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Abstract—In Precision Agriculture, the utilization of manage-
ment zones (MZs) that take into account within-field variability
facilitates effective fertilizer management. This approach enables
the optimization of nitrogen (N) rates to maximize crop yield
production and enhance agronomic use efficiency. However,
existing works often neglect the consideration of responsivity to
fertilizer as a factor influencing MZ determination. In response
to this gap, we present a MZ clustering method based on fertilizer
responsivity. We build upon the statement that the responsivity
of a given site to the fertilizer rate is described by the shape of
its corresponding N fertilizer-yield response (N-response) curve.
Thus, we generate N-response curves for all sites within the
field using a convolutional neural network (CNN). The shape of
the approximated N-response curves is then characterized using
functional principal component analysis. Subsequently, a counter-
factual explanation (CFE) method is applied to discern the impact
of various variables on MZ membership. The genetic algorithm-
based CFE solves a multi-objective optimization problem and
aims to identify the minimum combination of features needed to
alter a site’s cluster assignment. Results from two yield prediction
datasets indicate that the features with the greatest influence on
MZ membership are associated with terrain characteristics that
either facilitate or impede fertilizer runoff, such as terrain slope
or topographic aspect.

Index Terms—Neural network response curves, management
zones, counterfactual explanations, explainable machine learning

I. INTRODUCTION

In precision agriculture (PA), management zones (MZs) are
distinct sub-regions in a field with similar yield-influencing
factors [1]. Different MZs account for the variability of factors
within the field (e.g., soil composition) and, thus, vary in their
requirements for specific treatments. These zones are areas
with relative homogeneity where specific crop management
practices are implemented, aiming to optimize crop produc-
tivity and reduce the environmental impact by reducing the
overall fertilizer applied [2], [3].

Several methods have been proposed for the delineation of
MZs. Some of them rely on historical yield data solely [4],
[5] while others use information extracted from remote sensing
data exclusively [6], [7]. Alternatively, certain approaches em-
ploy a combination of covariate factors, encompassing various
soil properties, environmental factors, and topographic infor-
mation [8], [9], [10], [11]. Most of these methods are based
on unsupervised learning techniques; specifically, clustering
methods such as k-means [12] and fuzzy c-means [8], [9],
[10], [13], and principal component analysis (PCA) [8], [9],
[11]. In addition, MZ delineation methods based on supervised

learning such as random forests (RFs) and support vector
machines (SVMs) [7], [11] have emerged recently.

All previous works produce management zones using fac-
tors that are directly or indirectly related to crop productivity.
Nevertheless, to the best of our knowledge, no published
work has explicitly considered fertilizer responsivity as the
main driver for defining MZs. One of the key objectives of
using MZs is to equip farmers with the necessary tools to
make informed decisions about crop management, such as
determining the appropriate amount of fertilizer required in
each zone. As a consequence, our efforts should be directed
toward establishing management zones where all included sites
display comparable responsivity to varying fertilizer rates [4].

Fertilizer responsivity can be characterized using nitrogen
fertilizer-yield response (N-response) curves. These curves
exhibit the estimated crop yield values corresponding to a
specific field site in response to all admissible fertilizer
rates, typically ranging between 0 and 150 pounds per acre
(lbs/acre) [14], [15]. The shape of the N-response curve
indicates the site’s responsiveness to fertilizer, with a flat curve
suggesting low responsivity and a steep curve suggesting high
responsivity. Thus, in this work, we propose an MZ clustering
method that accounts for within-field variability of fertilizer
responsivity based on approximated N-response curves.

To do this, we derive non-parametric response curves from
observed data. Most response curves are generated based on
parametric assumptions using methods such as linear regres-
sion or quadratic plateau regression; however, our experience
suggests that N-response is much more complex than these
models can capture. Our approach is based on a convolutional
neural network (CNN) acting as a regression model to map
the covariate factors to crop yield, as suggested in [16]. Then,
the CNN is used to generate approximated N-response curves
across a range of admissible fertilizer rates [15]. The distinc-
tion in shape between two N-response curves is quantified by
measuring the distance between the corresponding transformed
curves in a reduced space, calculated using functional principal
component analysis (fPCA). Thus, determining MZs relies on
leveraging the shape dissimilarity of N-response curves as the
key distance metric in cluster analysis.

It is worth pointing out that none of the existing methods
for determining MZs attempt to provide explanations regard-
ing the behavior of their results. This presents a significant
limitation, particularly within the context of the growing



area of explainable artificial intelligence (XAI). Therefore, an
approach to determining MZs that is inherently explainable
should enable farmers to discern cause-and-effect relationships
between their inputs and outputs, enabling a more transpar-
ent decision-making process. Therefore, we use a post-hoc
explainability method to facilitate understanding the impact
of various covariates on determining the MZ assignment
for a given site. Specifically, we employ a counterfactual
explanation (CFE) method, adapted from a previous work [15].

For a specific site within the field, the aim of CFE is
to identify the minimal set of covariate factors that, when
modified, leads to the response curve of the generated coun-
terfactual sample being assigned to a cluster different from
the original one. The problem of generating such CFEs is
tackled as a multi-objective optimization problem (MOO) and
is solved using an approach based on the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [17]. Applying this
process across all sites associated with a specific management
zone enables the computation of global relevance scores. These
scores facilitate identifying covariates with the most significant
impact on cluster membership assignment.

Our specific contributions are summarized as follows. First,
we present the first MZ generation approach that accounts
for within-field variability of fertilizer responsivity based on
neural network-generated N-response curves derived from
observed data. Second, we show how to apply a post-hoc ex-
plainability method that generates CFEs to reveal the influence
of covariate factors on MZ assignments.

II. RELATED WORK

Several studies in PA have tackled the challenge of de-
termining MZs, employing a spectrum of techniques rang-
ing from traditional statistical methods to machine learning
algorithms. For instance, Georgi et al. [6] developed a cost-
effective segmentation algorithm using multi-spectral satellite
data. They generate normalized difference vegetation index
(NDVI) maps and apply morphological operations to identify
homogeneous regions. The NDVI values found within the
processed maps are then classified into four quantiles, which
are used to delineate four MZs. Two assumptions are made:
a direct correlation exists between NDVI and crop yield, and
MZs can be determined based on expected productivity.

Gallardo-Romero et al. [7] presented work based on similar
assumptions, using vegetation indices extracted from multi-
spectral images, along with available yield maps from previous
growing seasons. The study categorizes yield values into three
classes, assuming that each category corresponds to a distinct
MZ. To predict productivity levels (i.e., MZs), the authors
employ an ensemble of four machine learning algorithms: clas-
sification and regression trees (CART), RF, gradient boosting
trees (GBT), and SVM.

To motivate our method, we argue that the similarity in esti-
mated yield values for different sites under specific conditions
does not imply that these sites would exhibit similar responses
under all admissible conditions. For instance, take two sites
whose predicted yield values are the same when using the

Fig. 1: N-response curve comparison for two sites with the
same predicted yield value given a treatment of N1 lbs/ac.

same treatment and, as such, are classified within the same
management zone. Assume we know their N-response curves,
as depicted in Fig. 1. Despite both zones producing the same
yield when using N1 lbs/ac, notice that they react to differing
amounts of nitrogen differently. In fact, the second zone can
achieve the same yield with less nitrogen (N2)!

Instead of focusing on predicting productivity levels, other
methods have presented techniques to cluster homogeneous
regions based on the characteristics of the field. Fridgen et
al. [13] introduced the Management Zone Analyst (MZA),
a tool that utilizes a fuzzy classification procedure. MZA
also provides performance indices such as the fuzziness per-
formance index (FPI) and normalized classification entropy
(NCE) to aid in determining the optimal number of clusters
for MZs. This tool has been applied with other clustering
methods for determining MZs based on soil traits, NDVI data,
and multi-year crop yields [10].

Fuzzy c-means clustering, often paired with PCA, has been
used widely for determining site-specific MZs [8], [9], [18].
These methods take into account the multi-dimensional nature
of soil variability, allowing for more meaningful zone delin-
eation. Other approaches involve integrating fuzzy c-means
and PCA with other machine learning algorithms, such as RF.
For example, Maleki et al. [11] trained an RF model to predict
various soil properties (e.g., pH, sand content, and electro-
conductivity) given environmental covariates (e.g., vegetation
indices, geology maps, and water quality parameters). The RF
model was used for feature selection to remove unimportant
environmental covariates. PCA was applied to the reduced
features, and the MZs were identified using fuzzy c-means.

Other previous methods overlooked the importance of the
explainability aspect concerning the resulting MZs. Address-
ing this gap, our work tackles the issue by incorporating
counterfactual explanation analysis, aiming to uncover causal
dependencies between inputs and outputs. Nevertheless, there
has been limited focus on CFE methods in the context of
regression tasks. Classification-based CFE methods aim to
produce counterfactual samples with predicted class labels that
differ from the original ones [19]. In this context, identifying
features of higher relevance involves recognizing those under-
going more frequent changes during CFE generation [20].

Based on this concept, we proposed a CFE method [15] that,
given a response curve generated for a selected input feature
(known as the “active feature”), allows for the identification
of the remaining system variables (known as the “passive



features”) with the highest relevance on the curve’s shape. This
method diverges from classic sensitivity analysis or saliency
analysis, typically employed to explore how various values of a
set of independent variables influence the response variable. In
contrast, our approach delves into understanding how different
combinations of the passive features influence the response
variable across the entire range of admissible values of the
active feature, without assuming independence among the
features. In this work, we adapt this method to understand
the impact of passive features on the MZ membership of a
field site. Thus, a new objective function will be presented.

III. MATERIALS AND METHODS

A. Datasets

We utilized two datasets for early-yield prediction acquired
from two winter wheat dryland fields called “Field A” and
“Field B”. These datasets were compiled and discussed in a
previous work [16]. The problem of predicting crop yield is
formulated as a regression task, with a set of eight covariates
collected in March serving as the explanatory variables:

1) N : Nitrogen rate (lb/ac).
2) S: Topographic slope (degrees).
3) E: Topographic elevation (m).
4) TPI: Topographic position index.
5) A: Topographic aspect (radians).
6) P : Precipitation from the prior year (mm).
7) V V and V H: Backscattering coefficients derived from

synthetic aperture radar (SAR) images from Sentinel-I.

The dependent variable is the harvested yield in bushels per
acre (bu/ac), recorded post-harvest in August. Therefore, the
March-acquired data serve as predictors for the yield outcomes
obtained in August. The acquired feature and yield maps can
be seen as image rasters, where each pixel or cell represents a
region of 10×10m. Data were collected across three growing
seasons for each field (2016, 2018, and 2020).

B. Convolutional Neural Network

In [16], we tackled the yield prediction problem using
a two-dimensional (2D) regression model; that is, a model
with 2D inputs and 2D outputs. We designed a 3D–2D CNN
architecture called Hyper3DNetReg, which is trained to predict
the yield values of all cells within a small spatial neighborhood
of a field simultaneously. Specifically, our model takes as input
an image data cube of 5×5 pixels with n = 8 channels, where
each channel represents a distinct covariate. The model then
generates a 2D image output of 5× 5 pixels.

Hence, data from each field were partitioned into several
5× 5–pixel patches to create their corresponding training and
validation sets. The training dataset comprised 90% of the
patches extracted from three available years of data, with the
remaining 10% constituting the validation dataset. Our trained
models are field-specific, signifying that they are trained on
data from a particular field and employed to predict future
yield maps using data from the same crop and the same field.

Fig. 2: Generation of a 5 × 5 array of N-response curves
generated around a field point at coordinates (lat, lon).

C. N-response Curve Generation

After the network has been trained and, assuming it captures
the underlying causal structure of the problem adequately, it
can be employed to produce approximate response curves. In
previous work [15], we defined a response curve as a tool
that allows for the responsivity analysis of a sensitive system
to a particular “active feature”. In addition, other stimuli that
may influence the relationship between the response variable
and the active feature were referred to as “passive features”.
In the context of the generation of N-response curves, the
active feature corresponds to N (nitrogen rate), while the seven
remaining variables represent the set of passive features.

An input data cube is represented as X = {X1, . . . , Xn},
with X1 corresponding to the N covariate, and the subsequent
dimensions aligning with the remaining covariates based on
the order outlined in Section III-A. Let us denote the trained
CNN model as f(·) so that, given an input X, its estimated
yield patch is denoted as Ŷ = f(X). Consider we produce es-
timated yield patches for all admissible values of N (bounded
by Nmin ≤ N ≤ Nmax) and stack them as a data cube R̂(X):

R̂(X) = {f(X|N = Nmin), . . . , f(X|N = Nmax)}, (1)

as shown in Fig. 2. As such, the (i, j)-th cell of R̂(X) (where
1 ≤ i, j ≤ 5), denoted as R̂i,j(X), represents the approximated
response curve corresponding to the (i, j)-th cell of input X.

The example in Fig. 2 shows the response curve generation
process of all pixels within input X(lat,lon), which represents
the 5× 5–pixel patch generated around coordinates (lat, lon)
of the field. However, our goal is to generate N-response
curves for all sites within the field. To do so, we move



Fig. 3: N-response curves aggregation for a field point at coordinates (lat, lon).

a 5 × 5–pixel sliding window throughout the entire field.
Note that this approach results in overlapping predicted yield
patches for consecutive points. Therefore, results obtained
from neighboring points of the field must be aggregated.

Fig. 3 depicts the aggregation process of N-response curves
obtained for a field point at coordinates (lat, lon). This process
involves considering all valid neighboring 5×5–pixel patches;
i.e., patches whose centers are located within the field and
that contain the point at (lat, lon), highlighted in red. The
9× 9 window generated around the field point at (lat, lon) is
denoted as Wlat,lon. For each of the valid patches in Wlat,lon,
a 5× 5 array of N-response curves is generated using Eq. 1.
Then, the N-response curves corresponding to the field point
at (lat, lon) are averaged, yielding a singular approximated N-
response r(Wlat,lon). This averaging process alleviates noisy
outcomes and produces smoothed curves.

In Sec. I, we stated that the fertilizer responsivity of a given
site is characterized by the shape of its N-response curve. As
such, when comparing the shape of two or more N-response
curves, the focus is not on their absolute estimated yield
values. Hence, any vertical shifts are eliminated to obtain the
aligned approximate N-response curve r̃(Wlat,lon) as follows:

r̃(Wlat,lon) = r(Wlat,lon)−min(r(Wlat,lon)).

D. Functional Principal Component Analysis

We compute the set R comprising the aligned approximate
N-response curves generated for all sites within the field.
R constitutes a set of functional data whose samples are
approximated N-response curves. Thus, fPCA can be applied
to R to establish a distance metric conveying the difference
in shape between N-response curves, as suggested in [15].

Functional Principal Component Analysis extends tradi-
tional PCA to analyze and represent variability in functional
data [21]. As such, an N-response curve can be expressed as a
linear combination of functional principal component (fPCs).

Each fPC encapsulates a unique curve pattern, implying that
curves with distinct shapes will be encoded using different fPC
values. In this work, we suggest approximating an N-response
curve using K = 3 fPCs, a choice justified by their ability to
explain at least 99.5% of the variance of fields A and B. Thus,
the proposed distance metric between curves r1 and r2 is:

d(r1, r2) =

√√√√ K∑
k=1

(vk(r1)− vk(r2))
2
, (2)

where vk(rj) is the value of the k-th principal component
obtained after transforming the curve rj .

E. Management Zone Clustering

Using fuzzy c-means has become a prevalent approach in
management zone delineation methods [8], [9], [18]. In fuzzy
c-means, each data point is assigned a membership score
indicating the extent to which it belongs to a specific cluster.
A cluster centroid is computed as the mean of all data points,
weighted by their respective cluster membership values.

We propose to cluster all field points based on their fertilizer
responsivity so that each cluster corresponds to a distinct
MZ. The process involves generating aligned approximate N-
response curves for all field sites, followed by their transfor-
mation into a reduced three-dimensional (3D) space through
fPCA. Hence, the difference in fertilizer responsivity between
curves (i.e., the difference in curve shape) is conveyed by their
Euclidean distance in the transformed space. Therefore, the
fertilizer responsivity distance (Eq. 2) serves as the distance
metric for the fuzzy c-means algorithm.

Some approaches utilize indices such as the silhouette score,
fuzziness performance index, and normalized classification
entropy to determine the optimal number of clusters [10], [13].
However, these indices might face challenges in situations
where clusters lack clear separation, as observed in the present



context. Recall that all data points for clustering belong to the
same field, leading to gradual changes in soil variability and,
as a consequence, gradual changes in fertilizer responsivity.

In addition, in PA, it is a common practice to specify
between three and five MZs [7]. The decision to use up
to five MZs is often influenced by practical considerations,
such as the limitations of variable rate application machinery
and the complexity of the field. For instance, using more
than five zones may entail intricate zone boundaries, posing
challenges for certain variable rate technologies to distinguish
between closely situated zones. Following this convention, we
chose through visual inspection a cluster count that minimizes
the creation of redundant or highly variable MZs. In future
work, we will design statistical tests that will determine if
the responsivity of multiple clusters of functional data is
significantly different.

F. Counterfactual Explanations for Management Zones

Consider a field point at coordinates (lat, lon); the 9× 9–
pixel window generated around it, Wlat,lon; and the aligned
N-response curve generated for the center of this window,
r̃(Wlat,lon). Let W ′

lat,lon represents a counterfactual expla-
nation of Wlat,lon and let r̃(W ′

lat,lon) be its corresponding
aligned N-response curve. The CFE W ′

lat,lon is generated by
introducing perturbations to the original set of passive features
in Wlat,lon, thereby altering the cluster membership of the
resulting N-response curve r̃(W ′

lat,lon). Furthermore, we seek
to identify the minimal set of passive features requiring per-
turbation for a shift in cluster membership, which focuses on
identifying features with the highest impact on this alteration.

This problem is tackled as an MOO problem. To solve it,
we adapt the method presented in [15]. Originally, this method
was proposed to minimize three competing objectives using
NSGA-II [17]. Its primary use is to identify the minimal
set of passive features requiring modification, ensuring that
the distance between the responsivity of the counterfactual
explanation (CFE) and that of the original samples exceeds a
predefined hyperparameter threshold. Note that this approach
does not account for management zone membership and is
used to analyze the overall field behavior.

Specifically, our MOO problem is defined as:

min
W ′

lat,lon

(g1(Wlat,lon,W
′
lat,lon),g2(Wlat,lon,W

′
lat,lon),

g3(Wlat,lon,W
′
lat,lon)).

The first objective differs from the first objective presented in
[15], and aims for a shift in cluster membership, such that:

g1(W,W ′) =


−1, if cl(r̃(W ′)) ̸= cl(r̃(W ))∧

m(r̃(W ′)) > ϵ

0, otherwise,

where cl(r̃(W ′)) is the cluster assignment for a curve r̃(W ′)
after undergoing transformation via fPCA, while m(r̃(W ′)) >
ϵ denotes the membership score that r̃(W ′) belongs to the
assigned cluster. Recall that a field point is assigned a mem-
bership score for each possible cluster by fuzzy c-means.

Notice that the objective is to alter the cluster membership
so that the membership score assigned to the new cluster is
greater than ϵ, which is a tunable hyperparameter. The reason-
ing behind the decision is as follows. Suppose a curve r̃(W ) is
assigned to a certain cluster with low membership; then, this
curve would be susceptible to changes in cluster membership
when subjected to minor random perturbations. As a result,
such changes may not be informative or representative of
the behavior of the remaining curves within the same cluster.
To avoid this situation, we enforce that m(r̃(W ′)) > ϵ (e.g.
ϵ > 0.8) during CFE generation. This ensures that the CFE is
assigned to a different cluster with high confidence, making
the necessary changes more meaningful.

The second objective is related to minimizing the number
of modified features:

g2(W,W ′) = ||W −W ′||0,

where ||·||0 represents the L0 norm. Finally, the third objective
accounts minimizing the distance between the original sample
and its CFE. Considering the real-valued nature of the covari-
ates in this study, each exhibiting distinct ranges of values, the
distance is calculated as:

g3(W,W ′) =
1

n

n∑
s=1

1

rs
|W (s) −W ′(s)|,

where W (s) is the s-th covariate, and rs its range of values.
This MOO problem is solved using NSGA-II with a pop-

ulation size of T0 CFE candidate solutions. NSGA-II outputs
a set of T Pareto-optimal solutions (T ≤ T0). These solutions
are non-dominated, meaning that no other solution in the set is
superior in all objectives simultaneously. Hence, our selection
criteria for a solution from the Pareto set involve choosing
solutions with the minimum g1 value, followed by those with
the lowest g2 value, and finally selecting solutions with the
minimum g3 value.

Furthermore, we calculate local and global explanations for
the generated results. Given a field point, a local explanation
identifies the passive features with the greatest impact on its
management zone membership. As such, a local explanation
for a field point at coordinates (lat, lon), denoted as αlat,lon

is given by the set of features that were altered during the
generation of the counterfactual sample:

αlat,lon = {s | W (s)
lat,lon ̸= W

′(s)
lat,lon}.

In contrast, global explanations are generated for each MZ
and convey the relevance of passive features at the MZ level.
When analyzing the z-th MZ, the individual feature relevance
of the s-th passive feature is calculated as follows:

r(s)z =
1

|Cz|

|Cz|∑
(lat,long)∈Cz

Is∈αlat,lon
,

where Cz represents the set of field points that have been
clustered into the z-th MZ. Thus, r

(s)
z is the ratio of times

that the s-th passive feature was modified when generating
CFEs for field points in Cz .



(a) (b)
Fig. 4: Management zones for (a) Field A and (b) Field B.

Fig. 5: Aligned approximated N-response curves correspond-
ing to each management zone generated for Field A.

Finally, we emphasize that, in this work, we did not assume
mutual independence among the covariate variables. During
the generation of CFEs, more than one passive feature may be
modified simultaneously. This suggests that certain combina-
tions of features are more effective than modifying individual
features in isolation. Therefore, to analyze which features
react together and identify the most effective combinations, we
report the five most frequently occurring feature combinations.

IV. EXPERIMENTAL RESULTS

We evaluated our MZ clustering method outlined in
Sec III-E on Fields A and B. For Field A, we decided to gen-
erate four MZs (i.e., four clusters). Conversely, for Field B, we
chose to generate three MZs. This decision is justified by the
fact that Field B is more homogeneous than Field A, thus their
corresponding N-response curves show less variability. The
MZs obtained for Fields A and B are shown in Figs.4a and 4b,
respectively. In addition, Fig.5 and Fig.6 show fifty aligned
approximate response curves selected randomly from each MZ
obtained from each field. The implementation code is available
at https://github.com/NISL-MSU/ManagementZonesCFE.

Furthermore, we applied our CFE analysis method to all
field points of all MZs created for Fields A and B. For NSGA-
II, we used a population size of T0 = 50 and 100 iterations.
For objective g1(·), we selected ϵ = 0.8. For example, Fig. 7
illustrates a counterfactual N-response curve generated for a
site of Field A that was initially clustered into MZ “2.” This
CFE exhibits an increase in the V V variable, resulting in an
N-response curve with higher responsivity and a shift in cluster

Fig. 6: Aligned approximated N-response curves correspond-
ing to each management zone generated for Field B.

Fig. 7: Example of a counterfactual N-response curve gener-
ated for a field point of management zone “2” of Field A.

membership to ”1.” We conducted experiments with alternative
ϵ values, such as 0.85 and 0.9, and observed similar results,
although they led to slower convergence rates. These findings
are not included in this paper due to space limitations.

Finally, we show the calculated individual feature relevance
values obtained for all passive features of Fields A and B in
Fig. 8 and Fig. 9, respectively. In addition, TablesI and II list
the five most repeated feature combinations found during the
CFE analysis of each MZ.

V. DISCUSSION

Our method involves using CNNs for the automated gener-
ation of approximated N-response curves, which are employed
to describe the fertilizer responsivity at different locations
in the field. Fig. 5 and Fig. 6 show a subset of these non-
parametric curves, demonstrating a behavior aligned with
agronomic expectations; i.e., sigmoid-like curves that capture
an apparent yield loss after reaching a saturation point.

These figures confirm that our MZ determination method
organized the generated N-response curves effectively into
clusters with consistent curve shapes within each cluster.
The observed variation in curve shapes across different clus-
ters highlights different patterns of fertilizer responsivity. We
claim that identifying MZs characterized by specific fertilizer



TABLE I: Top-five feature combinations – Field A
Zone 1 2 3 4

# Comb. % Rep. Comb. % Rep. Comb. % Rep. Comb. % Rep.
1 [S] 39.5 [VV] 50 [TPI] 53 [S] 41
2 [A] 22 [S] 16 [S] 33 [A] 23.5
3 [VV] 10.5 [A] 8 [VV] 5.5 [VV] 16.5
4 [S, A] 5 [TPI] 7 [A] 5.5 [TPI] 13
5 [A, VV] 3.5 [VH] 4 [S, VV] 1.5 [S, A] 2

TABLE II: Top-five feature combinations – Field B
Zone 1 2 3

# Comb. % Rep. Comb. % Rep. Comb. % Rep.
1 [S] 66.5 [S] 49 [S] 55.5
2 [S, VV] 11 [VV] 23 [TPI] 26.5
3 [TPI] 6 [TPI] 13.5 [VV] 9
4 [S, A] 3 [S, VV] 4.5 [S, TPI] 3
5 [S, TPI] 1.5 [A] 3 [VV, TPI] 1.5

responsivity patterns offers valuable insights for designing
treatments tailored to the specific needs of each MZ.

In Fig. 5, we observe that cluster “2” represents an MZ
encompassing areas of the field characterized by low fertilizer
responsivity. These areas exhibit a limited reaction to changes
in fertilizer rate compared to the other zones. In contrast,
cluster “3” represents the MZ exhibiting the highest fertilizer
responsivity. Note that, while the curves in cluster “4” share
a similar shape with those in cluster “3”, the latter depicts
a slightly steeper behavior, achieving higher yield values
with lower fertilizer rates. Similarly, the curves depicted in
Fig. 6 can be associated with low, medium, and high fertilizer
responsivity regions. In our initial experiments, we found
that introducing a fourth MZ would lead to the creation of
a redundant cluster with curves closely resembling those in
cluster “3”. We observed that employing four MZs resulted in
zone boundaries that were overly intricate and impractical.

Note that the adapted CFE generation method enables us
to derive local explanations for each field location, providing
insights into why they were assigned to a specific MZ. For
instance, Fig. 7 shows a site of Field A that was assigned to
cluster “2”. The generated CFE suggests that an increase in
the V V variable could enhance the site’s fertilizer responsivity,
leading to its clustering into another MZ. Given that V V is
associated with soil moisture content, this outcome could be
interpreted as if the primary factor contributing to the site’s
assignment to cluster “2” is its relatively low moisture content.

Applying the CFE generation process to all field points and
aggregating the results enables us to derive global explanations
that characterize the overall behavior of each MZ. For exam-
ple, from Fig. 8 and Table I, we conclude that variables S,
A, and V V have the most significant influence in determining
the assignment of a particular field point to MZ “1.” Fig. 10
shows the topographic slope and the topographic aspect maps
for Field A. From this, we observe that sites clustered in MZ
“1” coincide with areas with high aspect values and medium
to high slope values, as indicated by the red ellipses. Note
that areas with higher slope values are more prone to fertilizer
runoff, which affects their fertilizer responsivity. In addition,

Fig. 8: Individual feature relevance values of Field A.

Fig. 9: Individual feature relevance values of Field B.

high aspect values correspond to a northeast slope orientation
(in the Northern Hemisphere), implying limited sunlight and
increased snow retention in comparison to other regions of the
field. From Fig. 8 and Table I, we also conclude that the most
relevant variables in determining the assignment of a particular
field point to MZ “3” (i.e., the highest fertilizer responsivity)
are TPI and S. Note in Fig. 10 that the sites in MZ “3” occupy
areas with low slope values, as well as most of the sites in
MZ “4”. These findings indicate that TPI plays a crucial role
in distinguishing the fertilizer responsivity of relatively flat
regions. TPI is associated with the terrain’s ruggedness, and
higher values correspond to an increased likelihood of runoff.
Similar explanations are obtained for the rest of the MZs.

On the other hand, the results from Fig. 9 indicate that the
feature relevance values are similar for the three MZs. This
can be attributed to the uniform elevation values observed
throughout Field B, where there are no steep and abrupt
regions such as in Field A. Therefore, similar to the case
of the MZ “3” of Field A, the most important variables for
cluster membership are S, TPI , and V V , according to Fig. 9
and Table II. It is worth pointing out that, for both fields,
most of the generated CFEs required changes in individual
features, as evidenced in Table I and Table I. However, in
the case of Field B, there was a greater need for changes
involving at least two variables compared to Field A. For
instance, the combination of S and V V was the second most
effective variable combination, recurring in 11% of the CFEs
generated for MZ “1.” This implies that, in many cases, the
low responsivity of sites in MZ “1” can be attributed not solely
to the elevated risk of fertilizer runoff caused by high slope
values, but concurrently to their poor moisture content.

VI. CONCLUSION

The determination of fertilizer management zones allows
for the design of targeted and optimized treatment strategies.
While existing methods consider various factors, none ex-
plicitly address the crucial aspect of fertilizer responsivity in



Fig. 10: Zones obtained for field A along its A and S maps.

defining these zones. To address this gap, we introduce a novel
management zone clustering method based on neural network-
generated response curves that accounts for the within-field
variability of fertilizer responsivity.

Our approach leverages N-response curves generated using
a specialized 2D regression convolutional neural network, pro-
viding an approximation of how crop yield responds to varying
fertilizer rates. We characterize the shape dissimilarity of these
curves and use it as a metric for clustering analysis. Experi-
mental results on two winter wheat dryland fields demonstrate
the effectiveness of our method in organizing field points into
MZs with consistent N-response curve shapes. Thus, each MZ
exhibits a distinct fertilizer responsivity pattern.

Finally, our counterfactual explanation method improves
understanding of the impact of various covariate factors on the
assignment of field points to specific MZs. Our experiments
provide explanations suited to each MZ and field, uncovering
the influence of specific terrain characteristics on fertilizer
responsivity. Future work will focus on the design of statistical
tests that would allow for determining the optimal number of
MZs. In the context of On-Farm Precision Experimentation
(OFPE), we also plan to modify our approach to assist in creat-
ing optimal fertilizer maps for the different zones. Specifically,
instead of using the conventional rectangular gridding, we will
employ several small, homogeneous regions that align better
with the local variations in the field.
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