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Abstract—The large size of hyperspectral images limits the
applicable uses and necessitates effective compression methods.
While there has been great success in a combined spectral and
spatial compression approach, the reconstruction error rate for
lossy compression methods with higher compression rates is still
relatively large. Inspired by recent successes in spectral based
deep learning for classification, we propose a spectral based Long
Short Term Memory Autoencoder (LSTM-AE) to compress the
spectral dimension alone. The obtained results show that not
only can LSTM-AE achieve similar compression rates to existing
methods, but also a large reduction in reconstruction error. We
have also demonstrated the robustness of the approach in being
able to generalize a single model for use in multiple scenes
without being retrained. The model was also demonstrated to
be successful in compressing unseen images at higher rates than
existing methods that have trained on those images.

Index Terms—Recurrent Neural Networks, Compression, Au-
toencoder

I. INTRODUCTION

Remote sensing systems have many diverse applications;
including food quality and safety [1], land use and land cover
classification [2], and crop analysis [3]. Hyperspectral images
(HSI) are a specific categorization of remote sensing images
that contain many continuous bands that represent a narrow
range of captured wavelengths. These images are represented
as 3D data cubes with pixels in the z and y axis and the
spectral bands in the z axis. HSIs are known to have high
levels of spatial and spectral information and can often have
high levels of correlation within the bands. These sensors
capture a wide array of reflected radiation wavelengths as a
three dimensional image. Through the exploitation of spatial
and spectral information in these images, powerful classifiers
have been built to analyze the images.

Due to the large level of spectral and spatial information that
hyperspectral images can capture, HSIs have a tendency to be
very large when stored in a database. Their sizes can easily
exceed 50 Megabytes (MB) since each pixel stores information
in the format of 12 bits per pixel per band (bpppb) or 16 bpppb
with bands often exceeding 100 bands. For example, say an
image that has a pixel size of 64 x 64 and each pixel contains
300 bands with each band being stored in 16 bits. The total
size of this image would be (64 x 64 x 300 x 16) = 19.66
MB.
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Given the large size of the images, it is unrealistic to utilize
the images without a compression process in both data transfer
as well as when stored in a database. Lossless compressing
can be very powerful with the guarantee of no information
loss. One of the biggest downsides with lossless compression,
however, is the reduction in the compression ratio with recent
attempts rarely surpassing a compression ratio of 25% of the
original size [4]. For specific applications, this might be a
worthwhile trade off, but for most general applications, lossy
compression algorithms are acceptable due to the significantly
higher compression rates, and acceptable loss of information.

There has been little work analyzing a purely spectral based
compression strategy due to the increased compression rates of
a spectral and spatial strategy. Methods that have traditionally
implemented a spectral strategy further compressed by a
spatial strategy often suffer from a significant increase in
reconstruction error the further compressed an image is [5],
[6]. The combined compression of an HSI’s spatial and spec-
tral dimensions simultaneously has shown some improvements
with regards to the weaknesses of the previous strategies, but
they still suffer from the same trends [7], [8].

Recent work in hyperspectral compression techniques
demonstrate that a spatial and spectral approach may not be
necessary to achieve similar results. In particular, recent work
with Long Short Term Memory Networks to learn the spectral
information and autoencoders performing feature extraction of
hyperspectral images indicate that a combined strategy may
be able to represent the bands and extract enough feature
information from the bands to allow for a competitive HSI
compression strategy. [9]-[12].

In this paper, we propose an autoencoder based compression
method to compress the spectral dimension of the hyperspec-
tral image. With a given band’s property of being continuous,
we can represent the reflectance values in the band as a
temporal sequence for use in a Long Short Term Memory
Autoencoder network (LSTM-AE) [13]. We also propose a
modification of the LSTM-AE network with the Bidirectional
Long Short Term Memory Autoencoder network (BLSTM-
AE) [14]. Both networks compress each pixel’s bands inde-
pendently, preserving the original image’s spatial dimension.
We then explore the level of generality that the independence
from spatial correlation we ascribe to the bands provides the



LSTM-AE and BLSTM-AE. This is accomplished through a
process of training on a subset of pixels from multiple images
to train a single model. We also experimented with taking a
trained model and compressing an unseen image to determine
the robustness of the models.

With modern band selection methods achieving a selection
rate as low as 6 bands [15], we hypothesize that our autoencod-
ing method will be able to perform similarly to cutting edge
compression methods with respect to the compression rate and
reconstruction error. We also hypothesize that by removing
the dependence of spatial information with our compression
method, we will be able to generalize the autoencoder model
to allow for a model to compress a wider variety of images
without having to retrain. With the generalized model, we
also hypothesize that a trained model would also be able
to successfully compress images where the spatial patterns
have not been observed before without significant reductions
in performance.

II. RELATED WORK

Alongside the rapid increase in research into HSI analysis,
compression methodology has been advancing rapidly in both
lossy and lossless compression. With lossy compression, there
has been a wide array of approaches to de-correlate the spatial
and spectral information. These can range from dimensionality
reduction, wavelet transformation, and learning based com-
pression which include neural networks and regression based
learning [16], [17].

Wavelet transformation is the process of projecting a wave
into smaller representations called wavelets. One of the most
common wavelet transforms to compress HSI is the discrete
wavelet transform (DWT), which is one of the bases of the
JPEG-2000 compression standard [18]. With a spectral de-
correlation process, JPEG-2000 can also successfully com-
press HSI [19].

Dimensionality reduction tasks look to represent the hyper-
spectral image in a smaller dimension. The typical process for
these images is to de-correlate the dimensions and represent
the image with a reduced representation of the de-correlated
dimensions. An example of this process is the implementation
of PCA to be used in conjunction with a JPEG compressor
[20]. Non-iterative factorized tensor decomposition has also
been successful in further compressing the images from the
PCA algorithm [8].

While de-correlating both the spectral and spatial dimen-
sions separately is an effective compression strategy, machine
learning and deep learning processes have been integrated to
improve the compression rates as well as the reconstruction
error. One such example is a DWT-SVM proposed by Zikiou
et al. [17] where the support vector machine is used to reduce
the most important spectral bands further. A Convolutional
Neural Network Autoencoder (CNN-AE) has been proposed to
compress the images directly [7]. The learning of a deep belief
network has been shown to analyze the data successfully to
provide the optimal coding parameter for the lossless Golomn-
Rice coder compression algorithm [21]. Neural networks have

also been yielding significant success in learning the spectral
information for classification purposes such as LSTM and
Bidirectional LSTM networks [9], [11].

III. METHODOLOGY

In this section, we provide an overview on autoencoders,
LSTMs, and Bidirectional LSTMs. These fundamental models
will be employed in our approach to compress a hyperspectral
image’s spectral axis.

A. Autoencoder

With the size of HSI images, the curse of dimensionality can
make extracting useful information from the image difficult.
To mitigate its impact, dimensionality reduction processes
usually occur on an image before a classification algorithm
is implemented. To address this issue, an autoencoder allows
for the representation of non-linear relations to extract features
from an input space [22]. Given layers Acncoder and Agecoders
input x, encoded y, and reconstructed x’; an autoencoder

hencoder

consists of two parts, an encoder X —== Y and a decoder

Y [idecoders X7 The encoder maps the high dimensional input

x to a lower dimension vector y by passing the input data
through the encoder layers. Then the decoder takes the lower
dimension vector y and maps it to the original dimensional
space through the decoder layers to get a reconstructed value
x’, which may incur some loss during the encoding and
decoding process. This loss can be measured by the function
|[x — x/||?, or mean squared reconstruction error (MSRE).

Autoencoders are trained as unsupervised networks, so they
only require a subset of a dataset to train on [23]. The training
process minimizes the loss obtained during the reconstruction
process. For multi-layer AEs, they can either be trained as
single feedforward networks or using what is referred to as
“layerwise unsupervised pre-training” [24].

B. Long Short Term Memory Network (LSTM)

A recurrent neural network (RNN) is an artificial neural
network where the network flow is represented with feed-
back connections. These feedback connections allow previous
outputs to be used as inputs for any given timestamp, thus
enabling temporal sequences to be modeled. To make a
decision, the network not only considers the current input,
but also the previously received inputs. For a given time step
t and a node = with output y, in one type of network, the input
for the node x is not only x(t), but also y(¢t — 1). With this
structure, RNNs can learn a variety of data sequences [25].

These networks are often trained using a backpropagation
method called “backpropagation through time” [26], but the
approach can lead to the vanishing gradient problem, which
arises if a sequence is too long, leading to prior time steps
eventually get left behind [27]. A modification on the RNN
architecture was proposed by Hochreiter and Schmidhuber to
overcome the disadvantages of the RNN called the Long Short
Term Memory (LSTM) [28]. In an LSTM, each node in the
hidden layer is replaced with a memory cell.



In each cell, there is a memory state m;, the hidden state
of the cell h, and the input value of the sequence x;. There
are three regulatory gates: the input gate, the output gate, and
the forget gate, with the representations i;, o, f; respectfully.
Given the previous cell’s memory state m;_j, hidden state
h,_1, and input vector x;, the values of each of the gates is
calculated with the following equations:

iip = sigm(W; ® [x¢,h;—1]) ® tanh(W,,, © [x¢, hp—1])
o, = tanh(i; +f;) © sigm(W, © ([x¢, he—1]))

f; = my; ©sigm(Ws © [x,hy4])
m, = i;+f;

The Bidirectional LSTM (BLSTM) is a modification of the
LSTM network that includes a second independent hidden
layer for each LSTM node that processes the input sequence
in reverse order from the standard hidden layer. The outputs of
the standard LSTM layer and the bidirectional layer converge
into the output node for the sequence. BLSTMs have been
shown to be able to outperform LSTMs on tasks such as
speech recognition [29], but they also require the training of
an extra layer for each node.

IV. HSI COMPRESSION MODEL

The model presented in this work to compress the spectral
dimension of a hyperspectral image is a combination of the
autoencoder structure and the LSTM. We also present a
modification where we incorporate a bidirectional LSTM. To
achieve a sequential context representation, we define each
pixel as a sequence of reflectance values.

The input value = will be a pixel with n reflectance bands
represented by the sequence z; = [z}, 22, ..., 27" z7']. The
compressed representation of a given pixel will be represented
with the value y and the reconstructed pixel sequence will be

represented by x’.

A. LSTM-Autoencoder

The LSTM-Autoencoder combines the feature learning of
an autoencoder with the sequential context representation of
an LSTM. This is accomplished by having each layer of the
autoencoder contain a series of single layer LSTM models.
Both the encoder and decoder contain the same number of
LSTM nodes.

The autoencoder structure is trained using the Adam opti-
mizer introduced by Kingma [30]. The Adam optimizer is a
stochastic gradient descent method that employs an adaptive
learning rate strategy and calculates an exponential moving
average of the gradient and the squared gradients. These prop-
erties allow Adam to require fewer tunable inputs while still
being able to handle noisy and some non-convex stochastic
gradient descent problems [30], [31]]. Each LSTM layer is
trained by backpropagation through time as defined by Mozer
[26]. We used mean squared reconstruction error (MSRE) for
the loss function.

Given an input sequence x, the autoencoder extracts the
features from the sequence. The encoder is a three layered

TABLE I
SUMMARY OF THE 5 SELECTED IMAGES DATACUBE SIZE.
Dataset Rows | Columns | Bands
Indian Pines 145 145 220
Pavia Center | 1096 1096 102
KSC 512 614 176
Salinas 512 217 224
Botswana 1476 256 145

network consisting of 20 nodes of LSTM networks, 5 nodes
of LSTM networks, and a single node LSTM network. The
intermediate layers pass the full sequence to the next layer
while the final encoding layer outputs the n'" sequence po-
sition of each node. In summary, the encoding layers take a
pixel sequence x and output a 16 bit unsigned float within a
range of [0,1].

The decoder takes the reduced representation and recon-
struct the original sequence. In addition to the LSTM layers, a
Repeat Vector Layer and a Time Distributed Layer are utilized
to resize the sequences. The Repeat Vector layer takes the
compressed value and duplicates the input values to build
the original sequence length. The LSTM layers reconstruct
the original sequence values of the pixel. Time Distributed
Layers are dense layers that are designed to preserve the input
sequences while the sequences are being processed, which then
condense the nodes into the original spectral sequence of the
pixel.

B. Bidirectional LSTM-Autoencoder

The Bidirectional LTSM Autoencoder is a modification
of the LTSM Autoencoder that includes an extra reversed
sequence representation for each LSTM node. This allows the
BLSTM to extract the features of the sequence, not only from
a left to right encoding, but a right to left encoding as well. The
structure of the network does not change fundamentally from
the LSTM Autoencoder, but the size of the layers increases
due to the capturing of the standard LTSM output as well as
the independent reversed LSTM Layers.

V. EVALUATION AND ANALYSIS

This section provides experimental results of the LSTM-
based compression algorithms, along with a discussion of
the results. The following subsections will provide a detailed
description of the datasets used and the results for a series of
varying experiments to examine the capabilities of the method.

A. Datasets

The LSTM-AE algorithms were evaluated on five different
hyperspectral datasets: Indian Pines (acquired by Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) sensor),
Pavia Center (acquired by Reflective Optics System Imaging
Spectrometer (ROSIS) sensor), Kennedy Space Center (KSC)
(acquired by AVIRIS), Salinas scene (acquired by AVIRIS),
and Botswana (acquired by the Hyperion sensor). The Hyper-
ion and AVIRIS sensor bands both have a resolution of 10nm
with AVIRIS ranging from 400nm-2400nm and Hyperion
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Fig. 1. Diagram of the compression model.

ranging from 400-2500nm. The ROSIS sensor has a 5nm
resolution ranging from 430-960nm. Each dataset is available
from [32]. Each of the images is represented visually in Figure
2 with further details given in Table L.

1) Indian Pines: The image was captured from a test site in
North-western Indiana by the AVIRIS sensor. The 145 x 145
pixel image captured 224 bands of spectral reflectance; how-
ever, 24 bands were removed that covered the region of water
absorption. The image contains a mixture of agriculture, forest
or other natural perennial vegetation, and a small number of
pixels contain developed elements. This image was chosen for
its diverse vegetation coverage.

2) Pavia Center: Pavia Center was one of two scenes
acquired by the ROSIS sensor during a flight over Pavia
in northern Italy. Pavia Center captures the city itself in a
1096 x 1096 pixel image with 102 spectral bands. The image
was preprocessed to remove zones that contain no information,
which reduced the image into an approximately 1100 x 650
pixel image. Pavia Center was chosen because most of its
pixels contain developed features with some water and mixed
plant elements.

3) Kennedy Space Center: KSC was captured by the
AVIRIS sensor, which captured the Merrit Island National
Wildlife Refuge, the NASA Shuttle Landing Facility, and
elements of the nearby town of Titusville. The 512 x 614
pixel image was taken with 224 captured spectral bands;
however, 48 bands were removed due to them capturing water
absorption and containing low signal-to-noise ratios. This
image was chosen because of the split between the heavily
developed Titusville and the sparse Merrit Island National
Wildlife Refuge. In addition, the selection of this image

allowed us to examine how well the models will be able to
handle the removed spectral information.

4) Salinas: Salinas is a scene captured by the AVIRIS
sensor during a flight over the Salinas Valley in California.
The 512 x 217 pixel image captures 224 bands of spectral
reflectance. This image had 20 bands removed manually from
the original image due to capturing water absorption. Salinas
contains a wide array of vegetable crops as well as vineyard
fields. This image was chosen because of the unique crop
types, including vineyards.

5) Botswana: Botswana is a scene captured by the NASA
EO-1 Hyperion imager. The 1476 x 256 image captures 242
bands of the Okavango Delta in Botswana. The original image
was preprocessed by the UT Center for Space Research, which
removed 97 bands to reduce the number of water absorption
features. This image was selected both because the image
consists of both swamps and drier woodlands. Additionally, the
image being captured by a satellite mounted imager will allow
experimentation with the differences in the airborne mounted
sensors and the satellite mounted sensors.

B. Metrics

The evaluation metrics that were used to evaluate the
methods include mean squared reconstruction error (M SRE),
compression rate (C'R), and peak signal noise ratio (PSN R).
Mean squared reconstruction error is defined as the differences
between the original pixel and the reconstruction of that pixel
after compression given by the following:

1 & .
MSRE = EZHXi — %2

i=1
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Compression rate is defined as the ratio of the total number
of the compressed image bits to the original image bits given
by the following:

Size of compressed image
Size of original image

CR =

Peak signal noise ratio (PSNR) measures the ratio of maximum
power of the signal to the noise affecting the signal. This is
used to represent the quality of the compression process.

PSNR = 10-log,, (Maximum possible pixel Value2)

MSRE

The objective of compression is to minimize both the compres-
sion rate and the reconstruction error rates, thus maximizing
PSNR.

C. Parameter Tuning

The LSTM-AE had several hyperparameters that were tuned
to balance the CR and PSNR. The tuning process involved
applying a grid search to select the parameters for network
size, depth, learning rate, the method of selecting the random
samples, dropout rates, batch size, and number of training
epochs.

The tuning process found a consistent set of parameters for
both the LSTM and Bidirectional LSTM autoencoders. For
the network setup of LSTM, the network defined in Figure 1
was the most robust and consistent across each of the images.
The BLSTM modification is applied to the LSTM structure.
The optimal training process used an Adam Optimizer with
a learning rate of 0.0009, 120 epochs, and a dropout rate of
0.1 to be able to quickly stabilize towards an optimal set of
parameters. We experimented with a wide range of train, test,
and validation splits of the pixels. Starting from an initial split
of 0.7, 0.15, and 0.15, we were able to reduce the train, test,
and validation split to 0.05, 0.05, and 0.9 without a significant
reduction in PSNR.

D. Single Image Compression

This experiment tests the traditional approach to compress-
ing HSI where a new model is trained for each new image.
For this experiment, an entire image was used for training with

approximately 25% of the pixels reserved as a validation set.
The models were retrained on a randomly resampled set of
pixels a total of 5 times to validate the results of the small
training set.

The proposed algorithms were implemented along with state
of the art techniques such as DWT-SVM [17], NFTD+PCA
[8] with 16 principal components due to the large number
of bands in the dataset, and a Convolutional Neural Network
Autoencoder (CNN-AE) [7].

As shown in Table II, the PSN R ratio performance of the
LSTM-AE and BLSTM-AE models were consistently over a
15% increase in PSN R than the CNN-AE, with the largest
increasing being 60% in the Botswana image. Furthermore,
these reconstruction rates were not at a significant loss in CR
when compared to the NFTD+PCA and CNN-AE, whereas
the DWT-SVM was consistently the lowest compression rate
as demonsstrated by Table III.

E. Reduced Training Set

This experiment also tests the traditional approach to com-
pressing HSI where a new model is trained for each new
image. The difference for this experiment is that the subset
of pixels for training were sampled uniformly at random,
rather than using the entire image. Since the input layer of
the network and the connections to the first layer are set
dynamically, both the LSTM and BLSTM autoencoders do
not have to be resized manually for each image. The models
were retrained on a randomly resampled set of pixels a total
of 5 times to validate the results of the small training set.

Through a grid search optimization process, we reduced the
training set to be 5% of the image’s pixels, our validation set to
be 5% of the pixels, and leaving 90% of the pixels as a test set.
Table IV demonstrates the compression performance of the 5%
training set. In Tables IV and Table II, we can see that when
comparing the whole image to the reduced dataset, there was
little change in performance between the images for LSTM-
AE except in the case of the Pavia Center image, which saw
an 8% increase in PSNR. Given Pavia Center’s sparseness
in classes, the increase may be explained best as overfitting
in Experiment 1 for the unclassified pixels. In the case of



TABLE 11
COMPARISON BETWEEN EACH OF THE METHODS FOR EACH OF THE IMAGES WITH RESULTS FROM THE FULL SINGLE IMAGE COMPRESSION. THE BOLD
VALUES INDICATE HIGHEST AVERAGE PERFORMANCE.

3D DWT NFTD

LSTM-AE BLSTM-AE +SVR +PCA CNN-AE
Dataset PSNR | MSRE | PSNR | MSRE | PSNR | MSRE | PSNR | MSRE | PSNR | MSRE
Indian Pines 62.07 0.0020 64.84 0.0015 42.37 0.0145 49.92 0.0068 54.85 0.0041
Pavia Center 61.24 0.0022 72.73 0.0007 43.01 0.0136 46.78 0.0093 55.17 0.0040
KSC 78.70 0.0004 78.80 0.0004 42.84 0.0138 48.16 0.0081 54.15 0.0044
Salinas 65.40 0.0014 66.73 0.0013 41.32 0.0161 46.78 0.0093 54.68 0.0042
Botswana 89.53 0.0001 91.40 0.0001 44.92 0.0112 49.48 0.0071 57.29 0.0033
TABLE III TABLE V

COMPARISON OF THE COMPRESSION RATES BETWEEN EACH OF THE
METHODS FOR EACH OF THE IMAGES. THE BOLD VALUES INDICATE
HIGHEST AVERAGE PERFORMANCE.

LSTM | BLSTM | 3D DWT | NFTD | CNNs

-AE -AE +SVR +PCA -AE

Dataset CR CR CR CR CR
Indian Pines | 0.0045 0.0090 0.037 0.0077 | 0.0078
Pavia Center | 0.0098 0.0195 0.039 0.0073 | 0.0063
KSC 0.0057 0.0114 0.038 0.0043 | 0.0027
Salinas 0.0045 0.0090 0.046 0.0037 | 0.0022
Botswana 0.0069 0.0138 0.043 0.0052 | 0.0032

TABLE IV

COMPARISON RESULTS BETWEEN LSTM-AE AND BLSTM-AE FOR EACH
OF THE IMAGES WITH RESULTS FROM THE REDUCED TRAINING SET. THE
BOLD VALUES INDICATE HIGHEST AVERAGE PERFORMANCE.

LSTM-AE BLSTM-AE
Dataset PSNR | MSRE | PSNR | MSRE
Indian Pines 63.27 0.0018 62.25 0.0020
Pavia Center 66.38 0.0013 72.70 0.0007
KSC 78.56 0.0004 78.69 0.00038
Salinas 67.28 0.0012 66.73 0.0013
Botswana 92.20 9.90e-5 89.63 0.0001

BLSTM-AE, Experiment 2 saw a reduction from Experiment
1 across all of the images. This may be due to the BLSTM
being a network twice as large as the LSTM-AE. Thus, the
significantly increased training set size was more beneficial for
the BLSTM-AE model’s performance than for the LSTM-AE
model, but a reduced training set size was more beneficial for
the LSTM-AE’s reconstruction error.

E Multi-Image Compression

This experiment considered the network’s performance
when training on a set of pixels sampled from multiple
hyperspectral images. Since this is combining the pixels from
multiple images, the pixels were padded to be of uniform
size (i.e., 224 bands) for training the model. Since the LSTM
structure only sees the pixels as a sequence of integers, this
avoids requiring the selected images to contain the same
spectral resolution and range. The result of the training process
leaves us with one trained model that is then used to compress
each of the images. This process allows us to save overall
training time since a single model with the same dimensions

COMPARISON BETWEEN LSTM-AE AND BLSTM-AE FOR EACH OF THE
IMAGES WITH RESULTS FROM THE MULTI-IMAGE COMPRESSION
EXPERIMENT. THE BOLD VALUES INDICATE HIGHEST AVERAGE

PERFORMANCE.
LSTM-AE BLSTM-AE

Dataset PSNR | MSRE | PSNR | MSRE
Indian Pines 84.64 0.0002 86.19 0.0002
Pavia Center 91.78 0.0001 93.35 8.83e-5
KSC 78.89 0.0004 79.13 0.0004
Salinas 88.28 0.0001 88.44 0.0001
Botswana 90.19 0.0001 93.01 9.13e-5

but a larger training set will take significantly less time to
train than models trained on individual images. The training
process was resampled 5 times and averaged for validation.

As shown in Tables II, IV, and V, the PSN R improved
significantly for most of the image with Indian Pines, Pavia
Center, and Salinas, with an over 33% increase over the full
image compression PSNR. Unlike in the reduced set, the
BLSTM-AE was consistently an improvement over the LSTM-
AE, even if not by a statistically significant amount.

The KSC and Botswana models both have approximately
the same PSNR values. This may be due to the loss of
a large number of bands captured by the sensors that were
removed. M Grana stated that 21% of the original bands
in KSC and 40% of the original bands in Botswana were
removed [32]. Due to the large number of bands removed,
there may not have been enough unique spectral information
to be learned from other datasets. This also demonstrates
the relationship between spectral information and the model’s
ability to minimize PSNR.

G. Generalized Compression

This experiment looked at the network’s ability to apply
a trained compression model to an unseen image. This ex-
periment was trained and tested in a similar manner as the
generalization experiment, but it employed a “leave one out”
strategy where the set of training images only contained 4
out of the 5 images. The image that was not used to train the
model was instead used entirely as the test data for the trained
network. Each of the models was trained using the “leave
one image out” strategy and resampled 5 times to validate
the results.



TABLE VI
COMPARISON BETWEEN LSTM-AE AND BLSTM-AE FOR EACH OF THE
IMAGES WITH RESULTS FROM THE GENERALIZED COMPRESSION
EXPERIMENT. THE BOLD VALUES INDICATE HIGHEST AVERAGE

PERFORMANCE.
LSTM-AE BLSTM-AE

Dataset PSNR | MSRE | PSNR | MSRE
Indian Pines 79.90 0.0003 82.92 0.0003
Pavia Center 86.95 0.0002 89.17 0.0001
KSC 78.16 0.0004 78.85 0.0004
Salinas 87.29 0.0002 88.33 0.0001
Botswana 85.17 0.0002 87.92 0.0002

TABLE VII

THE MFLOPS REQUIRED FOR EACH NETWORK TO PERFORM
COMPRESSION ON EACH IMAGE.

Models LSTM-AE | BLSTM-AE | CNN-AE
Indian Pines 0.14542 0.29084 29.98272
Pavia Center 0.067422 0.134844 29.98272

KSC 0.116336 0.232672 29.98272

Salinas 0.148064 0.296128 29.98272

Botswana 0.095845 0.19169 29.98272

As with the generalization experiment, this experiment had
more than a 25% increase in PSN R over Experiment 1 for the
same compression rate with Indian Pines, Pavia Center, and
Salinas. There was no significant change between any of the
experiments for the KSC and Botswana images. The BLSTM-
AE had a slight increase over the LSTM-AE network, but the
increase is not significant.

When compared to the generalization experiment in Table
V, Table VI shows that every PSN R performed slightly worse
with a difference of less then 10%. This demonstrates that
the LSTM-AE structure may be robust enough not only to be
able to be reused on new scenes, but also to be used across
multiple sensors. This is demonstrated most clearly by the
Botswana runs since Botswana was the only dataset captured
by the Hyperion satellite based sensor. This also demonstrates
an independence on spectral resolution since the ROSIS sensor
has a 5nm resolution while all other sensors have a 10 nm
resolution.

H. Computational Cost

To compare the runtime performance, we report the number
of training parameters required and we calculated the num-
ber of mega floating-point operations needed (MFLOPs) to
compress each pixel for LSTM-AE and CNN-AE. Table VII
shows the number of MFLOPS for both of the Deep Neural
Network compressors. The number of MFLOPS is related to
the time complexity of processing the model. Table VIII shows

TABLE VIII
THE NUMBER OF PARAMETERS THAT ARE UTILIZED BY EACH NETWORK.
Models LSTM-AE | BLSTM-AE | CNN-AE
Parameters 4,549 9,078 594,976

the number of parameters. The number of parameters is related
to the complexity of the model and the amount of data needed
to train the model effectively. It is clear that the LSTM-AE
model requires significantly less resources to compress the
images than the CNN-AE model does. This is the case because
the CNN-AE model is a 12 layer model with the number of
convolutional filters per layer being containing 128 filters, 64
filters, or 32 filters whereas the LSTM-AE model is a five
layer model with a total of 51 nodes in the network.

L. Statistical Analysis

With the low number of samples, we applied a permutation
test to determine how significant the results we captured were
in comparison to the best performing existing approach on
each image. Since there was very little difference between
the LSTM-AE and BLSTM-AE algorithms performance, we
performed the permutation tests on the model that performed
the worst for C R and PSN R for our comparisons. Comparing
the C' R of the BLSTM to the existing methods, we calculated a
p-value of 0.255. For the following experiments, we performed
the permutation tests on the LSTM-AE due to it generally
having a higher error rate than BLSTM. Experiments 1 and
2 achieved a p-value of 0.065 and 0.066 while Experiments
3 and 4 achieved a p-value of 0.062 and 0.060. Given the
small sample size, these p-values suggest that there may be
a sufficient difference between the existing methods and the
LSTM-AE and BLSTM-AE algorithms proposed, even if the
significance threshold has not been met.

VI. CONCLUSION

The LSTM-AE framework demonstrated a large improve-
ment when compared to state of the art methods with regards
to reconstruction error. It was also demonstrated that the
improvement in PSN R did not compromise the compression
level of the method. The framework also demonstrated a level
of robustness to be utilized across drastically differing scenes
as well as differing sensors and platforms. This may also sug-
gest that the requirement to retrain on new datasets may not be
required like it is in methods such as the CNN-AE method [7].
While the BLSTM-AE did demonstrate a large improvement
when compared to state of the art methods, the increase in
complexity was not necessarily beneficial when compared to
the LSTM-AE’s reconstruction error performance.

A. Limitations

The primary limitation with a spectral based autoencoder is
that the compression rates are based on the size of the original
bands as well as the size of the central bottleneck layer. This
limitation of the compression ratio can prevent the model from
being competitive with methods that compress both spatial and
spectral information for images that contain a smaller number
of bands but a larger spatial dimension size.

Another limitation on the method is the removal of spatial
information. The removal assumes that the level of spectral
information will be diverse enough in images that the com-
pressor can distinguish each of the bands. If this is not the



case for an image, then the spectral based strategy may not be
as effective of a compressing tool.

B. Future Work

The consistent improvement for Experiments 3 and 4 and
the lower p-scores suggest that the LSTM-AE and BLSTM-
AE models may be able to be more robust across a wider
selection of hyperspectral images and sensor types. The slight
performance boost in BLSTM-AE over LSTM-AE also sug-
gests that the BLSTM-AE may be more robust and require
retraining less often. For future research, the addition of a
spacial compression process can be examined for problems
that require a further reduction in compression rates. Another
interesting direction for future research is the inclusion of
alternative layers to supplement the LSTM layers, such as
the Dense layer or a 1D Convolutional layer, to improve
robustness across a variety of images. In particular, images
that contain low levels of spectral correlation or invariance.
This may improve reconstruction error rates for images that
contain low correlation between the bands.

Autoencoders also have the ability to be adapted for feature
extraction problems. One direction of future research is the
evaluation of the extracted features from the compressed
images to train a classifier. This research could determine if
a compressed model can perform classification tasks and can
reduce the complexity of classifying hyperspectral images.
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