the system’s reasoning process is of
paramount importance.

As motivation for our work, we note that just because
models such as deep neural networks are not interpretable
does not mean that they are not explainable. While complex
models can be difficult for humans to understand, we can
use techniques to generate explanations that show which
parameters are used for decision making and their relative
importance to one another. From this information, we can infer

why parameters are being used by considering what we know
about the training data and the models’ structures. Through
these explanations, we can regain some of the transparency of
interpretable models without sacrificing performance.

Currently, several methods exist for generating interpretable
explanations. However, the quality of these explanations has
historically been evaluated by human judges. Being able to
evaluate the quality of generated explanations quickly, fairly,
and repeatably will be critical as explanation frameworks are
developed. In this paper, we present the results of a pair of ex-
periments that demonstrate our ability to evaluate explanations
generated by modern explanation frameworks quantitatively
in an automated fashion. Specifically, we evaluate the Local
Interpretable Model-agnostic Explanations (LIME) [1] frame-
work on its ability to explain image classifications performed
by CNNs.

II. RELATED WORK

A. Decision Tree Proxy Models

One of the earlier methods for explaining neural networks
was to represent them as decision trees. Initially, the Con-
tinuous/discrete Rule Extractor via Decision tree induction
(CRED) [2] method was used to translate shallow neural net-
works. This method was extended by Deep Rule Extractor via
Decision tree induction (DeepRED) [3] to handle arbitrarily
deep networks. DeepRED uses a number of techniques to
prune unnecessary branches from the resulting tree and max-
imize parsimony. While DeepRED and related decision tree
proxy models generate relatively complete explanations, they
suffer from high computational complexity and risk generating
explanations that are themselves difficult to interpret.

B. Linear Proxy Models

A noteworthy example of a linear proxy method is the Local
Interpretable Model-Agnostic Explanations (LIME) frame-
work presented in [1]. LIME is designed to wrap around any
black box model. The framework constructs a locally faithful
linear model for a given input instance that serves as a proxy
for the original global model by performing perturbations on
the inputs to the model and observing the results. As this is
the explanation framework that we use in our research, we
will discuss this method in greater detail in Section IV.



C. Additive Feature Importance

The SHapley Additive exPlanation (SHAP) framework, first
described by Lundberg & Lee [4], is relatively new. Presented
as a unified, model-agnostic explanation framework, SHAP
generates explanations by calculating Shapley values, which
are the additive importance that each feature of the input has
on the output of the model. Shapley values are a concept that
originated in game theory. In that context, they serve as a
measure of how important the actions of each player are to
the outcome of the game. In the context of machine learning,
the players are the input features, and the outcome is the result
generated by the model. SHAP’s ability to generate intuitive,
accurate, and interpretable explanations is demonstrated in [4].

D. Salience Mapping

First conceptualized by Koch & Ullman [5], salience map-
ping is based on combining visual features that contribute
to attentive selection such as color, orientation, etc., into a
single map. The salience at a given position in the image is
determined primarily by how different that position is from
its surroundings in regards to the attentive selectors being
considered. The first true implementation of salience mapping
was done by Niebur & Koch [6] and was further refined
in [7] using color, intensity, orientation, and motion queues
as attentive selectors. Techniques such as Randomize Input
Sampling for Explanation of black boxes (RISE) [8] have been
developed to use salience maps to explain models’ behaviors.
RISE is similar to LIME in that it treats the model as a black
box. As salience maps can be generated independent of a
classifier, one can view them as an explanation of how a model
should treat a given image. This is the approach taken in [9],
where generated salience maps are treated as explanations and
used to train new models.

E. Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) is a technique
introduced by Bach et al. [10] that explains the individual
decisions of a model by propagating the prediction from
the output backwards to the input. This informs us to what
extent the input features affected the final decision. While
this technique is geared specifically towards neural network
classifiers, Kauffmann et al. [11] managed to apply it to other
models like clustering and anomaly detection by transforming
the models into neural networks and then applying LRP. As
it only takes two passes through the model (one forward and
one backward) and can be applied to a range of connectionist
models, LRP is both flexible and computationally efficient.
Unlike proxy model techniques that generate locally faithful
models to explain single instances, LRP harnesses the underly-
ing model structure to generate globally faithful explanations.

III. PROBLEM STATEMENT

In spite of the proliferation of explanation generation meth-
ods, there is very little standardization for how they are
evaluated [12]. Most of the existing explanation frameworks
have been evaluated on completeness (compared to the original

model), detection of model bias, and subjective human evalu-
ation. For example, both the LIME [1] and SHAP [4] studies
evaluated explanations through human evaluation. In contrast,
we present a pair of experiments to test the sufficiency and
salience of explanations generated using proxy models in an
automated fashion.

We say that the explanation of a particular instance is
sufficient if it contains enough information to be classified cor-
rectly on its own. An explanation of an instance classification
decision that is fed back into the original classifier and is itself
classified correctly will be considered sufficient. We say that
explanations of a class are salient if they contain the most im-
portant information for representing the class as learned by the
model. To measure salience, we use the generated explanations
to train new models and evaluate them. If the explanations
used for training contain the most important information from
the original classifier, the new models will learn this new
information and will be able to classify instances similarly.

We say explanations are complete if they are both sufficient
and salient. Explanations that are sufficient and not salient
contain enough information to be correctly classified but not
enough to represent the feature set that the classifier has
learned adequately for a given class. Explanations that are
salient and not sufficient contain objective representations of
the class but not representations of the class as learned by the
model. Lack of either sufficiency or salience is indicative of
incomplete explanations.

We limit the scope of this study to CNNs and the LIME
framework under the assumption that our experimental design
can be adapted to other explanation frameworks and machine
learning algorithms with minimal to moderate effort. Given
this, we hypothesize that explanations generated by the LIME
framework for image classifications made by a CNN will
provide sufficient justification for the classifications made,
contain salient class information, and will therefore convey
a complete representation of the information used to make
classification decisions.

IV. ALGORITHMS

A. Inception-v3 CNN

We selected CNN classifiers in our experiments because
they represent complex models capable of achieving high
performance but lacking native interpretability. We used the
Google Inception-v3 framework, which is a 42-layer CNN
structure that has been optimized for image classification and
object recognition [13]. As the focus of this paper is on our
ability to generate good explanations for complex, uninter-
pretable models, we will not be focusing on the behavior
and structure of this model. Instead, we will treat it as a
black box, where the input is an image and the output is a
set of weights generated by the nodes in the network’s soft-
max output layer, where each node corresponds to a particular
class. For training and for classification, every input image is
resized to a square 299×299 pixel image without aspect ratio
preservation. The training process for each CNN consisted of



Fig. 1. Image of a cat (left) and Quick Shift segmentation (right)

five 320-step epochs with 32 samples in each gradient-update
step.

B. Local Interpretable Model-agnostic Explanations

The LIME framework [1] is an example of a justification-
based explainer, meaning that the framework draws connec-
tions between the inputs and outputs of the system to generate
explanations that provide some degree of justification for
the choices made but are not representative of the model’s
underlying decision process [12]. The framework gathers data
on the model by performing a series of perturbations on the
inputs and observing the resulting changes in output. This data
is used to construct a linear model that serves as a proxy for
the original global model in the feature space local to a given
input. In the context of the image classification problem, the
input perturbations take the form of modified input images
with occluded sections. This methodology of finding the most
salient input features by systematically occluding portions is
similarly applied in salience mapping [14].

How an image is segmented plays an important role in
generating explanations, as segmenting the wrong way can
cause important features in the image to be divided. Instead
of simply dividing the image into a grid, LIME attempts
to find meaningful sections in the image using any standard
image segmentation technique. Our implementation uses the
Quick Shift method, initially introduced in [15]. Quick Shift
segments an image by identifying pixel clusters based on
spatial and color dimensions. Given an image, the algorithm
calculates a forest of pixels where the branches are labeled
with a combined spatial and color distance value. Branches
with distance values above a predetermined threshold are
trimmed, and the remaining sub-trees of contiguous pixels
define the segments of the image, which are called “super-
pixels.” Figure 1 shows how an image of a cat from our data
set is segmented into super-pixels.

The LIME framework creates a set of alternative, perturbed
images composed of unique permutations of the original im-
age’s constituent super-pixels. Each of these perturbed images
is fed to the classifier and the outputs are observed. Through
this process of systematic image perturbation, LIME is able
to derive the importance of each section of the image to the
classification decision and construct a proxy model. Because
we are using a CNN for classification, the impact of perturbing

an image in a particular way can be observed by the changes
in the values of the output layer. By observing the impact of
all of the perturbed images on the output layer, LIME can
assign a weight to each super-pixel for each potential class.
That weight, which can be positive or negative, represents
the super-pixel’s contribution in labeling the instance as that
particular class. For our experiments, we configured LIME to
create 1,000 perturbed images per classification.

V. EXPERIMENTS

A. Data

Two data sets were used for our experiments. The first is
the Cats & Dogs data set [16]. This data set consists of 25,000
images, exactly half of which are labeled as images of dogs
and half of which are labeled as cats. The second data set used
is the Flowers data set [17] consisting of 4,242 flower images
of five different classes (daisies, dandelions, roses, sunflowers,
and tulips) gathered from Flickr, Yandex, and Google Images.
The Flower set does not have equal class representation, so
the number of images used from each class was reduced to be
equal to the least represented class, resulting in 734 images
from each class.

B. Design

For each experiment, we performed a 5-fold stratified cross
validation. An explanation consists of the set of super-pixels
composing an image and their associated weights for each of
the possible classes. Within the context of [18], each super-
pixel and its weights can be considered to be a “cognitive
chunk,” i.e., a chunk of salient information. In our experi-
ments, we use the n super-pixels with the highest weights to
construct an explanation image. The value of n must be tuned
carefully, as explanations with too few super-pixels may be
incomplete, while explanations with too many may be noisy
and less interpretable.

To test the effect of varying the amount of information in
an explanation, we varied the number of super-pixels n. The
values of n that we experimented with are 1, 5, 10, 15, 20, and
25. LIME will select up to a maximum of n super-pixels that
have a positive weight associated with the predicted class, but
will select fewer if there are less than n positively weighted
super-pixels for that class.

Figure 2 shows that as we increase the number of super-
pixels up to 25, we are allowing approximately half of the
original image to be included in the explanation. We did
not increase the number of allowed super-pixels further for
two reasons. First, we can observe the introduction of several
“noise” super-pixels as we increase the allowed count. These
noisy super-pixels are determined to be important by the
explanation framework but are not relevant to the class being
explained. Second, an explanation including over half of the
image does not serve as a good explanation if human analysis
becomes necessary.



Fig. 2. Explanations with 1, 5, 10, 15, 20, and 25 super-pixels

C. Experiment 1: Sufficient Justification

The first experiment is designed to test if the generated
explanations contain enough information to justify the de-
cisions made by the model. First, we trained a CNN on
the image data set. We refer to this CNN as the primary
model. The performance of the trained primary model was
evaluated against the data from the test set. Next, for every
classification, we generated an explanation for the correct class
using LIME. Each LIME explanation was saved as an image
where everything except for the features most important for
classification were occluded. The primary CNN was then used
to classify the set of generated explanations. Explanations
containing sufficient justification for the classification of their
original image should still be classified correctly. As such, the
model’s classification precision for each class serves as our
measure of how sufficient the generated explanations are.

D. Experiment 2: Salience

The second experiment is meant to test how representative
of each class the information contained in the explanations is
and if the explanations contain salient representations of the
original instances’ classes. For this experiment, we trained two
new CNNs. The first one, which we refer to as the secondary
model, was trained using the original test images for which we
generated LIME explanations in the sufficiency experiment.
The other new CNN, which we refer to as the explanation (EX)
model, was trained using the LIME-generated explanations
themselves. The purpose of the secondary CNN is to serve as a
reference point for the EX model. While the training data used
in the secondary CNN provides the classifier with a complete
set of information per instance (whole images), this is not
the case with the EX classifier, where training instances are
the explanations with portions of the original image occluded.
Note that we did not use the primary model as a reference as
it had access to a greater amount of training data.

The performances of both models were evaluated using the
primary model’s training data as test data. If the EX model is

TABLE I
CATS & DOGS PRIMARY MODEL CONFUSION MATRIX

Actual Predicted Class
Class Cat Dog
Cat 2500 0
Dog 0 2500

Fig. 3. Cats & Dogs Primary Model Precision on Explanations

able to perform as well as the secondary model, it would mean
that the explanations generated by LIME contain a reasonably
salient set of information and indicate that the proxy models
constructed by LIME are faithful to the original model. The
salience of information transferred to the explanation models
via the LIME explanations is observable through their ability
to differentiate classes. As precision and recall have equal
weight in this test, we use the F-score for each class as a
measure of the explanations’ salience.

VI. SUFFICIENT JUSTIFICATION RESULTS

A. Cats & Dogs

Table I shows the average performance of the Cats &
Dogs primary model across the five folds. As shown, the
primary model is excellent at correctly classifying both cat
and dog images, yielding 100% precision. For most models,
perfect performance would be suspicious, or at the very least
indicative of an error in the development process. However,
given that the Inception-v3 CNN was able to achieve 82.8%
precision on the ImageNet data set consisting of 1,000 classes,
it is not surprising that it is able to perfectly differentiate
between two classes given ample training data.

Figure 3 shows that the ability of the primary classifier to
identify the explanations generated from the test data with
varying numbers of super-pixels is vastly different between
cats and dogs. While the model can identify cats consistently
with relatively high precision, it struggles to identify dogs from
explanations with fewer super-pixels. However, as we increase
the amount of information available in the explanations, the
model gets better at correctly classifying dogs, reaching a
precision of 90% on explanations containing 25 super-pixels.
This upward trend is observed with cats as well, but is far
less pronounced. Specifically, cat explanations consisting of a
single super-pixel are sufficient to yield 85% precision, and
increasing to 25 super-pixels yielded 95% precision.



TABLE II
FLOWERS PRIMARY MODEL CONFUSION MATRIX

Actual Predicted Class
Class Daisy Dandelion Rose Sunflower Tulip
Daisy 141 2 0 2 1

Dandelion 41 92 0 6 1
Rose 18 3 73 33 20

Sunflower 59 5 1 80 2
Tulip 25 5 3 25 88

The difference in the number of super-pixels needed for
each class to produce a sufficient explanation is not entirely
unexpected. Some additional research revealed that, while
there are approximately 400 breeds of domestic dogs [19],
there are only 40-50 breeds of domestic cats, over 85% of
which have arisen within the past century. This means cats
have had very few generations to diverge genetically [20].
This suggests that there is much greater in-class variation
for dog images, as there are many more species that exhibit
more pronounced phenotypic variations. As such, it may be
easier for the CNN to isolate features that are distinctly feline
than to identify distinctly canine features. Thus there may be
features that are shared between both classes that are being
interpreted as feline when isolated. The model may be seeing
canine traits in the explanations but considers them to be feline
when taken out of context of the rest of the image, causing
misclassification.

Given that the images of dogs likely have much greater in-
class variation than the images of cats, we can assert that the
dog class is more complex. It makes sense that a more complex
explanation would be needed to explain a more complex class
sufficiently. The generated explanations with low super-pixel
counts are likely presenting the model with features observed
in both canines and felines that the model has learned to be
feline based on the lower variability among the cat images.
This means that there are features present in the dog image
explanations that the model has learned usually belong to
cat images. This seems to be a likely explanation for the
high sufficiency of cat explanations and low sufficiency of
dog explanations at lower super-pixel counts. Increasing the
number of super-pixels appears to allow the dog explanations
to include less important segments of the image that, in reality,
are necessary in addition to the more highly weighted super-
pixels to distinguish the dog images.

B. Flowers

Table II shows the performance of the Flowers primary
model. Unlike the Cats & Dogs model, which had an abun-
dance of data available to learn just two classes, this model
only has 587 instances per class. This primary model does not
perform nearly as well, as is to be expected given the limited
amount of data available and the difficulty of the classification
problem being addressed. The model is able to identify daisies
with very high precision, but has relatively low precision for
the other 4 classes.

Fig. 4. Flowers Primary Model Precision on Explanations

Figure 4 shows that the ability of the primary classifier to
identify the explanations generated from the test data with
different numbers of super-pixels varies wildly between the
five different classes of flowers. For daisy explanations, we
see classification precision climb steadily from 61% to 84%
as we increase the number of super-pixels from 1 to 25,
while the precision on full daisy images is 97%. Dandelion
and Tulip explanations, regardless of the number of super-
pixels, are classified with very low precision, being misclas-
sified frequently as daisies, roses, or sunflowers. There is a
significant difference in dandelion precision from 29% on 25
super-pixels to 67% on the full images. While there is irregular
behavior at low super-pixel counts, we see an approximately
linear increase in precision of dandelion explanations from 10
super-pixels to 25 super-pixels. Rose and sunflower explana-
tions follow similar trends to each other. Precision on low
super-pixels is relatively poor, but increases significantly with
more super-pixels. Interestingly, we see that for both classes,
explanations with 25 super-pixels are classified with greater
precision than the full images. This is a positive reflection
on the performance of the explanation generation framework.
Having a greater precision in the explanations suggests that
the explanation generation framework is filtering out noise in
the original images.

The observed trends in precision suggest that our generated
explanations are sufficient for the daisy, rose, and sunflower
classes. Furthermore, our generated explanations for roses
and sunflowers are more sufficient than the original images.
Conversely, even with 25 super-pixels the explanations for
dandelions and tulips are mostly insufficient.

C. Sufficient Justification Summary

Based on these results, we have evidence to partially support
our hypothesis that the LIME explanations are sufficient.
The results of testing the Cats & Dogs image explanations
show that they contain sufficient information to be classified
correctly; however, the results of testing the Flower image
explanations are less clear cut. Three out of the five classes’



TABLE III
CATS & DOGS SECONDARY MODEL CONFUSION MATRIX

Actual Predicted Class
Class Cat Dog
Cat 9984 16
Dog 521 9479

explanations (daisy, rose, sunflower) achieve precision com-
petitive with the classification of the original images with
25 super-pixel explanations, with rose and daisy explanations
achieving better precision. However, dandelion and tulip expla-
nations do not approach the precision achieved on the original
images. It may be possible to increase the rate of sufficiency
of these classes’ explanations by raising the restriction on the
number of super-pixels allowed in each explanation, but doing
so could hamper the human interpretability of the explanations.

It is also possible that raising the super-pixel cap would
not help. It may be the case that the Quick Shift segmentation
method used to find super-pixels for LIME is overly simplistic
for this application and unable to fully represent the features
of the dandelion and tulip classes being learned by the CNN.
This would explain the large difference in sufficiency observed
between rich 25 super-pixel explanations and full images. We
would argue that these results show that LIME explanations
have the potential to show sufficient justification given that the
complexity of the generated explanations is allowed to grow
in proportion to the complexity of the class. Even so, a more
advanced technique to segment the image, such as the salience
mapping techniques described in [5] may be able to better
capture the complex features being learned by the model.

VII. SALIENCE RESULTS

A. Cats & Dogs

As a reminder, the secondary models in this experiment
were trained using only 5,000 images (2,500 from each class)
corresponding to the test images used to evaluate the primary
models. The explanations made on these 5,000 images were
used to train the EX models. In Table III, we see the perfor-
mance of the secondary model on the Cats & Dogs images.
The model performs very well, achieving a 97% F-score for
both cats and dogs. This is competitive with the primary
model’s 100% F-score, and impressive considering that the
secondary model had only 1/5 of the number of training
examples as the primary model. This level of performance
indicates that the secondary model has learned to differentiate
between cats and dogs very well.

Figure 5 shows the performance of all of the Cats & Dogs
EX models, each of which was trained using explanations
allowing a different number of super-pixels. We can see that
the 1 super-pixel EX model performs poorly for both cats
(63% F-score) and dogs (53% F-score). However, once we
increase the EX model super-pixel count to 5, the performance
increases significantly, rising to 90% for both classes. Further
increasing the number of super-pixels used to train the EX

Fig. 5. Cats & Dogs EX Model F-Scores on Original Images

TABLE IV
FLOWERS SECONDARY MODEL CONFUSION MATRIX

Actual Predicted Class
Class Daisy Dandelion Rose Sunflower Tulip
Daisy 563 137 3 11 3

Dandelion 173 369 3 31 6
Rose 49 4 378 89 65

Sunflower 239 13 9 308 14
Tulip 113 11 35 80 245

models gradually increases the F-score for both classes up to
95% for both classes.

We can see that the EX model trained with only 5 super-
pixels is competitive with the secondary model, indicating that
5 super-pixel explanations contain a salient set of class repre-
sentation information. This brings up an interesting property of
the models’ behaviors. Recall that in the previous experiment
we found that explanations containing 5 super-pixels were
frequently insufficient and misclassified by the primary model.
The 5 super-pixel explanations contain salient representations
of the underlying classes but insufficient justifications for the
primary model’s behavior. In simpler terms, the 5 super-pixel
explanations are decent representations of the objective cat
and dog classes but are incomplete as they do not represent
the classes the way that the primary model learned them. They
fail to adequately represent the set of features that the primary
model used for classification. However, explanations with 20
or 25 super-pixels can be considered complete; they are both
sufficient and salient because they can be classified correctly
by the primary model and can be used to train accurate EX
models.

B. Flowers

In Table IV, we see the performance of the secondary model
on the Flowers data set. The model performs well, achieving
similar F-scores as the primary model for daisies, sunflowers,
and tulips. The secondary model has learned roses slightly
better than the primary model, and dandelions slightly worse.
As with the Cats & Dogs data, this secondary model had
only 1/5 of the amount of training data as the primary model.
However, it should be noted that 20% for Cats & Dogs was
still thousands of images, while for this data set 20% amounts
to a mere 147 images. These results show that the secondary
model has learned to differentiate between flower classes just



Fig. 6. Flowers EX Model F-Scores on Original Images

as well as the primary model. Once again, the secondary
model’s performance will serve as a bench mark to compare
against the EX models.

Figure 6 shows the performance of all of the Flowers EX
models, each of which was trained using explanations allowing
a different number of super-pixels. We see a mix of behaviors
among the five classes of flowers. For daisies, we can see
that the 1 super-pixel EX model has the lowest F-score at
50%, while the secondary model itself has an F-score of
60%, with the other EX models scoring within that range.
The EX models are able to classify daisies almost as well
as the secondary model, indicating that even 1 super-pixel
explanations contain most of the salient information. A manual
examination revealed that 1 super-pixel daisy explanations
mostly focus on the segments of the images containing the
pistil and some of the petals, highlighting the shape and color.
The F-score trends of the EX models for dandelions, roses, and
tulip, resemble logarithmic curves, similar to those observed
for cats and dogs. As was the case with dog explanations,
the results of the sufficiency experiment on these three classes
also suggest that the explanations with fewer super-pixels are
salient representations of the classes but are not representative
of feature sets that the primary model uses to classify them,
making them incomplete. This is especially pronounced for
dandelions and tulips.

The performance of the EX models on sunflower images is
unusual. The secondary model has an F-score of 56%. The 1
super-pixel EX model has an F-score of 24%, which improves
to 32% with the 5 super-pixel EX model. However, increasing
the number of super-pixels in the EX models further causes
a significant drop in performance. The EX models have not
learned to identify the sunflower class very well, meaning
that the explanations used to train them were not salient.
This is surprising, as the explanations of sunflower images
containing 5 or more super-pixels were mostly sufficient. The
EX models are misclassifying sunflower images mostly as
daisies. A visual inspection of the generated explanations used
to train these models shows that this misclassification is likely
caused by similar pistil coloration and petal shape. Since the

secondary model performs much better, it appears that the
information being transferred to the EX models is not salient,
making the explanations largely incomplete.

C. Salience Summary

The results of both experiments on both data sets indicate
the LIME framework has potential to generate explanations
that are sufficient, salient, and sometimes both. Explanations
can be sufficient, justifying the decision made by the original
classifier, without being salient (failing to adequately represent
the class). Explanations can also be salient and represent the
class well, but be insufficient as they do not represent the full
set of information for the class as learned by the model. These
results provide conditional support for our hypothesis that the
LIME framework is capable of generating sufficient and salient
explanations, with the condition being that the complexity of
the explanations is adequate to capture the complexity of the
classes being described. Through these experiments we hope
to have set the stage for further experimentation to evaluate
explanation generation frameworks quantitatively.

VIII. FUTURE WORK

Due to the computationally expensive nature of image
processing and explanation generation, we were limited in the
scale and number of the experiments that we were able to
perform. Altogether, generating the explanations for the Cats
& Dogs and Flowers data sets took over 10,000 compute hours.
We were able to complete our tests in a reasonable amount of
time by harnessing cloud compute resources but were limited
in terms of speed and scale by cost. Both of our experiments
could be enhanced by running them on a greater number of
data sets. Having a wider variety of image classification tasks
would help to show the effectiveness of our tests as methods
for evaluating explanations. This would serve to highlight the
differences in quality of explanations generated as we varied
the number of potential classes, in-class variability, between-
class variability, and other aspects of the data. We observed our
experimental results for the Cats & Dogs data set, which has
different in-class variability for each of the two classes, and a
medium level of inter-class differences. The Flowers data set
was slightly more complex, but we are likely to observe very
different results on even more varied and difficult classification
problems.

Our observations of the sunflower class from the Flower
data set show that 25 super-pixel explanations contain suffi-
cient justification but are not salient. We would theorize that
the explanations are not complex enough to properly represent
the model’s concept of a sunflower. It would be interesting
to see how the sufficiency and salience of explanations is
affected by the image segmentation technique used in the
LIME framework. While Quick Shift was enough for Cats
& Dogs as well as most of the Flowers classes, it was not
enough for sunflowers. Other segmentation techniques that
take more into account than just color and position, such as
the salience mapping techniques described in [5], may improve
performance.



In the future, we would like to extend our experimental
framework to test explanations generated for other learning
problems. In this paper, we focused solely on explaining image
classification, but there is no reason that we could not run
similar experiments on other types of classification or regres-
sion problems. We would also like to explore testing other
explanation generation methods such as SHAP [4]. While
it is also model-agnostic, we specifically avoided the SHAP
algorithm due to its high computational complexity. LRP [10]
would also be a promising explanation generation technique
to test with our evaluation framework, especially considering
that, unlike LIME and SHAP, LRP uses the structure of the
original model to construct the generated explanations directly.
Additional work may be necessary to translate the explanations
generated by other frameworks like SHAP and LRP into a
format that can be re-entered into the original classifier or
used to train a new one. Alternatively, doing so may not be
possible, or may not be practical, which would require the
modification of our methods to evaluate the sufficiency and
salience of explanations.

IX. CONCLUSION

The results of our experiments provide support for our hy-
pothesis. The explanations generated by the LIME framework
have the potential to be sufficient for independent classification
and provide salient class representations. Explanations may
not always be complete representations of the features used
by the classifier to make decisions, but can be, provided that
the explanations themselves are allowed to grow in complexity
in proportion to the complexity of the underlying classes.

While prior work such as [12] and [18] describe high-level
taxonomies for classifying types of explainers and ideas for
evaluating them, we have been able to implement concrete
evaluation methods borrowing ideas from these higher-level
frameworks. We hope that as the field of explainable machine
learning continues to expand that our methods will be used to
assess the quality of generated explanations and be extended
to a broader range of machine learning problems and models.
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