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Abstract—Human Activity Recognition (HAR) is a difficult
machine learning problem, even for state-of-the-art deep learning
models, due to HAR data’s within-domain and cross-domain
heterogeneity. Our research addresses the challenge of closed-
set domain adaptation in heterogeneous, parameter-based, and
transductive transfer learning on HAR datasets. We use a
Bidirectional Long Short Term Memory (BLSTM)-based model
that, in addition to training for classification accuracy using
only labeled data from the source domain, also jointly trains on
source and unlabeled target datasets to reduce the discrepancy
between source and target domains using cross-domain similarity
as an additional loss function. Our work contributes to existing
research in the area of domain adaptation for HAR by evaluating
the performance of the following cross-domain similarity metrics
as loss functions in improving model classification accuracy: 1)
Maximum Mean Discrepancy (MMD), which uses feature means
to measure similarity between two domains; 2) Kernel Canonical
Correlation Analysis (KCCA), which utilizes canonical correla-
tions for similarity determination; and 3) Cosine Similarity, a
metric that uses the cosine of the angle between two vectors
as similarity measure. Our results demonstrate that MMD as a
cross-domain similarity metric not only outperforms KCCA and
Cosine Similarity in domain adaption, but also results in mean
F1 score improvement of 45% over results where a model is
trained solely on the target dataset.

I. INTRODUCTION

Transfer learning is a class of machine learning that aims to
transfer knowledge via a learner from one domain (source) to a
different, but related, domain (target). Transfer learning can be
subdivided into homogeneous or heterogeneous. The former
is for situations where the source and target domains share
the same feature space while the latter is a type of transfer
learning that is used when the feature spaces differ between
the domains. Transfer learning can also be grouped by the type
of learning: 1) transductive, where only the labeled source
data and unlabeled target data are available; 2) inductive,
where only the labeled source data are available; and 3)
unsupervised, where neither source nor target data are labeled
[1]. In addition, transfer learning can be grouped by four
different approaches: 1) instance-based approaches that utilize
instance weighting strategies; 2) parameter-based approaches
that transfer knowledge at the model or parameter level;
3) relational-based approaches that focus on the relational
domain; and 4) feature-based approaches that transform or
augment features [2].

Domain adaptation is a type of transfer learning that min-
imizes the gap between source and target domains and can
be divided as follows: 1) closed-set, i.e., the label set in the
source and target dataset is the same and there are no unknown
classes between the domains; 2) partial domain adaptation, i.e.,
the source dataset is much larger than the target dataset, so it
is assumed that the source label set will contain the target
label set; 3) open-set, i.e., the source and target dataset share
some common labels and differ in some unknown class labels;
and 4) universal domain adaptation, which involves a labeled
source dataset and a target dataset for which little is known
[2, 3].

The focus of our research is heterogeneous, parameter-
based transductive transfer learning with closed-set domain
adaptation. More formally, a domain D consists of three parts:
an input feature space X , an output feature class space (i.e.,
the classification labels) Y , and a learned prediction function
f , where f := P (y|x) [4]. Therefore a domain is defined
as D := {X ,Y, P (y|x)}. Given source domain (Ds) and
target (Dt) and their respective feature spaces X s and X t,
in heterogeneous, transductive transfer learning Ds ̸= Dt, it
follows that X s ̸= X t, and that the probability distributions
are also P (Xs) ̸= P (Xt), where Xs and Xt are instance sets
of their respective feature spaces. In addition, for heteroge-
neous transfer learning, the label sets may not be equal, i.e.,
(ys ̸= yt). However, for our research, we assume the label sets
are equal (ys = yt) as we are conducting closed-set domain
adaptation. Last, task T is defined as T s = {ys, fs} and
T t = {yt, f t} for source and target, respectively, and in our
research the task, human activity recognition (HAR), remains
the same (i.e., T s = T t).

Activity prediction tasks, such as HAR, are classification
tasks that use probabilistic models to categorize human ac-
tivities (e.g., running, cooking, sitting, etc.) based on data
generated by sensors (e.g., gyroscope, accelerometer). By
their nature, these tasks have a temporal component as the
datapoints that make up the performance of a particular task
(e.g., the change in input to an accelerometer during a one
minute run) are collected successively over a time interval.
Bidirectional Long Short Term Memory (BLSTM) models for
HAR [5]–[8] have demonstrated effectiveness in identifying
patterns contained within time-series data.
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Even so, HAR is a difficult problem to solve for even state-
of-the-art deep learning models [9]. The domain variability
across datasets and even within datasets can be extensive. This
variability can result from wearing diversity, e.g., the place-
ment of the wearable sensor on the body [9] or from cross-user
diversity; how users perform the activities can differ signifi-
cantly. Known as the population diversity problem [10], this
variability in a dataset increases as the number of users in the
dataset increases and causes classification accuracy to degrade
quickly and significantly [11]. Another source of variability
is device-instance diversity, e.g., the differences among the
sensors from one phone model to another or among different
brands of sensors. These sensor heterogeneities demonstrably
impair HAR classification. Stisen et al. [12] showed that, for
some devices, sensor biases accounted for an 8% deviation in
exerted force – a bias that, they claim, was large enough to
“account for the acceleration of a fast train”.

Because our research is focused on domain adaptation and
evaluating the effectiveness of cross-domain similarity metrics
in minimizing the gap between source and target domains, we
do not mitigate for heterogeneities within a dataset. Nor do we
mitigate for cross-dataset heterogeneities that may result from
use of different smartphone models in one dataset or the use
of different smartphone models or sensors across datasets. Our
focus is training models from labeled (source) and unlabeled
(target) HAR domains jointly using a cross-domain similarity
metric that minimizes the domain discrepancy between source
and target domains. This results in model parameters that
are optimized for classification accuracy (based on the source
data) and also shared source and target domain features. Then
this jointly trained model is used to classify human activities
in the target domain. Unlike other research in HAR domain
adaptation, which evaluated cross-domain adaptation at the
user level [13, 14] or by comparing only two datasets for
particular activities [15], our research focused on evaluating
the effectiveness of cross-domain similarity metrics across
multiple domains.

We propose a BLSTM-based model for joint training with
which we conduct parameter-based transfer learning by adjust-
ing model parameters based on optimizing a loss function that
jointly trains to improve HAR classification accuracy on the
source domain and minimize discrepancy between source and
target domains. We test three cross-domain similarity metrics
as loss functions for their effectiveness in domain adaptation:
1) Maximum Mean Discrepancy (MMD); 2) Kernel Canonical
Correlation Analysis (KCCA); and 3) Cosine Similarity. For
completeness, we also train and test the model on the target
domain to provide an upper-bound target domain classification
accuracy measure (the ground truth or GT) and train the
model on the source domain and test on the target domain
without performing explicit knowledge transfer or domain
gap minimization to provide a lower-bound target domain
classification accuracy measure (naı̈ve transfer or NT). We hy-
pothesize that 1) similarity-based loss metrics will outperform
NT due to the additional information learned by the models via
knowledge transfer during joint training, but will underperform

GT models; and 2) incrementally increasing the size of the
source dataset will improve model performance on the target
dataset with joint training.

The rest of this paper is organized as follows. In Section II,
we present related work. In Section III, we describe the open-
source datasets used in our experiments. In Section IV, we
describe our implemented BLSTM-based model and detail the
loss functions used for training optimization. In Section V, we
discuss our experiment design. In Section VI, we outline and
analyze our results. In Section VII, we detail our conclusions
and consider future work.

II. RELATED WORK

In a 2019 survey, Wilson and Cook [16] identified activity
prediction using time-series data as an area of research due
to the challenges posed by large differences in feature space
and/or class labels between source and target domains. Re-
cently, there has been additional research specifically address-
ing domain adaptation in activity prediction. In 2018, Ding et
al. [13], after comparing Domain Adversarial Neural Network,
Wasserstein Distance, and MMD as loss functions, found the
MMD loss method to be well-suited for HAR. They combined
MMD with Center Loss, which they used to decrease the
inter-class differences in their datasets. The authors randomly
selected four users from UCI-HAR dataset and trained on these
users with the purpose of transferring between the users. That
is, they trained on one user (source) and transferred and tested
on another user (target). They found that MMD outperformed
the two other widely-used algorithms in their experiments. Our
paper builds on their research by comparing MMD to KCCA
and Cosine Similarity and evaluating transfer learning at the
level of the domain and not the individual.

In a 2019 paper, Hosseini et al. [15] utilized wireless health
sensor data and a deep sequential domain adaptation model
for health signal classification. Specifically, they employed a
BLSTM model to extract feature representations from sensor
input signals and jointly trained the BLSTM prediction model
on the source and target domains while minimizing MMD
loss to successfully show the transfer of HAR from adults to
children in five activities. Our paper adds to this research by
evaluating transfer learning at the domain level without regard
to the specific qualities of the source and target domains and
by comparing the effectiveness of three distinct cross-domain
similarity metrics.

The Cosine Similarity metric has been used widely in Infor-
mation Retrieval, Natural Language Processing, and Computer
Vision tasks to determine similarity between texts and images,
but its use has been somewhat limited in HAR. However,
in 2019, Feng and Duarte [17] focused on performing few-
shot transfer learning for HAR utilizing a stacked Long Short
Term Memory (LSTM)-based model for feature extraction
and classification with parameter-based transfer-learning for
knowledge transfer. One of their experiments used the expo-
nential value of Cosine Similarity to measure cross-domain
sample relevance between the source and target datasets.
Specifically, they trained their model on the source domain,



TABLE I
SUMMARY OF DATASETS

Dataset
Accelerometer
Unit Measure

Gyroscope
Unit Measure

Sampling
Frequency

Sample
Length Device

PAMAP2 m/s2 rad/s 100Hz 0.01s sensor
UCI-HAR g rad/s 50Hz 2.56s smartphone
KU-HAR m/s2 rad/s 100Hz 3s smartphone

then calculated the cross-domain measure between the source
and target datasets, and used this measure (in addition to
other measures such as parameters from the classifier) to
update the target model’s parameters. Our research also uses a
parameter-based transfer-learning approach, but compares the
effectiveness of the Cosine Similarity cross-domain similarity
metric to MMD and KCCA.

In 2022, Hamidi et al. [14] utilized Deep Canonical Corre-
lation Analysis (DCCA), which is an alternative to KCCA.
Like KCCA, DCCA also learns the representations of the
source and target views, but DCCA does not use the inner
product in its calculations. For their research, they utilized
phone sensor data collected from three individuals who placed
a smartphone on their hip, torso, bag, and hand. Then they
sought to accurately classify the human activity independent of
the user or the placement of the phone on the body. They used
DCCA to learn a joint representation of the data and concluded
that sensors placed on different parts of the body provided a
more comprehensive view of how different signals contribute
to activity recognition. They also found that learning a joint
representation of the source and target domains via DCCA
made their models robust to sensor failure and data loss.
Their state-of-the-art research built a model to evaluate HAR
in three individuals from a single dataset while our research
seeks to evaluate the impact of three cross-domain similarity
metrics in improving HAR across three datasets comprising
129 individuals.

III. HUMAN ACTIVITY RECOGNITION DATASETS

Each of the datasets (Table I) chosen for our study is a
distinct domain and our experiments evaluate domain adapta-
tion between the domains. UCI-HAR and KU-HAR data were
generated from smartphones, while PAMAP2 utilized sensors
placed on different parts of the body. The datasets are from
different sources, but all use an accelerometer and a gyroscope
for measurements. As our experiments are concerned with
closed-set domain adaptation, the experiments will consider
four activities (sit, stand, stairs up, stairs down), which are
shared by all of the datasets.

For PAMAP2 and KU-HAR, the features are normalized
to [−1, 1]. The UCI-HAR dataset was already normalized
to [−1, 1] by its creators. We further modified the original
datasets by: 1) imputing missing values in the KU-HAR
dataset via K-Nearest Neighbor imputation where k=3; 2)
descaling the KU-HAR and PAMAP2 datasets to a sampling
frequency of 50Hz to match the sampling frequency of the

UCI-HAR dataset; 3) converting the accelerometer unit mea-
sure, meters per second squared (m/s2), in KU-HAR and
PAMAP2 datasets to gravitational acceleration (g) to match
the accelerometer unit measure in the UCI-HAR dataset; and
4) mapping the class labels in each dataset to the same integer
value for the same label, i.e., sit is zero, stand is one, stairs up
and down are two and three respectively across the datasets.

The KU-HAR raw dataset is the largest dataset by the
number of rows (729,956), but the smallest in terms of number
of features (6). The UCI-HAR raw dataset is the smallest in
terms of rows (5,331), but the largest in terms of number of
features (561). Last, the PAMAP2 raw dataset has 261,698
rows and 39 features. Specifically:

• The PAMAP2 dataset contains 18 different physical ac-
tivities performed by nine subjects wearing three sensors
worn over the wrist, on the chest, and on the dominant
hand and a heart rate monitor. The sensory data include
temperature, 3D-acceleration data (ms2), 3D-gyroscope
data (rad/s), and 3D-magnetometer data (µT ). The sam-
pling frequency is 100Hz. [18].

• The UCI-HAR dataset comprises six activities generated
from 30 volunteers wearing a Samsung Galaxy S II smart-
phone on the waist. Using the smartphone’s accelerometer
and gyroscope, data were captured at a rate of 50Hz
and are composed of three-axial acceleration and three-
axial gyroscope measurements. The sensors’ signals are
sampled into a fixed width window of 2.56 seconds [19].

• The KU-HAR dataset is based on 18 activities collected
from 90 individuals using a smartphone. Five android
smartphone models worn on the waist in a fanny pack
were used for data collection: Samsung Galaxy J7 (2017),
XiaomiRedmi Note 4, Realme 3 Pro, Realme 5i, and
Realme C3 [20]. The time is in ms, three axis-acceleration
is in m/s2, and three-axis rotation via the gyroscope is
in rad/s. The sampling frequency is 100Hz [20].

IV. JOINT LOSS MODEL

An LSTM model is a type of Recurrent Neural Network
(RNN) [21] that is used to process sequential data. At its most
basic, an LSTM model consists of chained LSTM cells, which
pass states from one cell to the next. Each cell takes the cell
state from the previous cell as input, modifies it, and outputs
it to the next cell. The modifications within each cell are
controlled by gates composed of two sigmoid layers and one
hyperbolic tangent layer. The gates decide what information
from the previous cell to forget, update, and add via pointwise



Fig. 1. BLSTM-Based Architecture for Joint Loss Training

operations. This modified cell is then passed on as input to the
next cell. LSTMs, however, do not consider future information
in the output [22, 23]. As a result, BLSTMs, which consider
hidden states in future and past directions, have been applied
to time-series data. BLSTM is a type of RNN that conducts
learning in forward and backward directions by adding an
additional LSTM backward layer on top of an LSTM forward
layer to simultaneously learn all inputs in a sequence [22].

Based on the work of Hosseini et al. [15] and Tzeng et
al. [24], we propose a BLSTM-based model (Fig. 1) that
jointly trains on the source and target datasets by including a
similarity-based loss function in the training. The goal of the
model is to identify a function (ϕ) that learns the difference (or
similarity) between the feature spaces of the source and target
datasets and a prediction function (f ) that classifies an instance
in the target dataset as a particular activity. The data vectors
xs
m and xt

n are instances in the feature space (xs ∼ X s and
xt ∼ X t, respectively). Taking a labeled source dataset Ds

with labels (ys) and unlabeled target dataset Dt, each dataset
is split into windows l where lsm = {xt

1,x
t
2, ...,x

t
m−1} and

ltn = {xt
1,x

t
2, ...,x

t
n−1} for source and target datasets respec-

tively. The assumption is that the probability distributions of
the source and target datasets differ and by identifying the
function ϕ, we can minimize the distance between the domains
so that P (ϕ(xs)) ≈ P (ϕ(xt)). Using a network architecture
that consists of two layers of LSTM cells (one forward and one
backward), each window is fed simultaneously to a forward
LSTM cell and a backward LSTM cell. The outputs of the
individual LSTM cells from each dataset are concatenated.
Then these concatenated outputs from the source and target
LSTM cells (Xs and Xt, respectively) are utilized to derive the
cross-domain similarity metric between the source and target
datasets. This metric is key to performing parameter-based
transfer learning. It represents the gap (or loss) between the
source and target domains, which is minimized during gradient
descent to update model parameters. It is calculated using the
following functions.

A. Maximum Mean Discrepancy

MMD is the distance in the feature means between the
source and target distributions, which can be used to determine
the similarity of two datasets. For example, given a source
domain Ds and a target domain Dt, it can be stated that
Xs ∈ Ds and Xt ∈ Dt (where Xs and Xt are concatenated
outputs of the source and target LSTM cells, respectively) and
that these domains have a shared feature space X .

Then, a kernel trick (ϕ) can be employed to transform the
shared features space X to the Reproducing Kernel Hilbert
Space (H), i.e., ϕ : X → H. In classical kernel methods,
embedding points are used as inputs to the Reproducing Kernel
Hilbert Space (H). But in MMD, a generalization of these
classical kernel methods is employed, which uses the feature
means as input elements in H. Our implementation utilizes a
Gaussian Radial Basis Function (RBF) transformation, which
maps the datapoints from X to H by calculating the dot
products of the concatenated output from the LSTM cells (Xs

and Xt) and results in MMD being zero only if the source
and target distributions are identical. Finally, the L2 distance
between the feature means of the distributions is calculated.

k(Xs,Xt) = exp

(
−∥Xs −Xt∥2

2σ2

)

MMD2(Ds,Dt) = ∥EXs,Xs′∼Dsk(Xs,Xs′)

+EXt,Xt′∼Dtk(Xt,Xt′)

−2EXs∼Ds,Xt′∼Dtk(Xs,Xt)∥2H

B. Kernel Canonical Correlation Analysis

In Canonical Correlation Analysis (CCA) transformation,
the input source and target features spaces are transformed to
some common feature space ϕ : X s → X c and ϕ : X t → X c

and the similarity metric measures the canonical correlations,
which are the cosines of principle angles and smaller angular
planes most shared between the source and target datasets in
each canonical direction [25]. Therefore, two datasets that have
higher canonical correlations are deemed to be more similar.

KCCA is a variation of CCA and utilizes a kernel trick
to derive nonlinear correlations and avoids overfitting on the
training data [26]. In KCCA, given two matrices (Xs and Xt),
we can learn the projection vectors us and ut using weighting
vectors (αs ∈ Rn and αt ∈ Rn, respectively) that maximize
the correlation coefficient ρ.

us = Xsαs

ut = Xtαt

Employing the aforementioned Gaussian RBF kernel trick,
we can derive kernel matrices Ks = k(Xs,Xs) and Kt =
k(Xt,Xt), which maximizes the correlation coefficient.

max
αs,αt

ρ =
αs⊤KsKtαt

√
αs⊤Ks2αs

√
αt⊤Kt2αt



However, if Ks and Kt are invertible, the weighting vectors
can be arbitrary but will result in a trivial solution. Therefore
a regularization term (λ) is added and requires solving:

Kt(Kt + κI)−1Ksαs = λ2(Ks + κI)αs

where αt can be derived from:

αt =
(Kt + κI)−1Ksαs

λ

KCCA has demonstrated higher accuracy in classifica-
tion when compared to standard measures such as Kullback
Leibler-Divergence because the latter is highly sensitive to
small changes in the data that are irrelevant to classification
[25]. In our implementation, we utilize Tensor KCCA with
RBF transformation developed by Kim et al. specifically for
tensors [25, 27]. They utilized TKCAA for extracting similar-
ity features from HAR video datasets, but they note that their
framework can be used for other tasks requiring measurements
between tensor data.

C. Cosine Similarity

For Cosine Similarity, the metric returned is the cosine of
the angle between instances in the source and target datasets
and is valued between [−1, 1], where cos(θ) = 0 indicates
two orthogonal vectors, cos(θ) = 1 indicates two proportional
vectors, and cos(θ) = −1 indicates two opposite vectors. In
our implementation, Cosine Similarity is measured between
HAR instances.

cos(θ) =
Xs ·Xt

∥Xs∥∥Xt∥
The use of the aforementioned functions to calculate simi-

larity metrics in our BLSTM architecture aims to reduce the
discrepancy between the source and target domains by jointly
training the source and target data and therefore reducing the
domain differences. The concatenated last hidden layer output
from the BLSTM layers is utilized to calculate the cross-
domain loss. In addition, during training, the last layer output
resulting from the source data is fed to a fully connected
layer followed by a Rectified Linear Unit (ReLU) activation
function. The output of this activation function is fed to
another fully connected layer, which is followed by a log
Softmax activation function. The output of the log Softmax
activation (Lclass) function is combined with the cross-domain
loss (Lcross-domain) derived jointly from the source and target
data to calculate joint loss (Ljoint).

We utilize an ω value to proportionally calculate cross-
domain and softmax loss in our final loss measure, which
enables us to emphasize one loss value over another as
necessary. We implement the log of a Softmax function as
our activation function in the last layer of our BLSTM-based
architecture. This combined loss output is then minimized in
training by a Stochastic Gradient Descent (SGD) algorithm
with momentum.

During training, the parameters of the model are updated
via SGD to optimize the joint loss function. Therefore, these

parameters account for both the learned classification accuracy
from being trained on the source domain and also the reduction
in domain discrepancy via the cross-domain similarity metric
that attempts to minimize the difference between the source
and target domains. The model with these jointly trained
parameters is then used for classification of the target dataset
during testing where the output of the target BLSTM layer
is passed to the fully connected layer, followed by the ReLU
activation function, then the second fully connected layer, and
finally through to the log softmax function.

Ljoint = ωLclass(Xs,ys) + (1− ω)Lcross-domain

V. EXPERIMENT DESIGN

A. Pre-Experiment Processing

Prior to experimentation, unit conversion was performed
to normalize units for acceleration and rotation across the
datasets. In addition, KU-HAR and PAMAP2 were downsam-
pled to 50Hz. The raw datasets were then split into individual
files for each activity and individual. This enabled randomized
data shuffling while keeping the temporal component of the
data (i.e., the order of the rows for each activity for each
individual) intact. Only the four activities being experimented
on (outlined in Section III) were retained for experiments.
The files were split into validation (10% for KU-HAR and
PAMAP2 and 20% for UCI-HAR) and training datasets. UCI-
HAR raw dataset was already split into test and train by
its creators with min-max scaling applied, so this split was
kept intact in our experiments. In addition, UCI-HAR is the
smallest dataset, so a larger proportion of the data were used
for validation as compared to the other two datasets.

B. Hyperparameter Tuning

Hyperparameter tuning was performed using grid search.
The following values were used in the final experiments. For
UCI-HAR as target dataset, 250 epochs were run per fold
while when KU-HAR and PAMAP2 were target datasets, 40
epochs were run per fold. In addition, for all experiments, the
sequence length was set to five, the number of hidden units
was 128, the batch size was 64, and the exponentially decaying
learning rate was set to an initial value of 0.9. Principal
Component Analysis (PCA) was implemented to reduce the
dimensionality of the higher dimension dataset to match the
dimensionality of the smaller dimension dataset. The MMD
sigma value was set to 0.1 and the KCCA regularization was
set to 0.001. Finally, the joint loss omega (ω) value for the
custom loss function was set to 0.5.

C. Training and Testing

For every fold for a given number of epochs, the source and
target data are loaded in batches. Each batch is composed of
64 windows. Each window is created based on the sequence
length provided. For example, given a sequence length of five,
the window includes the current instance and the four previous
instances from the dataset. To optimize learning, the learning
rate is decayed exponentially at the end of every epoch and the



SGD algorithm with momentum is implemented to overcome
noisy gradients.

There are three possibilities for training and testing: NT,
GT, and joint training. NT is when the model is trained only
on the source dataset, but tested on the target dataset with no
explicit knowledge transfer or domain adaptation. GT is when
the model is trained only on the target dataset and tested on
the target dataset. Joint training is where source and target data
are processed simultaneously to learn the joint feature space
using MMD, KCCA, or Cosine Similarity, which is optimized
at the end of every epoch via gradient descent. During training,
the model learns classification using the source test dataset to
mimic the real-world transductive transfer learning scenario
where the target dataset is unlabeled, but the source dataset is
labeled. However, during testing to determine the effectiveness
of domain adaptation, the model is tested on the target dataset.
For evaluating model performance, our experiments utilize the
macro-averaged F1 score.

For datasets where the source dataset is larger than the target
dataset, the target dataset is concatenated to itself until it is of
the same size as the target dataset, thereby enabling continuous
training and learning of the joint feature space. For instances
where the source dataset is smaller than the target dataset,
target instances are randomly selected so that the target dataset
is of the same size as the source dataset. Random selection
increases the likelihood that source data will be trained against
a representative sample of activities from the target dataset.

D. Data Loading and Cross-Validation

Data from source and target files is split into 10 folds. Each
fold in the source dataset is further split into train (80%) and
test (20%) sets for training. Next, on-the-fly processing tasks
such as Nearest Neighbors imputation for missing data and
min-max normalization are applied as necessary. In addition,
PCA dimension reduction is implemented for all datasets
by training on the train set and applying the transformation
to the train and test sets. PCA reduces feature differences
between datasets by equalizing the number of dimensions.
This is especially necessary in the case of MMD and Cosine
Similarity where the number of dimensions must be equal
between the source and target datasets.

E. Experiment Setup

To evaluate the effectiveness of the various cross-domain
similarity metrics, the following three experiments were con-
ducted.

1) UCI-HAR ⇒ PAMAP2: UCI-HAR as source dataset
and PAMAP2 as target dataset.

2) PAMAP2 ⇒ UCI-HAR: PAMAP2 as source dataset
and UCI-HAR as target dataset.

3) PAMAP2 ⇒ KU-HAR: PAMAP2 as source dataset and
KU-HAR as target dataset.

For each of the above experiments, NT, GT, joint training with
MMD, KCCA, and Cosine Similarity sub-experiments were
performed.

Fig. 2. Mean F1 scores across folds by experiment and sub-experiment.

Finally, a fourth experiment was conducted where the KU-
HAR dataset as source domain was processed in increasing
increments of 100,000 rows starting from 50,000 rows up
to 650,000 rows against PAMAP2 as the target domain. The
purpose of this experiment was to understand how increasing
the size of the source dataset impacts domain adaptation
utilizing MMD as the cross-domain similarity metric.

VI. RESULTS AND ANALYSIS

Our experiments resulted in four findings. First, MMD
employed as a loss function outperforms KCCA and Cosine
Similarity (Fig. 2) by a 45% improvement in mean F1 scores
over the latter two loss functions. Second, unexpectedly, jointly
training source and target datasets with MMD outperforms GT
(where the model is trained and tested on the same dataset) in
every experiment and results in a 45% improvement in mean
F1 score over GT results. The low F1 scores for GT sub-
experiments illustrate that, as discussed in Section I, HAR
classification is a difficult deep-learning task. Third, in one
of the three experiments (PAMAP2 ⇒ UCI-HAR) and in
contravention of our hypothesis MMD underperforms NT. In
NT sub-experiments, no explicit knowledge transfer or domain
adaptation was performed, however utilizing larger source
datasets (by number of instances) improves classification ac-
curacy on target datasets because of the implicit knowledge
transfer resulting from information and patterns contained in
the larger source dataset. In addition, KCCA and Cosine Simi-
larity underperform against NT in every experiment. Fourth, as
hypothesized, incrementally increasing the size of the source
dataset (by number of rows) while simultaneously reducing
source and target domain discrepancy improves performance
of the jointly trained model on the target dataset as the size
of the source dataset increases.

A. UCI-HAR ⇒ PAMAP2

UCI-HAR dataset is the smallest dataset by number of
rows (approximately 2% of the size of PAMAP2). For this
experiment, use of MMD for joint training achieved the best
mean F1 score (Fig. 2) across the folds (0.17) followed by NT
(0.12), KCCA (0.11), Cosine Similarity (0.11), and GT (0.11).



Fig. 3. UCI-HAR ⇒ PAMAP2

Fig. 4. PAMAP2 ⇒ UCI-HAR

Fig. 5. PAMAP2 ⇒ KU-HAR

The comparatively similar results of the latter sub-experiments
demonstrate that model performance benefited from domain
adaptation made possible by joint training with MMD. Results
at the activity level (Fig. 3) further illustrate that for three of
the four activities cross-domain similarity metrics improved
classification accuracy over NT.

Fig. 6. Incremental processing of KU-HAR ⇒ PAMAP2 with mean results
across the folds and a 95% confidence interval.

B. PAMAP2 ⇒ UCI-HAR

NT outperformed all other sub-experiments (Fig. 2) with a
mean F1 score of 0.27 across the folds, including GT, which
had the worse F1 score (0.09). MMD had a mean F1 score
of 0.14 while KCCA, and Cosine Similarity had mean F1
scores of 0.13 each. As in the previous experiment, the GT
score was the lowest indicating that the model is not able to
effectively learn from the target dataset alone. However, the
much larger PAMAP2 dataset (by number of instances) out-
performed MMD and other cross-domain similarity metrics,
indicating that it was less important to reduce the domain
discrepancy between the two datasets than to use PAMAP2
as the training dataset for prediction on UCI-HAR. This was
likely due to implicit knowledge transfer resulting from the use
of a much larger dataset as source. However, as demonstrated
at the activity level (Fig. 4) cross-domain similarity metrics
improved classification accuracy over GT results.

C. PAMAP2 ⇒ KU-HAR

MMD had the highest mean F1 score (Fig. 2) of 0.17
followed by GT with a mean F1 score of 0.13, then NT at 0.12
and last KCCA and Cosine Similarity with mean F1 score of
0.09 each. These results demonstrate that MMD is the superior
cross-domain similarity metric for domain adaptation. It also
outperforms GT at the activity level (Fig. 5) by achieving
higher classification accuracy for three out of four activities
when compared to GT.

D. Incremental KU-HAR ⇒ PAMAP2 with MMD

Source data were processed in increments of 100,000 start-
ing with 50,000 rows resulting in a mean F1 score of 0.15 to
650,000 rows resulting in a mean F1 score of 0.17. The overall
results are as expected. As more source data are added, the
average F1 scores improve (Fig. 6). Although there is a dip
at the 450,000 rows (mean F1 score of 0.14), the results pick
up at 550,000 rows and level out at 650,000 rows. The latter
indicates that after 550,000 rows, additional source data do not
improve training. Of particular interest is that while additional
100,000 rows improve results, the ratio of rows to F1 score



improvement is very small, indicating that the underlying HAR
data are difficult to learn for the model. This conclusion is also
supported by the low F1 scores for GT sub-experiments in the
previous experiments.

VII. CONCLUSIONS AND FUTURE WORK

Unlike other research in HAR, which evaluated cross-
domain adaptation at the user level [13, 14], our re-
search addressed the challenge of transductive, heterogeneous,
parameter-based, closed-set adaptation at the domain level.
Specifically, we focused on evaluating the effectiveness of
cross-domain similarity metrics, MMD, KCCA, and Cosine
Similarity, as loss functions in improving model classification
accuracy. We demonstrated that jointly training a BLSTM-
based model on labeled source data and unlabeled target
data with MMD cross-domain similarity metric as a loss
function improves model accuracy when evaluating human
activity on the target domain. Moreover, a model trained in
this way outperforms models trained with KCCA and Cosine
Similarity as loss functions. Our results further show that naı̈ve
knowledge transfer between large source datasets and smaller
target datasets results in better performance over models that
are trained only on the smaller datasets. The results also
demonstrate that smaller datasets as target domain benefit from
jointly training a model on source and target domains with
MMD and that the classification accuracy of this model is
also better than a model trained solely on the target dataset.

Future research efforts will focus on addressing within-
domain heterogeneity to evaluate its effectiveness in improving
domain adaptation. Having concluded that MMD significantly
outperforms other cross-domain similarity metrics, which af-
firms previous research [13], we can build on these findings
to test how combining multiple datasets impacts domain
adaptation.
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