
Enhancing Neural Networks with Locality-Sensitive
Clustering of Internal Representations

Richard A. McAllister
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

richard.mcallister@student.montana.edu

John W. Sheppard
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

john.sheppard@montana.edu

Abstract—Some data exhibit natural divisions where the
application of a single neural network leaves some accuracy
on the table, thereby making a multi-network approach more
appropriate. We develop an approach to preserving knowledge
encoded in the hidden layer of several ANN’s and assemble that
knowledge in new, composite networks based on spatial clustering
that more effectively make predictions over subdivisions of the
entire dataspace. We show that this method has an accuracy
advantage over the single-network approach.

I. INTRODUCTION

Currently, substantial work is being done in the Artificial
Neural Network (ANN) community that addresses the black
box nature of neural networks. Clarifying the inner workings
of ANN’s would yield knowledge about why these networks
make the decisions that they make. If this knowledge could
be harvested during model training then this knowledge could
be used in other areas, enhancing accuracy, training time, or
versatility. Our study concentrates on preserving accumulated
knowledge as an intermediate step in clarifying the inner
workings of ANN’s rather than interpreting the model. Here,
we identify subsets of internal nodes from networks that have
been trained to make effective predictions on spatially related
sets of data.

A variety of problems exist where one might consider
training a single model to perform predictions of the associated
dataspace. Unfortunately, situations exist where a single model
to cover the space is suboptimal; it would be better to train
several models covering subsets of the space, albeit not as an
ensemble where predictions are combined. These situations
often arise when the data is spatial or temporal in nature.
The challenge is then to determine the relevant subsets of the
data for a particular model to cover, efficiently training the
set of models, and then determining which model to apply at
runtime.

In this paper, we proceed from the perspective of working
specifically with spatial data1 We explore how to preserve
information encoded in the hidden layer of ANN’s trained
in specific spatial regions and then identify key hidden nodes
in networks to be used to train networks in spatially similar
regions. The main question being addressed is whether it is

1Technically, the data is spatiotemporal; however, we train over the entire
temporal range, thus abstracting out the temporal relationships.

possible to preserve knowledge encoded in the hidden layer
of several ANN’s and collect that knowledge in a network
that can effectively make predictions over a more granular
subdivision of the entire dataspace.

The remainder of this paper is organized as follows: In the
next section we discuss some background information relevant
to our task, including some related work and a characterization
of the data that were used here. Section III details the approach
we take as well as summarizing the common concepts that we
utilize in our approach. Our experiments are described after
this in Section IV with the results presented in Section V.
Finally, in the last section, we present our conclusions based
on the results and outline directions for future work.

II. BACKGROUND

A. Related Work

In this work we use autoencoders to pre-condition our
hidden layer via greedy unsupervised pre-training [1], [2]. Au-
toencoders perform feature extraction by exploiting a property
of being “undercomplete,” meaning that they ideally capture
the most salient features of the training data at a lower
dimensionality [3]. Networks pre-trained in this manner have
been credited with causing the renewed interest in deep neural
networks starting in 2006 [3]–[6].

The data that we are interested in is spatiotemporal func-
tional data, which is data that exist in a continuous space
whose changes happen as a function of space and time. The
field of functional data analysis is characterized and explored
by Silverman and Ramsay in [7]. A critical characteristic of
this data is its tendency to vary in a continuous, non-abrupt
manner.

Layerwise Relevance Propagation (LRP) is a procedure for
removing some of the “black box” characteristics of Artificial
Neural Networks [8]–[10]. Originally, LRP was intended to
attribute contributions of single pixels in an image to classifi-
cation decisions that a neural network made. It has also been
used to compute scores for regions of images “denoting the
impact of the particular image region on the prediction of a
classifier” [11].

Partitioning of the dataspace was addressed by Rakhmatova,
et al. in [12]. The authors cite differences in relief, soil
type, terrain, and anthropogenic effects causing the data to

TABLE I
FEATURES FOR THE HURRICANE SANDY DATASET

Reading Source Reading Name
Radiometry Measurement Temperature

Pressure
Cloud Density

Rain Density
Ice Density

Snow Density
Graupel Density

Wind Speed Indicator Wind u (East/West)

be “spatially inhomogenous” as a motivation for their work.
This is consistent with our motivations in this paper. However,
though they address pre-partitioning a dataset for greater
accuracy in the application of ANN’s, their method mainly
addresses optimally splitting the data for training and test
purposes, rather than to create a multiplicity of networks to
more accurately make predictions on their own subdivisions,
as is done here.

In [13] Sergeev, et al. refer to processes that cause “spatial
heterogeneity” in studying the spatial distribution of topsoil
components. They used spatial components as inputs to their
procedure, allowing the ANN’s that were trained on the data
to learn how the spatial locations affected the function being
simulated. Our approach does not rely on the ANN’s to do this
and instead uses separate networks for the contiguous related
regions identified via the two stages of clustering detailed
below.

B. Data

For this study, we used the Microwave CubeSat fleet sim-
ulation dataset created by Zhang and Gasiewski [14]. This
data depicts radiometric and wind readings from one day
over Hurricane Sandy, an Atlantic Ocean hurricane in 2012.
The average spatial resolution of the data is 5 kilometers,
which we down-sampled during the spatial binning process
to 15 kilometers. The temporal resolution was 15 minutes.
The configuration of the data for training and testing purposes
was the same as was used in [15].

The particular task that we use to study our procedure
is the same as in [15], which is to infer the u component
of the storm’s wind vector (East-West component) using
radiometric data. The data that we use is a hybrid of two
datasets (radiometric and wind) that were taken over the
same area at the same time. In [15], the authors explore
the functional relationship between radiometric data and wind
vector data. This is useful to the meteorological community
since radiometry does not measure wind directly.

Table I shows the input features that were used and output
for these experiments. These are the same features used in
[15]; however, we considered all three components in that
work (i.e., u, v, and w) but we restrict our attention here to
the u component alone.

Algorithm 1 Locally-sensitive hierarchical agglomerative
clustering

1: procedure LSHAC(L, cluster limit)
2: for all l ∈ L do
3: cl ← l . Each location is its own cluster.
4: end for
5: while num(C) > cluster limit do
6: lr ← rand(L)
7: clr ← cluster containing lr
8: c locs = [] . c locs holds closest locs
9: for all lclr ∈ clr do

10: La ← adjacent(lclr)\clr
11: c locs← c locs+ argmin

la∈La

(distance(la, lclr))

12: end for
13: clr ← clr + c locs
14: end while
15: end procedure

III. APPROACH

A. Overview

The general approach we take is to divide the dataspace
into contiguous clusters based on two types of representations.
The clustering is done in two phases: primary and secondary.
The primary clustering uses the original training data (data
instance clustering) to provide a first-look agglomeration of
areas that have similar data. The secondary clustering (LRP
clustering) uses the LRP values of the hidden nodes of a
stacked autoencoder-based multilayer perceptron (MLP) that
has been trained on the data from the clusters in the primary
clustering. The LRP clustering captures similar relevance
values from these MLP’s to provide a basis for hidden-node
generalization.

Our approach to knowledge transfer among networks is
to identify nodes in the hidden layer that have been most
significant in producing correct predictions. These nodes are
then combined with other nodes from other networks within
their spatial cluster to form a hybrid network. Since we are
performing regression, we are interested in studying the effect
of both excitatory and inhibitory neurons.

B. Computational Components

1) Spatial Data Clustering: To exploit functional relation-
ships in the data, we use a Locality-Sensitive Hierarchical
Agglomerative Clustering algorithm (LSHAC). This proceeds
from the assumption that points of interest that are close to one
another (spatially) behave functionally with a greater degree
of similarity than points that are further apart. As mentioned
in Section I these areas may be influenced by common factors
that are relatively alien to other areas. Assuming this, we begin
by performing LSHAC on the raw training data points.

The key difference between LSHAC and normal hierarchical
agglomerative clustering is that at each agglomeration stage we
only consider the locations neighboring a randomly selected
cluster. Note that we refer to these locations as Areas of

a) Unclustered locations b) Random location

c) New cluster d) New Cluster frontier

Fig. 1. Clustering a 5× 5 grid of locations

Interest (AOI). We use cosine similarity to compare these
neighboring locations to determine which of the neighbors is
added to the cluster.

Algorithm 1 shows our procedure for LSHAC. Lines 2
through 4 show that at the beginning each location is its
own cluster. The major loop (lines 5 through 14) constrains
the number of clusters being formed to the cluster limit
parameter. In lines 6 and 7 we select a random location and
get the cluster corresponding to that location. Lines 9 through
12 iterate through all locations inside this cluster, saving the
closest location outside this cluster to each of these interior
locations. The cluster being examined (clr) is then merged
with the external cluster containing the location that is closest
to any location inside clr on line .

Figure 1 depicts the initial stage of clustering using 25
points in a five by five grid. At this stage, no clustering
decisions have been made, and each location is treated as
its own cluster. For illustration purposes we select location
6 arbitrarily as a starting point (Figure 1b). The surrounding
locations of location 6, shown in grey, are identified, and
each of their cosine similarities with location 6 is calculated.
Now suppose that location 7 is determined to be most similar.
Figure 1c shows location 7 added to the cluster that includes
location 6. Figure 1d then shows the next step by considering
the surrounding locations of the cluster containing locations 6
and 7.

For the second stage of clustering, Figure 2 shows that all
of the locations have either been paired with another location
or are orphaned by not being included in another cluster (e.g.,
locations 8 and 18). The second round of clustering begins

a) First level agglomeration b) Cluster location selection

c) Location selection d) Cluster merge

Fig. 2. Clustering a 5× 5 grid of locations (cont’d)

with collecting all of the locations neighboring a randomly
selected cluster. We continue the previous example by using
the cluster containing locations 6 and 7, with the surrounding
location shown in grey. Figure 2c shows that location 12 has
been selected as the location with the highest cosine similarity.
Analogous to a single-linkage approach to clustering, the entire
cluster containing location 12 is now merged, creating a new
cluster containing locations 6, 7, 12, and 17. This new cluster
is excluded from evaluation until the second stage completes.

2) Unsupervised Pre-Training and Fine Tuning: Each ANN
trained here begins by unsupervised pre-training (UPT) of
a single autoencoder [16]. We use UPT to find favorable
initialization points from which to apply supervised learning
with the ground truth data [3].

As was done in [17], a single initialization across all
locations was used to preserve comparability. During UPT,
all of the training data for a given cluster was used to
train an autoencoder, presented in the same temporal order
across all networks. After training, the decoder portion of the
autoencoder was discarded.

3) Layerwise Relevance Propagation: Because we are in-
terested in the contributions of hidden neurons to train a final
regression model, We use LRP at the hidden layer level to
determine the most relevant nodes. LRP employs a layer-wise
conservation principle, which assumes the preservation of a
propagated quantity between adjacent layers of a multilayer
perceptron [9]. The conservation principle requires∑

i

R
(l)
i =

∑
j

R
(l+1)
j

Algorithm 2 Hidden layer LRP
1: function HLLRP(nAOI , DAOI,training, l)
2: nfront,l = nAOI with layer αl as output
3: A← [] . A gets a new list.
4: for d ∈ DAOI,training do
5: A[d]← nfront,l(d)
6: end for
7: nback,l = nAOI with layer αl as input
8: Λ← [] . Λ gets a new list.
9: for α ∈ A do

10: Λ[α]← LRP (α)
11: end for
12: return Λ
13: end function

where R
(l)
i is the relevance associated to the i th neuron of

layer l . The relevance signal is directed proportionally to
the subset of inputs that resulted in the corresponding output
for each training instance. The relevance score is calculated
according to

R
(l)
i =

∑
j

zij∑
i′ zi′j + ε sign (

∑
i′ zi′j)

R
(l+1)
j

where
zij = a

(l)
i w

(l,l+1)
ij

causing the lower-layer neurons (those closest to the input)
that mostly contribute to the activation of a higher layer neuron
(closest to the output) to receive a larger share of the associated
relevance.

LRP was designed specifically to analyze input data. We
were interested in capturing the relevance of the hidden layer
activations, so we modified the LRP algorithm to do this
(Algorithm 2). On line 2 we create a new network by removing
the output layer and using the activations of hidden layer l as
the output. We then capture this output A as new input data
for the second part of the procedure. On line 7, we create
a new network by removing the input layer from the original
network nAOI and using A as the input. We perform the LRP
procedure on each of the records from the A list to obtain the
relevance values Λ for each of the internal nodes in layer l.
Notice that we run the complete set of training data through
the network once, and then the activations through the network
another time.

4) Subset Transfer: We are interested in capturing the
most important subsets of the nodes that make up the hidden
layers of our networks. Using these subsets, we create a
foundation for pre-training new autoencoders. We demonstrate
that this yields multi-layer perceptrons that are more accurate
predictors for the local area upon whose data the network has
been trained.

When we transfer information among networks, we are
combining networks that have already been trained to make
predictions within their own spatial clusters. Often, corre-
sponding nodes in different clusters’ networks have LRP

Fig. 3. Intersecting importances

values that are different but still significant, which is demon-
strated in Figure 3. Both clusters have produced networks
where node n1,0 has a significant LRP value.

When we examined the distribution of LRP values, we
observed three interesting differences (4). The whisker plot
of the LRP values of the nodes from the networks within one
cluster (Figure 4a) shows that there is a variety of differences
among the nodes, including many with no difference at all
(e.g., nodes 0, 3, 6, 9, 15, and 19). Figure 4b shows a histogram
of the absolute values of the differences where a large number
of nodes have little or no difference with the distribution then
trailing off to the right. Figure 4c shows a histogram of both
the positive and negative LRP values. To identify nodes with
useful LRP values, we employ a knee detection procedure
on this final histogram for both increasing (negative) and
decreasing (positive) values. Nodes laying outside these knee
points were regarded as transferable.

When comparing two networks, if the LRP values of a node
in each network are regarded as significant, but one node is
inhibitory while the other is excitatory, we split the node in
the combined network. Figure 5 illustrates this process. Figure
5a highlights the three relevant nodes. Figure 5b shows that all
three have been included in a new autoencoder. The remaining
nodes are copied from the untrained template network.

5) Selective Network Application: Figure 6 shows a 5× 5
grid that has been divided into four clusters with the centroids
of those clusters depicted as the black diamonds.

Suppose we have a location about which we wish to make
predictions (e.g., the yellow star in Figure 6). Since centroid 4
is the closest, the network for cluster 4 will be used to make
predictions for that location.

C. Training Procedure

To begin the overall training procedure, spatial data clus-
tering (cf. Section III-B1) is applied to the raw data from
each AOI. We call this “data instance clustering.” The targeted
number of clusters is an input parameter that guides the
algorithm, telling it when to stop clustering. The algorithm
stops clustering when the number of clusters is at this limit or

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

200

400

600

800

1000

0 200 400 600 800 1000
Value

0

20

40

60

80

100

120

140

160

180

Fr
eq

ue
nc

y

300 200 100 0 100 200 300 400
LRP Sum Value

0

20

40

60

80

Nu
m

be
r o

f N
od

es

LRP Value Sums from Res

a) LRP value differences b) Histogram of absolute values c) Histogram of values

Fig. 4. Examination of LRP value distribution

a) Identification of nodes b) Node expansion

Fig. 5. Node identification and expansion

when the next agglomeration will cause the number of clusters
to be below this limit.

The autoencoders that produce the initial hidden layers for
each AOI’s network are each copied from a pre-initialized
template network. This is done to ensure comparability among
each of the networks. This is also important for the aggregation
and transfer steps later in the procedure.

Following the Unsupervised Pre-Training, Multilayer Per-
ceptrons (MLP’s) are created using the pre-trained layer as
the hidden layer. These MLP’s are then fine-tuned with the
training data. We then apply the LRP procedure to the trained
networks to determine the relevant hidden nodes. Following
LRP, a second phase of clustering is performed using the
relevance values. It is this clustering step that produces the
final clusters among which accumulated knowledge is shared.
It is also these clusters that are evaluated using the Selective

Fig. 6. Spatially clustered areas of interest with query location

Network Application procedure, which is the final step in the
experiment.

IV. EXPERIMENTS

A. Experimental Design

For training, testing, and verification we employed an
80%/10%/10% strategy where the same time slices are used
for each of the splits across all of the networks. These
splits were generated via 10-fold cross-validation to obtain
a statistical sample of performance. The verification split was
used for early stopping to prevent overfitting. The networks
were trained to predict wind vector components from the
radiometric data collected in the Microwave CubeSat data set.

B. Experiment Scenarios

Table II shows the different scenarios of experiments that
were run. The global experiment served as a baseline for
performance comparison and consisted of training a single
network over all of the AOI’s. The dual clustering experiments
involved combining both data instance clustering and rele-
vance clustering. The data were clustered using the normalized
data instances. For data instance clustering the target cluster

TABLE II
SUMMARY OF EXPERIMENT SCENARIOS

Experiment Description Variations

Global Train one ANN on all data from all locations
to predict over the entire dataspace. N/A

Dual Clustering (DC)
Cluster the dataspace using LSHAC based on
the training data. Further cluster the data-
space using HLHAC based on LRP values.

N/A

Dual Clustering
with Transfer (DCT)

Same as DC. Combine networks
using relevance similarity.

1) Use only above positive knee point.
2) Use only below negative knee point.
3) Use both.
4) Use only relevant nodes.

Glob
al

DC (5
0/7

)

DCT A
bo

ve
 Si

ng
le

(20
/6)

DCT A
bo

ve
 All (

30
/4)

DCT B
elo

w Si
ng

le
(20

/9)

DCT B
elo

w All (
30

/10
)

DCT B
oth

 Si
ng

le
(20

/6)

DCT B
oth

 All (
30

/7)

DCT R
el

Sin
gle

 (4
0/8

)

DCT R
el

All (
70

/4)

Experiment

0.00

0.05

0.10

0.15

0.20

0.25

RM
SE

Average Performance Comparison

Fig. 7. Summary of performance for the best performing experiments from
each major configuration (see Table III for abbreviation meaning)

numbers were 20, 30, 40, 50, 60, and 70. Following this,
the LRP clustering used target cluster numbers of 4, 5, 6,
7, 8, 9, and 10. All 36 pairs were examined. Note that no
knowledge transfer among networks occurred in the first set
of dual clustering experiments, but the knowledge transfer
procedure was applied in the second set.

When combining the clusters, there were situations where
the candidate clusters for the new combination contained
weights that were the same or almost the same. In response
to this, the Dual Clustering with Transfer experiments were
subdivided further into two node expansion techniques. In the
first case, we simply selected one of the nodes at random,
treating it as a representative of the set of nodes with similar
weight vectors. Thus, in this case, only one node from the
group is transferred to the new network. In the second case,
we simply transferred all of the nodes from the collection
(resulting in the transfer of as many nodes as were in the
group). Table III shows the abbreviations that are used in the
discussion of the experiment scenarios.

V. RESULTS AND DISCUSSION

Figure 7 summarizes the performance of all experiments in
terms of root mean squared error (RMSE) on the wind vector
determination task from [18]. As shown, the best performing
configurations from each sub experiments all outperformed the
Global configuration. The best single configuration was the
DCT Both Single (40/4), which had a data instance clustering
limit of 40 and an LRP clustering limit of 4.

To test the performance of these scenarios, we ran paired
t-tests comparing each scenario depicted in Figure 7 with
the Global configuration. The tests were run on the cross
validation error from each of the folds. At an α = 0.1 level, we
found a significant difference between the Global configuration
and all of the experimental configurations, with the exception
of the DCT Both All configuration. We also found that the
DCT Above Single and the DCT Both Single configurations
were significantly better than the Global configuration at the
α = 0.05 level, with the DCT Both Single configuration
having greater improvement over Global. However, when
comparing both of these configurations to each other, we found
no statistically significant difference, even at the α = 0.1 level.

A. Global Experiment

Results for the Global experiment are summarized in the
heat map in Figure 8. Since this experiment was used as a
baseline, we only note the general characteristics of the perfor-
mance for this network. This figure shows better performance
in the North of the dataspace and especially in areas that are
over land.

B. Dual Clustering (DC) Experiment

The differences between the RMSE for the DC experiment
and the Global experiment are summarized in the heat map in
Figure 9. The values used to create the heat map are the mean
difference in RMSE over the ten folds for the DC experiment:

HM-Val = Global-RMSE− 1

|folds|
∑

f∈folds

RMSEf

This means that the heat map shows red when the results
favor the experiment and blue when results favor the Global
configuration.

TABLE III
EXPERIMENT CONFIGURATIONS FOR DIFFERENT SCENARIOS

Experiment Sub-Experiment Expansion Abbreviation
Global N/A N/A Global
Dual Clustering N/A N/A DC
Dual Clustering with Transfer Nodes Above Knee Point Single DCT Above Single

” ” All DCT Above All
” Nodes Below Knee Point Single DCT Below Single
” ” All DCT Below All
” Above and Below Single DCT Both Single
” ” All DCT Both All
” Only Relevant Single DCT Rel Single
” ” All DCT Rel All

10 9 8 7 6 5 4 3 2 1
East / West Position

10
9

8
7

6
5

4
3

2
1

No
rth

 /
So

ut
h

Po
sit

io
n

Global Performance

0.24

0.32

0.40

0.48

0.56

Pr
ed

ict
io

n
RM

SE

Fig. 8. Global network performance

C. Dual Clustering with Transfer (DCT) Experiment

Figure 7 shows the performance of the “DCT Both Single”
scenario, which was the best-performing scenario. This heat
map is constructed to compare the performance for the 36
different combinations of cluster sizes when configuring data
instance clustering and LRP clustering. As shown, the con-
figuration where the cluster limit for data instance clustering
was 40 and the cluster limit for the LRP clustering was 4 is
the highest-performing version. The heat map in Figure 10a is
constructed in the same way as in Figure 9 and compares the
winning “DCT Both Single” configuration to the performance
of the Global network. The cell corresponding to the best
performing configuration in this diagram (Data Cluster Limit:
40, LRP Cluster Limit: 4) conforms to the blue extreme, where
the Global average RMSE was 0.3296 and the average RMSE
for DCT Both Single was 0.2613.

Figure 10b depicts the the final hidden layer (autoencoder)
sized that resulted from the node expansion procedure detailed
in Section III-B4. The winning configuration (again, Data

4 5 6 7 8 9 10
LRP Cluster Limit

20
30

40
50

60
70

Da
ta

 C
lu

st
er

 L
im

it

Configuration Performance Comparison

0.28

0.30

0.32

0.34

0.36

0.38

M
ea

n
RM

SE
 D

iff
er

en
ce

Fig. 9. Mean RMSE difference between DC config and Global config

Cluster Limit: 40, LRP Cluster Limit: 4) produced on average
173.6780 nodes in the autoencoder, which is near the mean
of 176.9263. The lowest average number of nodes produced
by “DCT Both Single” was 156.6277 and the highest average
number was 202.7015.

VI. CONCLUSIONS AND FUTURE WORK

From our results we conclude that our procedure is a
reasonable one to employ if the goal of the neural network
is accuracy above training efficiency. Performance was in-
deed enhanced using our approach, but the cost of using
this procedure is certainly a factor, as it is indeed a more
lengthy procedure that complicates the training. Perhaps this
subdivision is appropriate, especially in situations where one
is constrained to neural networks where the expressiveness is
constrained. Also, natural divisions in the dataspace may be
sought and this is one way of obtaining them.

The number of data clusters and LRP clusters are both
parameters that must be tuned with this approach. As of

4 5 6 7 8 9 10
LRP Cluster Limit

20
30

40
50

60
70

Da
ta

 C
lu

st
er

 L
im

it
Configuration Performance Comparison

0.275

0.300

0.325

0.350

0.375

M
ea

n
RM

SE
 D

iff
er

en
ce

4 5 6 7 8 9 10
LRP Cluster Limit

20
30

40
50

60
70

Da
ta

 C
lu

st
er

 L
im

it

Layer Size Comparison

160

168

176

184

192

200

Hi
dd

en
 L

ay
er

 S
ize

 (N
od

es
)

a) Configuration comparison with Global b) Hidden layer sizes

Fig. 10. Worst and best performing networks for “DCT Both Single”

now it is not clear how to select these a priori, so several
configurations must be tried in order to locate an optimal
configuration. In the future we would like to see this automated
or factored out of the model.

We are also in the process of applying this procedure to
new datasets whose functional nature are not predicated on
space and time. The new spaces would be predicated on other
characteristics that vary continuously at a local level. For the
time being, spatiotemporal functional data is a natural fit,
especially using selective network application.

Finally, since we are causing the size of the hidden layer
to expand and contract through the process of discovering
the relevance of certain nodes, we are in effect forcing
the expressiveness of the resulting models to adapt to the
conditions of the space. An interesting investigation would be
to study the behavior of the networks concerning underfitting
and overfitting as these expansions and contractions take
place. This motivates the idea of searching for “appropriate
expressiveness” of a model without generating new models,
thus losing all of the intelligence captured in the training of a
previous generation of networks.

REFERENCES

[1] D. Erhan, Y. Bengio, A. Courville, P. Vincent, and S. Bengio, “Why
Does Unsupervised Pre-training Help Deep Learning?” Journal of
Machine Learning Research, vol. 11, pp. 625–660, 2010.

[2] T. L. Paine, P. Khorrami, W. Han, and T. S. Huang, “An Analysis of
Unsupervised Pre-training in Light of Recent Advances,” 12 2014.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy Layer-
Wise Training of Deep Networks,” in Proceedings of the 19th Interna-
tional Conference on Neural Information Processing, 2006 2006, pp.
153–160.

[6] M. Ranszato, C. Poultney, S. Chopra, and Y. Lecun, “Efficient Learning
of Sparse Representations with an Energy-Based Model,” in Proceedings
of the 19th International Conference on Neural Information Processing
Systems, December 2006, pp. 1137–1144.

[7] B. W. Silverman and J. O. Ramsay, Functional Data Analysis. Springer,
2005.

[8] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PLoS ONE, vol. 10, no. 7,
p. e0130140, 2015.

[9] W. Samek, T. Wiegand, and K.-R. Muller, “Explainable Artificial
Intelligence: Understanding, Visualizing, and Interpreting Deep Learning
Models,” ITU Journal: ICT Discoveries, no. Special Issue 1, 2017.

[10] W. Samek, G. Montavon, A. Binder, S. Lapuschkin, and K.-R. Müller,
“Interpreting the Predictions of Complex ML Models by Layer-wise Rel-
evance Propagation,” in Workshop on Interpretable Machine Learning
for Complex Systems (NIPS), 2016.

[11] A. Binder, S. Bach, G. Montavon, K.-R. Müller, and W. Samek, “Layer-
wise relevance propagation for deep neural network architectures,” in
Proceedings of the International Conference on Information Science
and Applications (ICISA), K. J. Kim and N. Joukov, Eds. Singapore:
Springer, 2016, pp. 913–922.

[12] A. Rakhmatova, A. Sergeev, A. Buevich, A. Shichkin, and M. Sergeeva,
“Partition Procedure of the Initial Data for the Models Based on
Artificial Neural Networks,” in Proceedings - 2019 Ural Symposium on
Biomedical Engineering, Radioelectronics and Information Technology,
USBEREIT 2019. Institute of Electrical and Electronics Engineers Inc.,
apr 2019, pp. 241–243.

[13] A. P. Sergeev, A. G. Buevich, E. M. Baglaeva, and A. V. Shichkin,
“Combining spatial autocorrelation with machine learning increases
prediction accuracy of soil heavy metals,” Catena, vol. 174, pp. 425–
435, mar 2019.

[14] K. Zhang and A. J. Gasiewski, “Microwave CubeSat fleet simulation
for hydrometric tracking in severe weather,” in IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 5569–
5572.

[15] R. McAllister and J. Sheppard, “Evaluating Spatial Generalization of
Stacked Autoencoders in Wind Vector Determination,” in Florida Ar-
tificial Intelligence Research Society Conference (FLAIRS), Melbourne,
FL, 2018, pp. 68–73.

[16] K. Fukushima, “Cognitron: A self-organizing multilayered neural net-
work,” Biological Cybernetics, vol. 20, no. 3-4, pp. 121–136, 9 1975.

[17] R. McAllister and J. Sheppard, “Exploring Transferability in Deep
Neural Networks with Functional Data Analysis and Spatial Statistics,”
in IEEE International Joint Conference on Neural Networks, vol. 2019-
July, 7 2019.

[18] R. A. McAllister and J. W. Sheppard, “Deep Learning for Wind
Vector Determination,” in IEEE Symposium Series on Computational
Intelligence, Honolulu, HI, 2017.

