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Abstract—Quantifying uncertainty is critically important to
many applications of predictive modeling. In this paper we apply
a recently developed method that uses U-statistics as a basis
for estimating uncertainty in ensemble regressors to the case of
neural network ensembles. U-statistics generalize the notion of a
sample mean and provide distributional properties to estimates
obtained by ensembles of estimators. With this method, we train
neural networks on subsamples of the data and use the resulting
ensemble to estimate the variance of the point estimates from
the ensemble. We demonstrate that neural networks predicting
a regression function exhibit the required theoretical properties
for use in this ensemble method, and we then perform a coverage
probability study of three simulated data sets to show that the
empirical coverage probabilities match the theoretical values.

I. INTRODUCTION

One major limitation of neural networks is the reliable and
computationally efficient quantification of model uncertainty.
This limitation arises from the fact the trained model does
not capture probability estimates directly. By considering
ensembles of models, however, we can use the behaviors of
these ensembles as a basis for estimating confidence in pre-
dictions. This paper uses the U-statistic framework developed
by Mentch and Hooker [1] for estimating uncertainty in
ensembles, to build confidence intervals of mean point esti-
mates obtained by ensembles of neural networks. We perform
a coverage probability analysis of these methods for predicted
means in linear and nonlinear regression settings as well as
apply the method to a real-world data set. Our contributions
are the demonstration that neural networks fit within this U-
Statistics framework for estimating uncertainty as well as the
empirical evaluation of these estimates of uncertainty through
coverage analysis in linear and nonlinear regression settings.

A. Background

Before presenting our experiments, we begin by introducing
some preliminary material. We first give some basic back-
ground knowledge on feedforward neural networks. We then
introduce U-statistics and the related infinite order U-statistics
that can be used to estimate model uncertainty. We show
that neural networks can be used as an estimator in a U-
statistic framework. Finally, we describe others’ efforts in
quantification of uncertainty in neural networks and neural
network ensembles.
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1) Feedforward Neural Networks: In this paper, we study
ensembles of feedforward neural networks [2] as estimators
in regression problems. For our study, we divide our neural
networks into three layers: an input layer, a hidden layer, and
an output layer. The activation function in the hidden nodes
is represented by

f(x) =o(w'x+0)

where o is a sigmoid function (e.g., logistic or hyperbolic
tangent), w is a vector of weights, x is vector of inputs, and b
is the bias or threshold. In the training of the neural networks,
the loss function is squared error for regression and logistic
loss (i.e., cross entropy) for classification. For the gradient
descent algorithm, we use the L-BFGS update [3], a limited
memory extension of the Broyden-Fletcher-Goldfarb-Shanno
algorithm, which has a positive definite secant update [4].
The L-BFGS method has been shown to converge faster and
perform better on small datasets [5].

2) Neural Network Ensembles: Neural network ensembles!
have a long history of being used to improve predictive
power. It is standard to train many networks with different
hyperparameter combinations, while only using the network
that performs the best on the validation set. Researchers have
looked for ways to use the discarded neural networks to
improve performance, thus creating such an ensemble [6].

Several good surveys on ensembles have been published,
most recently by Li [7] with earlier work done by Wozniak
et al. [8]. An introductory textbook into ensemble methods
has been written by Rokach [9].

There are many earlier references to ensemble learning in
the machine learning literature, such as [10], [11]. Salamon
and Hansen were the first to propose using neural network
ensembles [12], where their paper proved, with some re-
strictions?, that if each network performed slightly better than
random chance on a prediction, a large enough ensemble
would guarantee a correct prediction, giving a solid theoretical
foundation for ensemble use. This work has been extended in
regression to show that the estimated mean of a neural network
ensemble is at least as good as any member’s estimate [13].

'Neural network ensembles are sometimes also called committees.
2The primary restriction was the assumption that each member’s prediction
was independent of the other members’ prediction in the ensemble.



The two most common approaches to training ensembles
(in general) are bagging [14] and boosting [15]. Bagging is
the process of training members of a neural network ensemble
on bootstrapped samples and then combining those members
using an aggregated average in regression or plurality voting
in classification. Bootstrapping is a sampling method where
N samples are chosen randomly with replacement from a
training set with N observations. This method is robust to
model misspecification and overfitting [16].

Another popular resampling technique, boosting, focuses
training on the examples on which the algorithm performs
the worst [15]. AdaBoost.M1, the most popular boosting
algorithm, iteratively fits classifiers on weighted versions of the
dataset [17]. Many extensions of AdaBoost exist. For example,
Peerlinck et. al. recently combined ideas from Adaboost.R2,
Adaboost.RA and Adaboost.RT to create an ‘“approximate
AdaBoost” (or AdaBoost.App) [18].

The resampling technique used in this paper is subsample
aggregating (subbagging). The technique is best described
through U-statistics and the related resampling techniques
discussed in the next section.

3) U-Statistics: U-statistics (where the “U” refers to being
unbiased) are an important, broad class of minimum vari-
ance unbiased estimators. They were considered early on by
Kendall [19] and Wilcoxon [20] in the estimation of rank
correlation. They were then formalized, being found to be of
minimum variance by Halmos [21] and asymptotically normal
by Hoeffding [22]. A good introduction to the subject can be
found in Lehmann [23] and more thorough treatment of the
subject can be found in Lee [24]. More relevant to the purpose
of this paper is that predictions from ensemble methods can
be shown to be U-statistics given some regularity conditions.
Here, we give an introduction to U-statistics in this context,
originally described by Mentch and Hooker [1].

Consider an i.i.d random sample Xi,...,X,, from some
population with cdf F. Here, we assume that F' is unknown
rather than belonging to some parametric class. Next, consider
the expectation functional 8(F) = E[¢(X4,...,X,)], where
kernel ¢ is assumed to be permutation symmetric. Then
#(X1,...,X,) is an unbiased estimator for § with sample
of size n, as is ¢(X;,,...,X;,) for any a-tuple, where
1 <4 < -+ <4, < n. The uniform minimum variance
unbiased estimator (UMVUE) of @ is given by

U= (%Z---ZW%»---,XM
al iy ia

Since ¢ is symmetric, so is U. Note that we can view U-
statistics as a generalization of the sample mean, where we
average the kernel ¢ over all (Z) subsamples of size a.
Then U converges asymptotically to a normal distribution with
variance %2(1,;C where

Gk = cov[d(X7, ...

and X},..., X! ~ F [22]. That is, asymptotic variance is
proportional to the covariance of two subsamples having only
one sample in common.

7Xa);¢(X17Xéa"'aX/):|

a

B. Related Work

1) Neural Network Ensembles: Negative correlation learn-
ing has been proposed as an ensemble neural network
method [25]. In negative correlation learning, an ensemble
of neural networks is trained simultaneously with a loss
function that contains a penalty for the correlation between
the networks. The loss function [26] is

1 N ) N
LF) =+ <Z (Fy(n) —d(n)* + A ) pi(ﬂ))

N
pi(n) = (Fi(n) — F(n)) Y, (Fj(n) — F(n))
i#]

where F;(n) is the output of network ¢ on the nth training
pattern, F'(n) is the average output of the ensemble on the
nth training pattern, d(n) is the target value, and 0 < A < 1.

The mean squared error (MSE) of an ensemble can be
decomposed into variance, covariance, and bias components.
The larger A is in the loss function, the larger the decrease in
the covariance component of the MSE [27]. This type of loss
function causes individual network members to decompose
tasks into subtasks [26].

More recently, Pearce et. al [28] have used ensembles
of Bayesian neural networks for estimating uncertainty by
showing an extension of the usual ensemble approach results
in approximate Bayesian inference.

2) Uncertainty Estimation for Neural Networks: Geman et
al. [29] showed consistency in neural networks by increasing
the number of hidden layers asymptotically and demonstrating
that, as the number of nodes increase, the amount of prediction
bias decreases and prediction variance increases, thus match-
ing the bias-variance trade off.

Tibshirani [16] compared (among other methods) estimated
uncertainty via maximum likelihood using the delta method
and assuming that the errors of a neural network are Gaus-
sian. Estimation involves calculating a Hessian matrix. Since
calculating the Hessian in large networks is impractical, this
methodology has limitations. Tibshirani also compared the
sandwich estimator to estimate parameter variance in neural
networks [16]. This method produces an asymptotically con-
sistent covariance matrix without distributional assumptions or
even an assurance that the correct model generated the param-
eter as long as that parameter is consistent. It is also robust
to heteroscedasticity [30]. These relaxed conditions make it
appealing for neural networks, though some researchers have
raised concerns about its accuracy in practice [30].

Bootstrapping has also been proposed to quantify uncer-
tainty. This approach to quantification uses the bootstrap
resampling process to generate error estimates. Tibshirani
found that this method produced the most accurate estimates
of prediction standard errors [16] among the methods he
compared.

More recently, a method called MC (Monte Carlo) dropout
has been used to quantify uncertainty in neural networks [31].
The method averages outputs over ensembles formed from



Table I: Notation Used

Term Definition
n Size of random sample
kn Size of subsample

M, Ensemble size

z(D Fixed sample

nyce | Ensemble size trained with z(9)
nz Number of fixed samples

subsamples of nodes of one neural network using dropout
to select the active nodes in the network, turning a single
network into an ensemble of networks. Another recent method
uses samples from the training set, augments those samples
with synthetic adversarial observations, and then assumes the
average of the ensembles trained on the resulting sample
follows the Gaussian distribution. [32].

Variance in neural networks can be divided into two cate-
gories, the accumulation of small random noise from unknown
features in the data and the neural network’s optimum ap-
proximation. It has been shown that the variance in neural
networks can be reduced by training multiple neural networks
while varying the initial conditions of the network, fixing
both training set and architecture, and then averaging their
results [33]. As previously stated, Gaussian confidence inter-
vals have been constructed for neural networks [16]. However,
these intervals typically overstate the true variability of neural
network ensembles because the ensemble methods have a
dampening effect on variance [34]. Bagging has also been used
to estimate both confidence intervals and prediction intervals
in neural network ensembles. Some research supports that
these methods produce better coverage probabilities than the
previously proposed Gaussian confidence intervals [34].

Bayesian Neural Network models allow for a natural es-
timation of uncertainty. However, MCMC algorithms can
be computationally demanding for fitting such models. An
equivalence of Gaussian process models to network models
in the limit of infinite width has allowed the construction of a
kernel for Bayesian neural network models, allowing for the
quantification of uncertainty [35]. More recently, this result
has been extended to deep neural networks [36] and deep
convolutional and residual neural networks [37].

Recently, many approaches to estimating uncertainty have
focused on prediction intervals (e.g. [38] and [39]). Although
our approach currently does not allow for estimating prediction
intervals, they do have the advantage of being able to construct
hypothesis tests. Although not explored in this paper, Mentch
and Hooker showed that differences in model estimates are
also a U-statistic and hence allow for the hypothesis testing
of covariates.

II. NEURAL NETWORK ENSEMBLE-BASED U-STATISTICS

In the following, we describe the theoretical motivation for
our work. We follow this with an explanation of the algorithms
implemented in our experiments. For this discussion, the main
pieces of notation are explained in Table I.

A. Theoretical Motivation

Consider a random sample (X, Y) ' F of size n. Suppose
we build a neural network N from a subbagged sample of
size a taken from our dataset. Suppose further that we do this
for all (Z) subsamples. We can then take the average of the
predictions for some x* from these neural networks as the
estimate of our predicted value. Let us write this average as

ZN;B* 7,1, )

Given some regularity conditions—unbiased and permutation
symmetric—we have a procedure that results in a U-statistic
for these predicted values [1]. N has been shown to be an
unbiased estimator [6] that is asymptotically consistent [40]
and if trained by batch update is permutation symmetric. [NV
can be used as estimator that results in a U-statistic for the
predicted values.

Unfortunately, it is generally computationally infeasible to
build neural networks for all (Z) subsamples of the data. It
has been shown that taking m < (Z) subsamples of size a
results in

b ZNw* i1 )7

(X, Y5)).
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which is an incomplete U-statistic. Even so, this has been
shown to be asymptotically normal and unbiased by Jan-
son [41], assuming the variance of the estimator converges
to zero at a rate faster than 4/n. Neural Network N has been
shown to be mean integrategi squared error (MISE) consistent?
such that MISE = O + O (24 logn) where Cy is a
constant related to smoothing from the training process, s
is the number of nodes in the network, d is the number of
covariates, and n is the sample size [40]. It may also make
sense for us to scale m with n. Specifically, we could consider
taking subsamples of size m,, = (kz) giving us

772]\[13* i1 )7' (Xlavy ))

bmrukn

which is an infinite order U-statistic or a resampled statistic
when m,, # (IZ)

Frees developed necessary and sufficient conditions for
asymptotic normality when m,, grows faster than n [42], and
Mentch and Hooker developed conditions for individual means
E[b(x*)] for all growth rates of m,, with respect to n. So
long as the estimates for a bounded regression function are
bounded, the variance of the kernel function ¢ is bounded,
lim W’;ﬂ = 0, and limoy %, # 0, then the
infinite order U-statistic will be asymptotically normal with
the following distributions [1]:

Un m _‘9 4,
if @ =0, then v \/112247 ) 4 N(0,1)
n 1;kn
SE | fn — f3 = E§ (fn(z) — f(2))? dz (variance and squared bias)



Algorithm 1 Neural Network Subbagging

1: Select number and size of subsamples m,, and k,,
2: for 7 in 1 to m,, do

3 Take subsample of size k,, from training set
4: Train network IN; using subsample

5 N; estimates x*

6 Store NN; estimation

7:

Average m,, predictions estimate by, g, m,, (£*)

\ mn(Un,k’mmn - okn)

k2
A 2k, F ke

Ll —0e) 4 .1

We show that the necessary conditions to justify using neural
networks for this ensemble approach hold in Appendix A.

We will choose k,, approximately on the order of y/n. This
choice of k, replaces the requirement of exponential tails
on the error distribution with the requirement that nP(|e| >
4/n) — 0. It also assures that the 1im% = 0. Finally by
choosing a small k,, the time complexity is similar to a
bootstrap method, while generating large ensembles. Note that
it is not a requirement to choose k,, on the order of /n.

The subbagging method assumes that the estimator is built
using the same procedure. The distributional results above do
not rely on the method of building the neural network outside
the weak regularity conditions; however, the subbagging pro-
cedure does require that each neural network be built using the
same method. This would preclude using dropout since each
estimator would be built using randomly selected samples of
nodes on each training interval. We would then need a different
justification for the estimator, similar to the extension of U-
statistics to random forests [1].

4 N(0,1)

if 0 < a < oo, then

if & = o0, then

B. Algorithms

Mentch and Hooker propose two routes to estimating vari-
ance using infinite order U-statistics. The first method is
described as an external method because the estimation of
C1,k, and (g, x, are done in a separate step outside of the
point estimation. The second method is called internal since
C1,k, and g, k, are both estimated in the same procedure as
the point estimate. The external algorithms are described here.

The neural network subbagging method (Algorithm 1) trains
a neural network on a subsample of the random sample,
suggested to be on the order of y/n. Once the network is
trained, the point estimate is saved. Another neural network
is then trained on a new subsample whose point estimates
are saved, and this process is repeated until a collection of &,
point estimates is obtained. The average of the point estimates
is the subbagging method’s estimate.

The estimation of (; j, (Algorithm 2) is done by keeping
one sample constant between subsamples. The size of the
subsample is again suggested to be on the order of y/n. The
neural network is trained on this subsample, and its prediction

Algorithm 2 Neural Network (; 5, Estimation

1: for iin 1 to n; do

2 Select initial fixed point z(*

3 for 7 in 1 to ny¢c do

4 Select subsample Sy ; of size ky

5: Train network N; using subsample S;) ;
6 Store N; prediction at x*

7 Record average of the nj;¢ predictions

8: Compute variance of the n; averages

Algorithm 3 Neural Network (,, 5, Estimation

ns

1: for 7 in 1 to n; do

2 Select subsample, Sy, , of size k,

3: Train network N, using subsample Sj,,
4 Store N; prediction at x*

5: Compute variance of the n predictions

Algorithm 4 Internal Variance Estimation (i, and (g,

1: for 7 in 1 to n; do

2 Select initial fixed point 700

3 for j in 1 to n,,. do

4: Select subsample S; ; of size (k, — 1)

5: Append 2 to Si ;i

6 Train network N;

7 N; estimates Ngs ((Xk,, Y, ), - -+ (Xk,,, Y,,))
8 Store NN; estimation

9: Record average prediction n,,. networks

10: Compute variance for nz averages to estimate (i,
11: Compute variance of all predictions to estimate (y,, k,
12: Compute the mean of all predictions to estimate 6y,

is stored. For npsc trials, a new sample is selected with the
same fixed sample point z(?) in each sample, then the average
of the npsc predictions is recorded. Another z(V) is selected
and the process repeated n; times, then the variance of the
collection of ensemble predictions is computed.

To estimate (y,, %, (Algorithm 3), we repeat the previously
mentioned subbagging procedure for n; rather than m,, times,
and instead of calculating the mean of the ensemble point
estimate, we calculate the variance of the point estimates. We
can combine the three algorithms into the internal variance
estimation (Algorithm 4) [1].

Rather than estimating 6 outside the variance estimation,
it becomes the average of the fixed point ensemble used to
estimate (y y, . This also addresses the primary bottleneck of
the external method. The internal and external estimates of
C1,k, and (g, x, were found to be comparable by Mentch and
Hooker [1].

III. EXPERIMENTS

Our experiments assess the confidence interval estimates
using resampled statistics of neural network point estimates



empirically through a coverage study of three simulated re-
gression functions. The three functions are the simple linear
regression (SLR) model (Equation 1), the Weibull model as a
simple nonlinear regression (SNLR) model (Equation 2), and
the MARS model originally described in [43] (Equation 3).
The SNLR model is an example of a model for pasture
regrowth given in a text by Huet ef al. [44].

flz) = 2z +¢ (1
X = ]0,20]
e ~ N(0,2)

f(x,0) = 61— 0rexp(—exp(fs + falog z)) +¢  (2)
70 — 61 exp(—exp(—10 + 2.41og x)) + ¢;
X = 10,80];
e ~ N(0,2)
f(x) = 10sin(rzize) + 20(x5 — 0.05)>
+ 1034 + 55 + € 3)
X o= [01]%
e ~ N(0,2)

To assess the reliability of point and variance estimates of
estimated means generated from the subbagging method, we
generate 500 confidence intervals to estimate the coverage
probabilities of the ensemble method for each simulated model
across a range of points in each domain. Confidence intervals
of point estimates are constructed at the o = .05 confidence
level.

We built a feed forward network with one hidden layer con-
sisting of 500 sigmoid activation nodes, squared error loss, and
using the L-BFGS optimization method implemented in the
scikit-learn python toolkit [45] for each of the aforementioned
models. Parameters of the neural networks were kept the
same to assess the effect on performance varying the problem
can have on fixed network parameters. These parameters are
summarized in Table II.

With parameter values of n, = 50 and n,,. = 1000, a total
of 50,000 neural networks are constructed from subsample
sizes of k,, = 31 to get predicted confidence intervals for a
given model. Five hundred confidence intervals are constructed
for each model to estimate empirical coverage rates. These
computational efforts were performed on the Hyalite High
Performance Computing System, operated and supported by
University Information Technology Research Cyberinfrastruc-
ture at Montana State University.

In addition to our simulated experiments, we also highlight
the usefulness of uncertainty quantification of neural network
ensembles by applying the method to the real-world problem
of predicting power plant output from a set of defined fea-
tures. The dataset considered is the Combined Cycle Power
Plant data set available from the UCI machine learning data
repository [46]. This dataset consists of 47,850 observations
split into 5 subsets for conducting 5 x 2 cross-validation (CV).

Table II: Experimental Parameters

Parameter Parameter Value
Coverage Study Size 500
n 1000
kn 31
Mn 51
nyc 1000
nz 50
LR-Method Inverse Scaling
LR-Init 0.01
Hidden Layers 1
Number of Nodes 500
Activation tanh
Max Iter 1 x 107
Tolerance 1x 108

The predictor, average hourly full load electrical power output
(MW), is modeled as a function of ambient temperature (AT),
ambient pressure (AP), relative humidity (RH) and exhaust
vacuum (V). For a full description of the data see work by
Tiifekci [47]. The same method for the learning the synthetic
datasets was used for modeling this dataset. In the work
by Tiifekci, several classifiers were compared using RMSE
estimated via 5 x 2 CV, including a radial basis function feed
forward neural network.

In choosing this dataset, we highlight the usefulness of
obtaining estimates of uncertainty for neural network ensemble
predictions. The goal of a power plant is to minimize costs
while providing enough power so as to not cause power
outages. The implication of this is that power is naturally
overproduced, so obtaining good estimates for power demand
and power supply is crucial for profit maximization. Thus, if
a power plant can obtain good estimates of uncertainty in pre-
dicted output, they can minimize overproduction, potentially
saving vast amounts of resources in the process.

IV. RESULTS

For each of the three simulated datasets, coverage rates
are obtained for point estimates across the range of each of
their domains. Coverage probability plots are obtained for
each and summarized in Figure 1. We see that theoretical
rates of coverage are obtained in both the SLR and SNLR
case. However, coverage rates are lower in the MARS case.
We hypothesize that this is due to the increase in number
of covariates and sample size being held constant. Indeed,
the number of covariates shows up in the expression for
MISE in neural networks. We also see edge effects present
as indicated by the drop in coverage rates near the boundary
of the domains. We provide plots for bias, standard error (SE),
and t-statistics (bias divided by SE) for point-wise estimates
across the sample space for each dataset. We observe that the
deviations away from the theoretical coverage rates are due to
the large amount of bias near the edges of the sample space.
This observed edge bias is consistent with other nonparametric
regression estimators (e.g. [48]).
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Figure 1: Bias and coverage results for the simulated data sets. Plots on the top row give bias, standard error, and t-statistics
for the point estimates across the sample space and are relative to the true mean of the function. Plots on the bottom row
give coverage probabilities across the sample space for each of the three simulated data sets. For the MARS data set, we give
figures for X; holding all other variables to the middle of their domain at 0.5.

In the power plant data set, we observed an RMSE of
6.65 using the ensemble approach. Note that the goal of
our approach is not to obtain the best in class results, but
rather to obtain reliable estimates of model uncertainty in our
predictions. With this in mind, there are some properties that
would be desirable for our estimates of uncertainty. Namely,
we would expect that uncertainty would be greater in regions
where the density of samples is lower in the training set as well
as regions of the sample space where there is larger variability
in the response. Along these lines, we provide a plot of SE
as a function of average 10 nearest neighbor distance (as an
estimate of density) given in Figure 2a. We use the magnitude
of the residuals as a proxy for variability in the response. Thus,
we also plot SE as a function of absolute residuals given in
Figure 2b. As expected, we can see an increasing relationship
in both figures.

V. DISCUSSION

The neural network ensemble method presented in this
paper has a number of practical advantages. In particular, our
method may have computational advantages on datasets with
a very large number of observations. It may be impractical
to train a network using the full training set; however, it may

be feasible to train many networks on fewer observations and
then use the resulting ensemble prediction with the ancillary
effect of generating accurate uncertainty estimates.

An observation that was made in the course of experi-
mentation was that, consistently, the confidence intervals on
the edges of the sample space were wider than for point
estimates in the interior, but that the bias tended to be so
great that coverage probabilities were far from their theoretical
quantities. This is an observation generally consistent with
nonparametric regressors. That is, there tend to be biases near
the boundary of the sample space for these estimators.

In the original paper by Mentch and Hooker, the authors
noted their ensemble method can serve as a bridge between
the machine learning and statistical communities by enabling
estimation of uncertainty for machine learning methods and
tying the theoretical justification to U-statistics. In applying
their method to a real world dataset where uncertainty esti-
mates have practical value, we hope to highlight this point.

VI. FUTURE WORK

Many exciting research questions remain open. For exam-
ple, it is evident that bias corrections for the boundary are
needed to have confidence in predictions near the edge of the
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sample space. One possible avenue is to use a data reflection
approach by first reflecting data across the boundary and then
building neural networks on this augmented data. This is
an approach that has been taken in the kernel estimation of
probability densities (e.g. [49] p. 29). We think this approach
could be applied to this scenario in a straightforward way in
order to mitigate the effects of boundary bias.

Additionally, neural networks have high performance in the
large sample case: however, performance can suffer if the
model does not have enough examples to include. Because
the ensemble method uses subsamples on the order of /n,
these models can experience a great deal of bias in the small
sample case. For this reason, it would be worth exploring this
method for neural networks that tend to perform better in the
small sample case.

Finally, the distributional results in Mentch and Hooker
based on U-statistics are for point estimates of the mean and
hence allow for the construction of confidence intervals. How-
ever, in application it is of practical importance to compute
the uncertainty of a new response (i.e., a prediction interval).
For this reason, future work includes the extension of these
asymptotic results to estimating uncertainty of a new response
to enable the construction of prediction intervals.
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APPENDIX A

The general condition that needs to be satisfied to be an

incomplete U-statistic is given in the theorem below.

Theorem. Let Zy,7Z,,... X Fy with 0, =
En,, (Z1,--, Zk,) and  define hi g, (2) =
Eny, (2,22, .+ 2k,) — O, then for all § > 0
. 1 2
lim J hip (Z1)dP =0
2P Gk Jh g, (Z0)200/mCn,

For our purposes, we make use of a stricter but more
intuitive condition, which we state here.

Theorem. Consider a bounded regression function F. If there
exists a constant ¢ such that for all k, > 1,

|h((X1, Y1), .,
h(<X17}/1)a ey

(Xk
(X

n+1)

)=
n+1))| <c |Ykn+1

n+17

n+1) Ykn+1|

where Yk 41 = F(Xk ) + €k, +17Yk* = F(Xk ) + Ez 11
and where €, +1 and ek 41 are Lid. with either exponenttal
tails or simply that nP(|e| > /n) — 0 so long as k,

o(4/n), then the prior condition for the limiting results holds.

This condition means that if we can bound the difference
between the prediction of one neural network with another
where we change a single response (Y%, . ), then the predicted
values will follow an incomplete U-statistic. We now show that
this condition holds for a neural network predictor N.

Proof. Let Y7 and Y5 be two sets of data differing by a single
response. Now, denote predictions from N as fl and fg. We
can write f = fl +e and f = fg + €2 where we assume that
for each €; we either have exponential tails or k, = o(y/n)
and nP(|¢] > 4/n) — 0. Now, consider the previously stated



result by [40] showing neural netv2vork predictors to have Mean
Integrated Square Error of O (Cf ) + 0 (22 logn). Thus,

resulting in |f; — fo| < [V

[1]

[2]

[3]
[4]

[8]
[9]

[10]
(11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

fr = Fellz = [I(f — &) = (f — e2)l]2

= [le2 — ez
< leall2 + ezl

C? d
_ ' na
=0 - +O<NlogN>,

N .
win — Y3 | as desired.

O
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