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Abstract—In recent years, Hyperspectral Imaging (HSI) has
become a powerful source for reliable data in applications
such as remote sensing, agriculture, and biomedicine. However,
hyperspectral images are highly data-dense and often benefit
from methods to reduce the number of spectral bands while
retaining the most useful information for a specific application.
We propose a novel band selection method to select a reduced
set of wavelengths, obtained from an HSI system in the context
of image classification. Our approach consists of two main steps:
the first utilizes a filter-based approach to find relevant spectral
bands based on a collinearity analysis between a band and its
neighbors. This analysis helps to remove redundant bands and
dramatically reduces the search space. The second step applies
a wrapper-based approach to select bands from the reduced
set based on their information entropy values, and trains a
compact Convolutional Neural Network (CNN) to evaluate the
performance of the current selection. We present classification
results obtained from our method and compare them to other
feature selection methods on two hyperspectral image datasets.
Additionally, we use the original hyperspectral data cube to
simulate the process of using actual filters in a multispectral
imager. We show that our method produces more suitable results
for a multispectral sensor design.

I. INTRODUCTION

Optical remote sensing systems have a long history of
collecting image data for many diverse applications, ranging
from lab-based analysis of food quality and safety [1] to
space-based contributions to archaeology [2]. The cornerstone
of these systems is the exploitation of spatial and spectral
information contained within the captured imagery. Though
spatial information within an image can provide useful infor-
mation, spectral data plays a central role in identifying and
classifying objects in a scene. To address the need for rich
spectral information, optical remote sensing systems come in
many forms, ranging from simple multispectral imaging (MSI)
systems [3], [4] to hyperspectral imagering (HSI) systems [1],
[5]. In an MSI system, several distinct spectral bands are
captured, often outside the visible spectrum. These systems
are useful for capturing information in known areas of the
spectrum. For example, if an application requires the detection
of vegetation, a multispectral imager may only be required
to capture the reflectance at 680 nm (red) and 800 nm (near-
infrared), two commonly used spectral channels, to capture
the chlorophyll content [6]. In contrast to MSI, HSI systems
often capture hundreds of contiguous spectral bands.

Though powerful, the spectrally dense images captured
during HSI come at the price of high data density, large file
size, and increased computational complexity, which represent
computational limitations when storing and processing these
types of images. Returning to the example above, instead
of capturing two distinct spectral bands to detect vegetation,
a hyperspectral imager would capture data from hundreds
of bands surrounding the wavelengths of interest. In such
situations, the complexity introduced by the HSI system may
be unnecessary if similar detection results can be achieved
with fewer spectral channels. However, in many applications,
relevant wavelengths are not known a priori. The ability to
determine the most important wavelengths in a hyperspectral
image would greatly simplify the data capture and processing
requirements. Namely, it would enable using multispectral
imagers in place of hyperspectral imagers, greatly reducing
complexity and cost. Unfortunately, selecting salient wave-
lengths from an HSI system is not a trivial task.

In this paper, we propose a feature selection method to
identify the most relevant spectral bands given an HSI clas-
sification problem. Our feature selection method consists of
two steps: the first is a novel pre-selection method that we
call inter-band redundancy analysis (IBRA). It assesses the
degree of collinearity between each spectral band and its
neighbors in order to approximate the minimum number of
bands we need to move away from a band to find spectral
bands with sufficiently distinct information. The distribution
of this distance metric across the spectrum helps us to identify
a reduced set of independent bands that act as the centroid
of their corresponding regions in the spectrum. The second
step is called greedy spectral selection (GSS) and consists of
calculating the information entropy of each pre-selected band
to rank its relevance. Then, we train a classifier using the top k
pre-selected bands (where k is the number of desired bands)
sorted according to their corresponding entropy. Finally, we
remove from our selection the band that shows the most
severe indication of multicollinearity and repeat the process
taking into account the next available band to verify if the
classification performance improves.

Having selected a reduced number of spectral bands from
the original hyperspectral image, we train a new classification
model based on a reduced-parameter convolutional neural
network [7] that achieves high performance. We hypothesize



that it is possible to apply the combination of inter-band
redundancy analysis and greedy spectral selection to select
a small number of wavelengths (∼5–10) that will lead us to
train more efficient HSI classifiers than the compared methods.

II. RELATED WORK

Several dimensionality reduction techniques have been ap-
plied in the past as a natural pre-processing step for HSI
classification problems. This is done to avoid unnecessarily
high time complexity when processing large volumes of data
and to reduce redundancy of the data, which could impair
the performance of a classifier [8]. Dimensionality reduction
techniques rely on feature extraction or feature selection ap-
proaches; the former apply linear or non-linear transformations
to extract specific features from the original data, while the
latter select the most useful subset of the features of the data
without transforming them.

Among feature extraction methods, principal component
analysis (PCA) and its variants (e.g. folded-PCA and kernel
PCA) are some of the most commonly used methods to
remove spectral redundancy and reduce the dimensionality
of the raw data [9]. On the other hand, feature selection
methods select a subset of spectral bands without modifying
the data or projecting it into a new basis. The aim of this work
is to identify which spectral wavelengths from the original
hyperspectral spectrum are most responsive or relevant for
a particular classification task without modifying the data,
which is why we prefer feature selection methods over feature
extraction methods. Additionally, identifying a reduced subset
of relevant spectral bands allows for a better understanding
of the optical properties of the materials and provides in-
formation that is useful when designing cheaper task-specific
multispectral imagers. For example, if an application demands
the identification of a certain type of plant, a feature selection
method will identify the wavelengths that change most due to
absorption from the unique pigmentation in the plant.

Given the advantages of feature selection, several methods
have been proposed for hyperspectral image classification, one
of the most common being ranking-based methods. These
methods estimate the importance of each spectral band using
such metrics as the variance inflation factor (VIF) [10] in
order to select the top-ranked bands. We will use the idea
of calculating the VIF value to measure collinearity, but the
spectral bands will not be ranked based on this simple measure
alone. Other methods use the estimated band relevance as part
of an optimization approach, as proposed by Wang et al. [11],
where the optimal clustering framework (OCF) separates the
data into clusters, ranks them according to a selected measure
(e.g. information entropy), and selects those with higher rank
values. Furthermore, Wang et al. [12] also proposed a fast
neighborhood grouping method for hyperspectral band selec-
tion (FNGBS) that partitions the data into several groups using
Euclidean distance as a similarity measure, and then obtains
the most relevant and informative bands using local density
and information entropy measures.

In recent years, two feature selection approaches for HSI
classification have gained more attention: partial least squares
discriminant analysis (PLS-DA) [13] and genetic algorithms
[14]. For instance, a recent method for bandwidth selection is
known as Histogram Assisted Genetic Algorithm for Reduc-
tion in Dimensionality (HAGRID) [15]. This method main-
tains a population of index vectors identifying some specific
number of wavelengths and fits a Gaussian mixture model
to the converged population to identify the main wavelengths
with their associated filter bandwidths.

Alternatively, some model-based approaches have been pro-
posed in the context of deep learning. For instance, Taherkhani
et al. [16] proposed regularizing the convolutional filters of the
first layer of the convolutional neural network (CNN) using a
group LASSO algorithm in order to sparsify the redundant
spectral bands. Similar attempts, although not explicit feature
selection methods, have been carried out in works such as
[17], and [18], where a spectral-wise attention mechanism in
the form of a fully-connected layer is applied to the inner
convolutional layers of the network with the objective of
emphasizing informative spectral features and suppressing less
useful spectral features.

III. MATERIALS AND METHODS

A. Datasets

We will use two datasets: an in-greenhouse controlled
hyperspectral image dataset called “Kochia” and a well-known
remote sensing HSI dataset called “Indian Pines” (IP).

The Kochia dataset consists of images of the weed kochia
(Bassia scoparia) that were collected and analyzed by Scherrer
et al. [19] with the aim of learning to differentiate between
three different classes of herbicide-resistance of this weed: 1)
herbicide-susceptible, 2) glyphosate-resistant, and 3) dicamba-
resistant, where glyphosate and dicamba are two components
commonly found in commercial herbicides. The images were
captured using a Resonon Pika L hyperspectral imager with
300 spectral channels across a spectral range of 387.12 nm
to 1,023.50 nm, resulting in a spectral resolution of ap-
proximately 2.12 nm. The kochia samples were illuminated
using diffuse sunlight in a greenhouse setting. A total of 76
hyperspectral images of kochia with varying ages and spatial
resolutions were captured at the Montana State University
Southern Agricultural Research Center (SARC). Each image
contains three kochia leaves of the same herbicide-resistance
class with a height of 900 pixels and width ranging from 700–
1,200 pixels.

The Indian Pines dataset [20] is an aerial 145× 145 - pixel
image of the Indian Pines site in Northwestern Indiana. It
was acquired using the Airborne Visible / Infrared Imaging
Spectrometer (AVIRIS) sensor [21] and it originally had 224
spectral bands in the wavelength range 380-2,510 nm, resulting
in a spectral resolution of approximately 9.5 nm. The number
of bands was reduced to 200 after removing 24 bands covering
the region of water absorption. The data are divided into
16 classes containing agriculture, forest, and other natural
perennial vegetation.



B. Data Pre-Processing

Images of kochia leaves were captured in raw digital num-
bers recorded by the Pika L hyperspectral imager, meaning
the data cubes required pre-processing before they could
be analyzed. For these experiments, data pre-processing was
limited to reflectance correction for the Kochia dataset. To
accomplish this, we converted the raw digital numbers to
reflectance values using a 99% Spectralon panel as a re-
flectance reference. Specifically, the calculation of reflectance
begins by selecting the pixels in the image which contain
the Spectralon reflectance target. Each pixel in this region
contains 300 digital numbers; one digital number for each
of the captured spectral channels. We then take the average
value of all pixels within the region at each spectral channel,
leaving us with a single, averaged digital number for each
spectral channel. This process leaves us with a digital number
that represents 99% of the reflected light for each spectral
channel. Finally, we calculate the spectral reflectance at each
pixel as follows:

ρ =

(
DNscene −DNdark
DNtarget −DNdark

)
ρtarget,

where ρ is the spectral reflectance, DNscene represents the
digital number values captured in the image, DNtarget rep-
resents the averaged digital numbers of the reflectance target
obtained through the process outlined above, DNdark repre-
sents the dark current or background signal generated through
sporadic electron generation in the imager’s sensor, and ρtarget
represents the reflectivity of the reflectance target.

We manually extracted 6,316 overlapping patches with a
window size of 25 × 25 pixels from each of the 76 kochia
images. Furthermore, we reduced the number of spectral bands
within each patch from 300 to 150 by averaging adjacent pairs
of bands, which can be interpreted as 2× spectral binning,
where the resulting spectral resolution of each channel has
been modified from approximately 2.12 nm to 4.24 nm. As
one of the goals of this work is to aid in the design of
multispectral imaging systems, and it is unlikely that optical
filters with a bandwidth less than 20 nm will be used, de-
creasing the overall spectral resolution is unlikely to affect our
results. Thus, this process itself gives us an upfront reduction
in dimensionality that greatly reduces the potential overfitting
impact in our following analysis.

Since the IP dataset consists of a single large image, we have
to divide it into small patches so that each patch represents one
class. Thus, we extracted square patches using a 5 × 5 pixel
window around each pixel. Furthermore, we only collected
patches around those pixels with an assigned label. By doing
so, the new IP dataset has 10,249 patches.

Finally, we applied z-score normalization (mean equal to 0
and standard deviation equal to 1) onto each spectral band for
both the Kochia and Indian Pines datasets.

C. Inter-Band Redundancy Analysis

The first step of our method is to reduce the inter-band
redundancy by selecting a subset of representative spectral

bands. We utilized a filter-based selection method whereby we
iteratively calculate the Variance Inflation Factor (VIF) [22]
between pairs of bands in order to determine how correlated
they are; that is, to verify the presence of collinearity between
them. We call this Inter-Band Redundancy Analysis (IBRA).

The VIF value between two bands, b1 and b2, is calculated
based on the R-squared value from the Ordinary Least Square
(OLS) regression model built by taking one of the bands as
a dependant variable (b1) and the other as the independent
variable (b2). Specifically, V IF (b1, b2) = 1/(1 − R2

b1,b2
).

A high VIF value means that the independent variable and
the dependent variable explain the same variance within the
dataset and are redundant. We will consider VIF values greater
than a threshold θ as representing the presence of collinearity
in the model. In the literature, the recommended values of
θ are between 5 and 10 [23], so we test different values of
θ ∈ [5, 12] to observe how the performance is affected and to
choose the best θ for a given classification task.

While some methods, such as that proposed by [10], use
the VIF metric to identify and remove redundant spectral
bands from a given set directly, our approach is novel and
distinct in that we use it as part of a pre-selection step,
assessing the collinearity degree between each band and its
local neighbors iteratively in order to find independent salient
bands. Thus, using the VIF metric, we calculate the number
of bands dleft(x) we need to move away to the left side
from the x-th band in order to find bands sufficiently different
from band x; similarly, we calculate the number of bands
dright(x) we need to move away to the right side from the
x-th band in order to find bands sufficiently different from that
in band x (see Algorithm 1). In this algorithm, we calculate
the difference d(x) = |dleft(x)− dright(x)| for each spectral
band to determine how this difference is distributed across the
spectrum. Let N be the total number of spectral bands within
the dataset. Then getVIF(x, y) calculates the VIF value
between bands at positions x and y. We construct table,
which is a symmetric matrix that stores the pre-computed
VIF values between pairs of bands in order to avoid re-
calculations. Then getLocalMinima(x) is a function that
retrieves the position of the local minimum points of the vector
x. We consider only local minimum points where d(x) < 5;
otherwise, they will not be suitable bandwidth centers.

The distribution of the variable d(x) is used to find clusters
with similar bands and their corresponding cluster centers.
Since we are interested in choosing suitable bandwidth centers,
we choose bands that are similar to both the left and right
sides; that is, the difference d(x) has to be minimum. Fig. 1
shows the distribution of the variable d(x) for the Kochia
dataset given different thresholds θ. From this, we observe
that each distribution consists of a series of “V” patterns. In
this context, a local minimum—the center of a “V” pattern—
represents a salient band that explains the variance within
the dataset in a way similar to its neighbors. Even though
all the bands within a “V” pattern are similar, the band at
the leftmost position is more similar to those bands on the
left side. Similarly, the band at the rightmost position of the



Fig. 1. Spectral response and Spectral index vs. distance d plots for the Kochia dataset using different VIF thresholds. (a) th=12 (b) th=10. (c) th=8.
Local minima in the three graphs are indicated with an ‘×’.

Algorithm 1 Calculating the interband redundancy
1: function INTERBANDREDUNDANCY(θ)
2: dleft ← []
3: dright ← []
4: table← zeros(N,N) // creates an N ×N matrix of zeros
5: for all band ∈ (0, N) do
6: // Check left side
7: t← 1
8: vif ←∞
9: while (vif > θ) ∧ ((band− dt) > 0) do

10: if table[band, band− t] = 0 then
11: table[band, band− t] = getV IF (band, band− t)
12: table[band− t, band] = table[band, band− t]
13: vif = table[band, band− t]
14: t← t+ 1

15: dleft ← [dleft − 1]
16: // Check right side
17: t← 1
18: vif ←∞
19: while (vif > θ) ∧ ((band− dt) < N) do
20: if table[band, band+ t] = 0 then
21: table[band, band+ t] = getV IF (band, band+ t)
22: table[band+ t, band] = table[band, band+ t]

23: vif = table[band, band+ t]
24: t← t+ 1

25: dright ← [dright − 1]

26: d← |dleft − dright|
27: preselection← getLocalMinima(d)
28: return d, preselection

“V” is more similar to those bands on the right side, while
the band corresponding to the local minimum is similar to
both sides, acting as a centroid. In general, we keep the bands
corresponding to a local minimum in the plot of spectral index
vs. d(x) and remove the rest since they are redundant.

D. Band Selection Using Pre-Selected Bands

In Sec. III-C we showed how to pick a set of independent
candidate bands from the spectrum based on collinearity.
Here, we employ a wrapper-based method to select the best
combination of bands Sf ∈ Zk, given the desired number of
bands k, from the set of available candidate bands Sc ∈ ZN ′

(where N ′ � N is the number of bands pre-selected by
IBRA), which greatly reduces the search complexity. We call
this process Greedy Spectral Selection (GSS).

The first step is to rank each band sc ∈ Sc according to
some criterion. In this work, we use information entropy to
calculate an initial relevance score for each spectral band.
Given a band sc, which is considered a discrete random

variable with a bit depth of 14 bits, its entropy H(sc) conveys
the average level of information inherent in sc and is defined
as follows:

H(sc) = −
∑
z∈Ωsc

P (z) logP (z),

where P (z) is the probability mass function of random vari-
able z, and Ωsc is the space that encompasses all the possible
values that can occur in the spectral band sc.

Other methods, such as those proposed by Wang et al. [11],
[12], use information entropy to select the most representative
band within each cluster. Our approach is different in the
sense that we already picked the most relevant band from each
cluster (defined as a local minimum in the plot of spectral
index vs. distance d(x)); now, we rank the pre-selected bands
based on information entropy in order to select a subset Sf of
k bands. Thus, initially, Sf consists of the top-k bands of Sc
with the greatest entropy.

Even if calculations show that collinearity does not exist
between pairs of bands, it is possible that three or more
bands are highly correlated—a phenomenon known as mul-
ticollinearity [23]. In that case, we check for the presence
of multicollinearity within the k selected spectral bands the
same way as described in Sec. III-C with collinearity. With
this, we employ the following greedy algorithm for band
selection (see Algorithm 2): First, we calculate the average
classification performance (F1 score) when using the current
k selected bands; to do this, we perform a 5 × 2 cross-
validation and calculate the average F1 score obtained on the
10 validation folds. Then, after calculating the VIF value for
each of the currently selected bands, we remove the one with
the greatest VIF value and consider the next available band
with the greatest entropy. With this new subset of k bands, we
train a new classifier and verify if the average classification
performance has improved. We repeat this process until there
are no more available bands or when we find a significant drop
in performance. Finally, we select the combination of bands
that showed the best classification performance.

Note that Algorithm 2 selects k band indices from a list
of candidate band indices Sc. Function getEntropy(Sf)
returns the entropy value of each of the candidate bands in Sc.



Algorithm 2 Greedy spectral selection
1: function SELECTBANDS(Sc, k)
2: H ← getEntropy(Sc)
3: Sc.sort(key = H)
4: Sf ← Sc[1 : k]
5: Sc ← Sc[k + 1 : end]
6: F1← trainSelection(Sf )
7: bestSf ← Sf

8: while length(c) > 0 do
9: listV IF ← getV IFMulti(Sf )

10: index = getMax(listV IF )
11: Sf [index : end]← Sf [index+ 1 : end]
12: Sf .append(Sc[1])
13: Sc ← Sc[2 : end]
14: newF1← trainSelection(Sf )
15: if newF > F1 then
16: bestSf ← Sf

17: F1← newF1
18: else
19: if newF1 <= F1− 0.05 then
20: break // stop if a drop of 5% is found
21: return bestSf

Then, Sc.sort(key=H) decreasingly sorts the elements of
Sc with respect to their corresponding entropy values. Function
getVIFMulti(Sf) returns a list with the VIF value for
each band in the list of selected bands Sf . Next getMax(l)
returns the position where the maximum value in a list l was
found. Finally, trainSelection(Sf) returns the average
F1 score evaluated using the bands in Sf and 5 × 2 cross-
validation.

E. Convolutional Neural Network Architecture

For all of our experiments, we used a modified version of the
Hyper3DNet network [7], which is a 3D-2D CNN architecture
specifically designed to solve HSI classification problems
using a reduced number of trainable parameters. Furthermore,
experimental results demonstrated relative superiority of this
architecture over state-of-the-art architectures.

In this paper, our modified network, referred to as
Hyper3DNet-Lite, is a simplification of the original Hy-
per3DNet architecture. The difference with the original ar-
chitecture is that its 3-D feature extractor consists of two 3-
D convolutional layers instead of a densely connected block
with four layers; additionally, its 2-D spatial encoder has
three layers instead of four. The Hyper3DNet-Lite archi-
tecture used for the Kochia dataset is detailed in Table I,
where N denotes the number of spectral bands in the input,
“SepConv2D” denotes a 2-D separable convolutional layer,
and “ReLU” denotes a rectified linear unit activation layer
(where ReLU(x) = max(0, x)). The only difference with the
network used to process the IP dataset is that, since the input
image is smaller (5 × 5 pixels), the stride used in the last
two “SepConv2D” layers is (1, 1) instead of (2, 2) to avoid
dimensionality inconsistencies.

The simplified architecture of the Hyper3DNet-Lite network
becomes especially suitable for datasets that use just a few
spectral bands, given that these datasets do not require models
with a high level of complexity to process them, unlike those
datasets that use all the available spectral bands. In this way,
we avoid overparameterization, which results in our models
being less prone to overfitting.

TABLE I
HYPER3DNET-LITE ARCHITECTURE FOR THE KOCHIA DATASET.

Layer Name Kernel Size Stride Size Output Size
Input — — (25, 25, N , 1)

Conv3D + ReLU (3, 3, 3) (1, 1, 1) (25, 25, N , 16)
Conv3D + ReLU (3, 3, 3) (1, 1, 1) (25, 25, N , 16)

Reshape — — (25, 25, 16N )
SepConv2D + ReLU (3, 3) (1, 1) (25, 25, 320)
SepConv2D + ReLU (3, 3) (2, 2) (13, 13, 256)
SepConv2D + ReLU (3, 3) (2, 2) (7, 7, 256)

GlobalAveragePooling — — 256
Dense + Softmax — — # classes

Previously, we also experimented with other types of clas-
sifiers (i.e. support vector machines, random forests, and
feedforward neural networks) to use in the GSS process.
However, due to the fast convergence rates and the substantial
improvements on performance, we continued to use CNNs
over the other types of classifiers.

F. Multispectral Sensor Design

The previous steps are used to select the most relevant
spectral bands from the original hyperspectral data cube.
However, knowing which wavelengths are the most useful
for a given application allows for the design of compact
multispectral sensors instead of using a full hyperspectral
sensor. To accomplish this, we use the original data cube
and simulate applying optical filters to capture data from a
multispectral imager.

To do this, we generate k Gaussian distributions, taking the
position of the spectral bands selected by the GSS method as
the centroids. The bandwidth of these distributions is set to
five bands or, equivalently, 20 nm, to represent a common op-
tical filter bandwidth. The simulated multispectral reflectance
measurement is obtained by multiplying the original hyper-
spectral data cube by the corresponding Gaussian distribution
generated for each band, then integrating under the resulting
response curve to get a single reflectance value. This process
is repeated for each of the k Gaussian distributions.

IV. EXPERIMENTAL RESULTS

For the sake of consistency and fairness, we used the same
configuration (i.e., network architecture, optimizer, and batch
size) for all the networks trained in our experiments. While this
strategy does not guarantee the best possible results, it allows
us to compare the behavior of different band selection methods
under the same conditions. All CNNs were trained using the
Adadelta optimizer [24], which is a gradient descent method
based on an adaptive learning rate, so that there is no need to
select a global learning rate manually. The mini-batch size was
set to 128. The last layer of the CNNs used a softmax acti-
vation function, and we employed a categorical cross-entropy
loss function. Furthermore, we used 5×2-fold stratified cross-
validation to train and evaluate all networks. Note that z-score
normalization was applied to each training set while the exact
same scaling was applied to their corresponding validation set.
In order to analyze the behavior of our models, we calculated



TABLE II
PERFORMANCE WITH AND WITHOUT IBRA PRESELECTION (θ = 10).

Dataset # Bands OA Prec Rec F1 # Param.

Kochia
150 98.46

± 0.29
98.66
± 0.26

98.55
± 0.31

98.60
± 0.28 561,475

17 97.05
± 0.47

97.25
± 0.45

97.17
± 0.46

97.21
± 0.44 258,035

Indian Pines
200 99.42

± 0.18
99.32
± 0.29

99.47
± 0.28

99.39
± 0.27 1,274,464

31 99.49
± 0.14

99.38
± 0.34

99.56
± 0.19

99.47
± 0.23 338,880

four metrics on the validation sets: accuracy (OA), macro-
average precision (Prec), macro-average recall (Rec), and F1
score. The source code and datasets are available online1.

In the following sections, we compare the results of using
our inter-band redundancy analysis strategy alone and our
greedy spectral selection strategy after pre-selection. We also
compare our results with several state-of-the-art methods for
bandwidth selection. For all our experiments, we select a
reduced number of spectral bands k, as our objective is to
design simple task-specific multispectral sensors.

A. Training Pre-Selected Bands

Previously (Fig. 1) we showed some examples of applying
the pre-selection method using IBRA on the Kochia dataset
using three different VIF thresholds (12, 10, and 8), which
reduced our search space from 150 bands to 19, 17, and 16
bands, respectively. Table II gives the number of pre-selected
bands for both the Kochia and IP datasets when using a
VIF threshold of 10; it also gives the average performance
for the four metrics and corresponding standard deviations
using the Hyper3DNet-Lite network when training on the
full hyperspectral spectrum and only the pre-selected bands.
The number of parameters required to train each network is
reported in the last column.

B. Greedy Spectral Selection

Next, we applied the GSS method for each of the sets
of IBRA-selected bands using different VIF thresholds θ ∈
[5, 12]. Then, we selected the classifier that achieved the
best classification performance based on the mean F1-score
obtained after a 5× 2-fold cross-validation.

For the Kochia dataset, we considered six and ten bands in
order to evaluate the trade-off between the number of bands
and performance. For the IP dataset, we selected only five
bands. In addition, for each dataset, we experimented with
different dataset sizes (i.e. 100%, 75%, 50%, and 25%) to
evaluate how consistent the band selection results are under
different data set sizes.

For the Kochia dataset, when selecting six bands, the
best results were obtained using a VIF threshold of ten
(θ = 10) and the wavelengths of the selected bands (in
nm) were [391.2, 463.3, 569.3, 675.3, 730.4, 993.3] for each
of the four dataset size variations. When selecting ten
bands, the best results were obtained using a VIF threshold

1Codebase: https://github.com/GiorgioMorales/HSI-BandSelection.git.

TABLE III
GREEDY SPECTRAL SELECTION ON THE KOCHIA DATASET.

k VIF Selected bands (nm) OA Prec Rec F1

12
[395.5, 463.3, 565.1,
700.8, 722.0 , 993.3]

92.44
± 0.71

92.76
± 0.80

92.79
± 0.67

92.76
± 0.72

11
[395.5, 408.2, 463.3,
586.3, 662.6, 700.8]

90.74
± 1.05

91.56
± 0.97

91.54
± 1.06

91.54
± 1.01

10
[391.2, 463.3, 569.3,
675.3, 730.4, 993.3]

92.69
± 0.53

93.24
± 0.52

93.08
± 0.49

93.15
± 0.49

9
[391.2, 463.3, 569.3,
700.8, 730.4, 993.3]

92.40
± 0.63

92.67
± 0.63

92.77
± 0.59

92.71
± 0.59

8
[387.0 , 404.0 , 463.3,
577.8, 700.8, 722.0]

92.58
± 0.63

93.05
± 0.65

93.08
± 0.57

93.06
± 0.59

7
[387.0, 404.0, 463.3,
569.3, 700.8, 722.0]

92.07
± 0.89

92.52
± 0.89

92.55
± 0.79

92.53
± 0.83

6
[387.0 , 404.0 , 463.3,
586.3, 700.8, 717.7]

92.00
± 0.61

92.57
± 0.54

92.52
± 0.64

92.53
± 0.57

6

5
[387.0 , 463.3, 586.3,
645.6, 700.8, 722.0]

91.03
± 1.04

91.79
± 1.14

91.75
± 0.91

91.76
± 1.01

12
[395.5, 408.2 , 463.3, 518.4, 565.1,
616.0, 675.3, 700.8, 722.0, 993.3]

96.31
± 0.69

96.57
± 0.55

96.49
± 0.73

96.53
± 0.64

11
[395.5, 408.2, 463.3, 565.1, 662.6,
675.3, 700.8, 713.5, 726.2, 993.3]

96.18
± 0.41

96.48
± 0.29

96.31
± 0.46

96.39
± 0.36

10
[391.2, 463.3, 518.4, 569.3, 658.4,
675.3, 717.7, 730.4, 993.3, 1006.]

95.83
± 0.36

96.10
± 0.38

96.06
± 0.32

96.08
± 0.34

9
[391.2, 463.3, 518.4, 569.3, 616.0,
671.1, 700.8, 717.7, 730.4, 993.3]

96.16
± 0.56

96.48
± 0.50

96.37
± 0.54

96.42
± 0.52

8
[387.0, 404.0, 463.3, 518.4, 577.8,
654.1, 675.3, 700.8, 722.0, 1006.0]

96.47
± 0.38

96.79
± 0.36

96.66
± 0.37

96.72
± 0.35

7
[387.0, 404.0, 463.3, 518.4, 569.3,
654.1, 675.3, 700.8, 722.0, 1006.0]

96.69
± 0.35

96.92
± 0.38

96.95
± 0.34

96.93
± 0.35

6
[387.0, 404.0, 463.3, 586.3, 649.9,
679.6, 700.8, 717.7, 730.4, 1001.8]

95.91
± 0.50

96.34
± 0.44

96.12
± 0.47

96.22
± 0.45

10

5
[387.0, 463.3, 586.3, 645.6, 700.8,
722.0, 832.2, 946.7, 980.6, 1001.8]

95.06
± 0.54

95.44
± 0.52

95.33
± 0.56

95.38
± 0.53

TABLE IV
GREEDY SPECTRAL SELECTION ON THE INDIAN PINES DATASET.

VIF Selected bands (nm) OA Prec Rec F1

12 [484.6, 627.2, 703.3, 750.8, 1017.1]
97.96
± 0.33

98.21
± 0.43

98.32
± 0.33

98.25
± 0.35

11 [541.7, 570.2, 703.3, 750.8, 1017.1]
97.55
± 0.29

98.05
± 0.29

97.95
± 0.29

97.98
± 0.22

10 [484.6, 617.7, 703.3, 750.8, 1017.1]
98.08
± 0.43

98.26
± 0.42

98.39
± 0.43

98.32
± 0.39

9 [541.7, 617.7, 703.3, 817.4, 1017.1]
98.28
± 0.35

98.24
± 0.47

98.06
± 0.59

98.11
± 0.43

8 [589.2, 627.2, 703.3, 817.4, 1017.1]
98.04
± 0.30

98.19
± 0.46

98.06
± 0.46

98.10
± 0.35

7 [551.2, 570.2, 703.3, 817.4, 1017.1]
98.01
± 0.24

98.29
± 0.18

98.36
± 0.42

98.31
± 0.26

6 [560.7, 703.3, 817.4, 912.5, 1017.1]
97.06
± 0.49

97.49
± 0.58

97.63
± 0.48

97.53
± 0.48

5 [560.7, 712.8, 807.9, 912.5, 1017.1]
96.73
± 0.55

97.46
± 0.53

97.00
± 0.61

97.19
± 0.49

of θ = 7 when using 100% and 50% of the dataset,
and θ = 8 when using 75% and 25% of the dataset.
The wavelengths of the bands selected for θ = 7 were
[387.0, 404.0, 463.3, 518.4, 569.3, 654.1, 675.3, 700.8, 722.0,
1006.0] and the only difference with respect to the bands
selected for θ = 8 was the selection of the wavelength
577.8 nm instead of 569.3 nm. Table III shows the
performance using IBRA and GSS on the full Kochia
dataset, where the bold entries represent the best VIF
threshold, band selection, and average F1 score.



For the IP dataset, the best results were obtained using a VIF
threshold of ten (θ = 10) and the wavelength of the selected
bands were [484.6, 617.7, 703.3, 817.4, 1017.1] for all the four
dataset size variations. Table IV shows the performance using
IBRA and GSS on the full IP dataset.

C. Comparative Results

Finally, we compared our IBRA-GSS method to three other
methods: OCF [11], HAGRID [15], and PLS-DA [25]. For
OCF, we used the normalized cut objective function along
with information entropy ranking, as they showed the best
performance. For HAGRID, we used a grid search to choose
the following hyperparameters: a crossover rate of 0.25, a
mutation rate of 0.05, a tournament size of 5, a population size
of 1,000, and 300 iterations. To analyze the effectiveness of
the feature selection methods, we compared the performance
of four CNNs, each trained on the features selected by the four
methods. This comparison was carried out using the same net-
work architecture, hyperparameters, and other configurations
for all of the methods. Finally, to determine if the difference in
performance scores was statistically significant, we performed
a paired t-test using the F1 scores at the α = 0.05 level.

The method comparison is shown in Table V for the Kochia
dataset and in Table VI for the IP dataset, with the best
performing metrics highlighted in bold. Here, the first row
of each method represents the results obtained after training a
model using the original selected bands (identified as “original
band selection”), while the second row represents the results
obtained after using simulated filters that take the position of
the selected bands as their central wavelengths (identified as
“multispectral filter simulation”). The simulated filters used
for the Kochia dataset were 20 nm while for the IP dataset
were 50 nm. According to the t-test, our method performed
significantly better than the other four methods in each of the
cases. Although not shown due to space limitations, we also
tested the four dataset size variations, as explained previously,
and found that the improvement in performance of our method
over the others was still statistically significant even when the
dataset size was reduced. Additional experiments with other
values of k showed that the improvements of GSS over the
compared methods remained consistent.

V. DISCUSSION

Using our IBRA method, we identified sets of influencing
spectral bands for both datasets. These pre-selected bands
explain the variance of their neighbors in the original spectrum
with a VIF value greater than a threshold θ ∈ [5, 12]; therefore,
keeping them and removing the other bands allowed us to
avoid spectral bands that did not contain useful information
for performing classification. That is, our method effectively
identifies those spectral bands that carry information for
performing classification while discarding redundant spectral
bands. Results shown in Table II demonstrate that it is possible
for a model trained on the subset of spectral bands determined
by IBRA, to achieve high accuracy values (∼ 97–99%) similar
to those obtained when using the full spectrum.

TABLE V
FEATURE SELECTION METHOD COMPARISON — KOCHIA.

Bands 6 10
Method OA Prec Rec F1 OA Prec Rec F1

FNGBS

84.32
± 1.78

84.85
± 1.77

84.37
± 1.72

84.59
± 1.73

93.78
± 0.77

94.17
± 0.84

93.99
± 0.73

94.08
± 0.78

86.98
± 0.84

87.35
± 0.80

86.91
± 0.91

87.10
± 0.83

94.19
± 0.47

94.54
± 0.47

94.27
± 0.51

94.39
± 0.48

PLS-DA

84.77
± 1.83

85.15
± 1.89

84.69
± 1.82

84.89
± 1.82

94.36
± 0.51

94.86
± 0.55

94.67
± 0.47

94.76
± 0.49

88.41
± 0.79

88.85
± 0.62

88.37
± 0.96

88.59
± 0.78

95.10
± 0.68

95.44
± 0.59

95.18
± 0.67

95.30
± 0.63

OCF

90.48
± 0.57

90.92
± 0.62

90.81
± 0.44

90.86
± 0.49

94.87
± 0.51

95.23
± 0.52

95.11
± 0.46

95.16
± 0.47

92.42
± 0.67

92.75
± 0.66

92.66
± 0.66

92.70
± 0.65

94.62
± 0.73

95.00
± 0.65

94.80
± 0.64

94.89
± 0.64

HAGRID

91.71
± 0.83

92.25
± 0.78

92.17
± 0.84

92.20
± 0.80

94.50
± 0.81

94.81
± 0.78

94.69
± 0.72

94.74
± 0.74

92.48
± 0.62

92.91
± 0.53

92.89
± 0.58

92.89
± 0.54

95.14
± 0.51

95.49
± 0.48

95.18
± 0.51

95.33
± 0.47

GSS

92.69
± 0.53

93.24
± 0.52

93.08
± 0.50

93.15
± 0.49

96.69
± 0.35

96.92
± 0.38

96.95
± 0.34

96.93
± 0.35

93.32
± 0.68

93.80
± 0.64

93.74
± 0.66

93.76
± 0.64

96.21
± 0.49

96.51
± 0.45

96.40
± 0.44

96.45
± 0.44

TABLE VI
FEATURE SELECTION METHOD COMPARISON — INDIAN PINES.

Method 5 bands
OA Prec Rec F1

PLS-DA 96.68 ± 0.86 96.83 ± 0.99 95.62 ± 0.94 96.11 ± 0.74
97.17 ± 0.60 97.30 ± 0.79 96.66 ± 1.03 96.90 ± 0.84

OCF 96.68 ± 0.56 97.34 ± 0.76 96.34 ± 0.98 96.77 ± 0.82
97.02 ± 0.58 97.73 ± 0.51 97.14 ± 0.63 97.39 ± 0.48

HAGRID 96.74 ± 0.54 97.06 ± 0.75 96.34 ± 1.03 96.65 ± 0.88
97.03 ± 0.75 97.24 ± 0.86 96.72 ± 1.45 96.91 ± 1.21

FNGBS 97.49 ± 0.34 97.86 ± 0.36 97.64 ± 0.71 97.72 ± 0.5
97.34 ± 0.65 97.94 ± 0.52 97.75 ± 0.46 97.82 ± 0.44

GSS 98.08 ± 0.43 98.26 ± 0.42 98.39 ± 0.43 98.32 ± 0.39
98.24 ± 0.39 98.56 ± 0.38 98.43 ± 0.42 98.48 ± 0.36

Our GSS method uses information entropy to identify
which bands are more relevant among the pre-selected bands.
However, if we need to select at most k bands, the subset of
bands with the greatest saliency values may not be the best
selection. For instance, for the Kochia dataset, if k = 6, the
wavelengths of the bands with the highest entropy values are
[391.2, 463.3, 518.4, 616.0, 658.4, 675.3]; however, line ?? in
Algorithm 2 detects strong multicollinearity between wave-
lengths 616.0, 658.4, and 675.3. Rather than using redundant
bands, we select a more diverse subset if this helps to improve
the classification performance.

From Tables V and VI, we see that our method achieved the
highest performance on both datasets, which confirms our hy-
pothesis. The results remain consistent even when considering
different dataset sizes. In addition, Table V shows that there
is a more noticeable gap in performance between our method
and the others when selecting ten bands, rather than when
selecting six bands. This confirms that the fewer spectral bands
we select, the harder the task will be; however, multispectral
imagers generally become more practical computationally as
the number of spectral channels becomes smaller.

Finally, it is worth noting that, with our method, the
classification performance resulting from the “original band



selection” approach is very similar to the performance with the
“multispectral filter simulation” approach, unlike some of the
compared methods. This can be explained by the way we se-
lected the first band candidates using IBRA. That is, a spectral
band corresponding to a local minimum in the plot of spectral
index vs. distance d(x) (Fig.1) acts as a centroid because it is
similar to the spectral bands located on either side. Therefore,
if we take this local minimum as the central wavelength of a
multispectral filter, generate a Gaussian distribution around it
by considering a standard bandwidth, and integrate under the
curve, then we obtain reflectance values similar to those of the
central band. Given that the simulated multispectral filter and
the original spectral band present similar information, their
classification performance is similar. This is convenient for
a multispectral sensor design, as we would like the central
wavelength of a filter to be the most representative.

VI. CONCLUSION

Data captured by an imaging system is often processed to
make observations and classifications about the world around
us. The spatial and spectral content of the images obtained
is key to analyzing the data, with spectral content playing a
central role. However, the dense spectral information collected
by a hyperspectral imager is not required for every application,
and managing such data can be computationally expensive.
The ability to determine the most relevant wavelengths for a
given application enables using simpler multispectral imagers
in place of hyperspectral imagers. This simplification would
not only lead to economic savings, as fewer specialized storage
and processing devices are required but also clarity and time-
savings when analyzing data.

To allow for this simplification, we presented a method for
selecting salient wavelengths from a hyperspectral data cube
based on two main steps: A pre-selection step that identifies
a subset of independent spectral bands (IBRA) and a final
greedy selection step based on information entropy (GSS).
Experimental results showed our band selection method gener-
ally outperformed other commonly-employed feature selection
methods on the Kochia and Indian Pines datasets.

Finally, we showed that the inter-band redundancy method
does not only reduce the search space considerably, but it also
provides potential filter centers that are suitable for the design
of multispectral sensors. Hence, another outcome of this work
is the aid in the design of compact multispectral imagers that
will assist in applications such as automatically identifying
herbicide-resistance biotypes of the weed kochia.

In the future, we plan to explore incorporating an attention
mechanism into our CNN architecture. When combined with
the band selection method proposed here, we expect further
computational savings by enabling a more adaptive approach
to using the selected bands. We also plan to explore implemen-
tation issues associated with developing multispectral sensors
based on the designs recommended through these methods.
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