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Abstract—Recent initiatives in United States university sys-
tems have been focusing on the problems associated with first-
year students dropping out in high numbers. At Montana State
University, a pilot program is underway to develop strategies
for improving undergraduate student retention and reducing the
time to graduation. For the pilot program, students found to be
socioeconomically and academically disadvantaged are targeted
to participate in the strategies designed to mitigate their disad-
vantaged state. Through the university’s “Persistence to Degree”
initiative, these strategies have included forming student cohorts
that take first-year classes together, thus promoting a sense of
purpose and belonging. This paper presents one such strategy
whereby the cohorts are formed based on mutual interests,
and common first-year “core” courses (i.e., general education
courses) are recommended for the members of the cohorts to
take together. The approach involves employing a BERT-based
topic model to generate a social network, from which communi-
ties are extracted. These communities are constructed based on
student interests, expressed through a set of “minute essays,”
and a hybrid content-based/collaborative filtering method is
employed to pair courses taken by past students with similar
interests. Given that this project is still in the pilot stage,
this paper focuses on the methodology and underlying ethical
issues, rather than specific results since collecting results on
the method’s effectiveness would require more of a longitudinal
design. Even so, initial results show promise in the proposed
methodology.

Index Terms—BERTopic, Social Network Analysis, Commu-
nity Detection, Recommender Systems, Purpose and Belonging

I. INTRODUCTION

Universities within the United States are struggling to
improve student retention and time-to-degree [1]. One of the
issues facing new students is developing a sense of purpose
and belonging in a new environment and obtaining support as
they navigate this environment. One approach to addressing
concerns in purpose and belonging and student support is
in recommending appropriate courses to incoming students.
With the increasing number of course options and the diverse
backgrounds of students, personalized course recommenda-
tion systems and the formation of communities among these
students are expected to help address such concerns. In this
paper, we present an approach that is focused on improved
community engagement and student welfare. In particular,
we focus on incoming students facing either academic, en-
gagement, or financial challenges in the hope of helping
them integrate and succeed in the university environment.
For our approach, we utilize data from the Hilleman Scholars
program at Montana State University, where selected students
are asked to write short minute essays completed as part
of their first-year experience. These responses provide a

valuable dataset for understanding student interests, goals,
and challenges that can then be analyzed to improve purpose,
belonging, and student support.

Previous work on course recommendation systems have
used a variety of methods to provide personalized suggestions
to students, including collaborative filtering, content-based
filtering, and hybrid approaches. While these methods have
been effective in recommending courses based on historical
data such as course ratings, there has been limited focus on
leveraging unstructured textual data for building personalized
recommendations. Our objectives are two-fold. First, we seek
to provide a means for students to be grouped into commu-
nities of mutual interest to improve a sense of belonging in a
new environment. Second, we seek to use this information on
common interests to build a data-driven framework that helps
match students in these communities to relevant courses.

To achieve our objectives, we employ a multi-step pro-
cess. First, we utilize the BERTopic model [2] to extract
meaningful topics from the textual responses of students
admitted to the university’s Hilleman Scholars program. This
topic modeling process [3] enables us to identify themes and
patterns that represent the unique characteristics of different
students. Next, we construct a social network based on these
topic models, where nodes represent students and edges
represent topic similarities. To identify communities in the
network, we apply the hierarchical Louvain algorithm [4].

When an incoming student joins the Hilleman Scholars
program and provides their responses to the brief essay
questions, we match them to an appropriate community
within the social network by finding the most similar student
in the network. This is achieved by computing the simi-
larity between the new response and existing nodes using
cosine similarity and selecting the node with the highest
similarity. Once the community is identified, we query the
grade database of the members within the community to
retrieve their academic performance in various courses. By
multiplying similarity scores with grade point averages, we
recommend N number of core courses to new students.

Contributions: Our first contribution is a targeted approach
to enhancing retention and belonging among academically
and socioeconomically disadvantaged students. By focusing
on this underserved group, our work addresses a critical gap
in university retention efforts through personalized course
recommendations. Our second contribution is methodolog-
ical: we propose a hybrid BERTopic-based recommender
system that combines unstructured student responses with
academic performance. By extracting student interests via
transformer-based topic modeling, building a semantic simi-



larity network, and applying hierarchical Louvain clustering,
we generate personalized course recommendations.

II. RELATED WORK

There exists several methods for making course recom-
mendations. Many methods rely on temporal registration and
grading data while others rely on course ratings, student
feedback, and other relevant scores [5]–[8].

Both methods described in [6] and [7] use a combination
of two-tier collaborative filtering and recommendation. El-
badrawy and Karypis, use matrix factorization, collaborative
filtering, and popularity to recommend top-n courses [6].
They group students and courses based on their features, but
their method becomes less effective if any of those groups
are absent in the dataset. Professor ratings can also be used
as a quality filter to exclude courses taught by poorly rated
professors [7], but this method does not account for how
much bias is introduced from student ratings.

Zhang et al. demonstrated that collaborative filtering can
use past data to find patterns among students, though it
struggles with problems like cold start and sparsity [9].
Thorat et al. suggested that hybrid methods, which combine
collaborative and content-based filtering, can help overcome
these issues [10]. Such methods use multiple data sources to
make recommendations more reliable.

Another popular approach is topic modeling, which draws
its inspiration from Probabilistic Latent Semantic Analysis
(PLSA) [11]. Earlier topic modeling methods such as Latent
Dirichlet Allocation (LDA) were based on latent variable
discovery [12]. This is similar to the approach of PLSA,
which analyzed the occurrence of words in unstructured
textual documents. Building on this idea, LDA introduced
a generative process to explain how documents and words
might be generated in a probabilistic framework. As LDA
yields a generative model it provides flexibility of tuning,
interpretability, and scalability, but when working with a
small corpus of data, LDA falls short as it heavily relies
on word frequency to learn the latent topics. Subsequently,
transformer-based models, such as BERTopic [2], were de-
veloped. BERTopic, which is the method used in this paper,
generates contextual word embeddings that capture semantic
relationships between words, even when the dataset is small.

Jiang et al. used LDA to analyze text responses and iden-
tify student interests [13]. This approach was demonstrated to
work well for unstructured data. Recent studies then tried to
improve personalized recommendations by adding time and
context to the analysis [14].

Other machine learning techniques have also been used in
course recommendations. Ng and Linn showed that adding
sentiment analysis and survey results can make recommen-
dations more accurate. Systems based on matrix factorization
and deep learning have created highly personalized sug-
gestions [15]. Support Vector Machines (SVM) is utilized
to group students for personalized recommendations [16];
however, scalability remains a challenge for these methods.

Proceeding from approaches that employ social network
analysis, graph-based approaches are used. These methods
aim to find relationships between textual representations. For
example, Noor et al. also focused on constructing social
networks entirely based on topic similarity [17]. By using

Jensen-Shannon divergence and community detection algo-
rithms like the Louvain algorithm [18], [19], this method
highlighted interdisciplinary collaboration opportunities.

Some studies have proposed new ways to recommend
courses for specific scenarios. For example, CrsRecs uses
sentiment analysis and survey data to create detailed student
profiles [15]. Similarly, Jiang et al. developed an LDA-based
system to recommend online courses based on user interest
models [13]. These systems demonstrate how specialized
methods can address unique challenges in course recommen-
dation.

In this work, we consider the problem of making course
recommendations from a perspective of enhancing social
good. In particular, our goal is to make recommendations
that promote a sense of purpose and belonging among the
students while also matching students to courses of interest
that improve the likelihood of success. To that end, we
propose a new approach to course recommendations where
we combine topic modeling with social network analysis to
group students based on text responses to mini-essay and
interest survey questions. We then use prior student perfor-
mance data to improve the accuracy of our recommendations.
This approach introduces a fresh way to match students
with suitable courses, focusing on unstructured text data and
community-based grouping.

III. PROBLEM STATEMENT

Within the larger context of seeking to promote purpose,
belonging, and student success, we aim to solve the technical
problem of identifying communities from freshman student
responses to essay and survey questions. These communi-
ties are based on similarities of topics contained in their
text responses. Our end-goal is to recommend courses that
meet their specific interests and needs but also promote
success. Our basic approach is to build these communities
by analyzing unstructured textual data rather than relying
on predefined relationships or explicit survey scores. This
approach ensures that recommendations are based on shared
themes and patterns in the students’ responses.

We hypothesize that a social network constructed using
topic modeling and similarity-based measures will identify
student communities effectively. These communities can then
be used to recommend courses that align with the academic
potential and interests of incoming students. By incorporat-
ing grade performance data from similar students, we aim
to enhance the relevance of these recommendations. This
framework presents an approach to use unstructured text data
for creating personalized academic advising for incoming,
disadvantaged students. We note, however, that testing this
hypothesis requires tracking students over the duration of
their time at the university. As such, this paper focuses more
on the methodology being developed for a pilot study than
on the specific results obtained.

IV. DATASETS

Throughout the process of developing our framework, we
used data collected from the Hilleman Scholars program pro-
gram at Montana State University. The first dataset (denoted
ESSAYS) consists of questionnaire responses from students
who participated in the program between 2016 and 2024.



These data consist of 649 entries, representing responses to
25 questions, including both open-ended and structured for-
mats. The responses enabled gaining insights about students’
academic interests, career goals, personal motivations, and
voluntary work performed.

The second dataset (denoted GRADES) includes grade in-
formation for the same students. These data consist of 14,945
entries, providing detailed records for each student of the
courses taken, final course grades, cumulative GPAs, credit
hours, math and writing placement scores, and standardized
test scores.

Together, the two datasets offer a comprehensive view of
student responses and academic performance. The ESSAYS
dataset provides unstructured textual data suitable for topic
modeling, while the GRADES dataset serves as a quantitative
basis for validating course recommendations. By combining
the datasets, we analyzed how students’ self-reported goals
and motivations aligned with their academic performance,
enabling us to develop a robust recommendation system.
The resulting system is designed to guide incoming students
toward courses that best match their aspirations and poten-
tial, promote academic community engagement, and enable
successful progress towards degree completion.

V. METHODOLOGY

Our system collects questionnaire responses on an appli-
cation given to incoming freshmen as part of the Hilleman
Scholars program that focuses on helping socio-economically
disadvantaged students. The questionnaire contains 25 ques-
tions aimed at understanding the student’s academic interests,
career goals, and motivations. Each response is tied to a
unique student identifier, which appears as a node identifier
in the derived social network. After fine-tuning the BERTopic
model, we process the responses to extract topics which are
based on similarity and word embedding in the documents.
These topics are used to build a social network, where each
student is represented as a node, and edges are formed based
on topic similarities using cosine similarity.

To identify groups within the network, we apply the
hierarchical Louvain algorithm [18], which groups students
into communities and sub-communities. The questionnaire
data is also linked to the GRADES dataset, which is used to
validate and refine the recommendations by analyzing trends
in course performance within the identified sub-communities.

A. BERTopic Model

BERTopic [2] is a newer topic modeling algorithm intro-
duced in 2020 that leverages transformer-based embeddings,
dimensionality reduction, and clustering to discover latent
topics in textual data. Unlike traditional topic modeling ap-
proaches such as LDA, BERTopic uses semantic embeddings
generated by transformers based on BERT [20]. This allows
BERTopic to model text with contextual meanings effectively,
which is particularly useful for unstructured data like short
student responses.

Formally, given a collection of textual documents D =
{d1, d2, . . . , dn}, where di represents a single document (e.g.,
a student response), the first step in BERTopic is to transform
the text into high-dimensional embeddings. Using a pre-
trained transformer model T , each document di is mapped

TABLE I: Topic and word representation from BERTopic

Topic Count Representation
-1 193 [‘work’, ‘help’, ‘school’, ‘make’, ‘life’, ‘would’,

‘time’, ‘family’, ‘get’, ‘go’]
0 140 [‘life’, ‘help’, ‘work’, ‘make’, ‘get’, ‘school’, ‘go’,

‘people’, ‘time’, ‘would’]
1 113 [‘work’, ‘help’, ‘school’, ‘time’, ‘life’, ‘year’, ‘fam-

ily’, ‘make’, ‘go’, ‘get’]
2 44 [‘work’, ‘Hilleman’, ‘hard’, ‘life’, ‘help’, ‘family’,

‘Montana’, ‘world’, ‘make’, ‘story’]
3 34 [‘work’, ‘help’, ‘school’, ‘make’, ‘life’, ‘time’,

‘take’, ‘people’, ‘go’, ‘hard’]
4 26 [‘want’, ‘work’, ‘go’, ‘get’, ‘help’, ‘school’, ‘make’,

‘time’, ‘like’, ‘know’]
5 13 [‘work’, ‘help’, ‘Montana’, ‘make’, ‘goal’, ‘time’,

‘want’, ‘teach’, ‘community’, ‘like’]
6 13 [‘help’, ‘people’, ‘life’, ‘want’, ‘work’, ‘make’,

‘time’, ‘go’, ‘year’, ‘like’]
7 12 [‘work’, ‘school’, ‘time’, ‘Montana’, ‘make’, ‘get’,

‘college’, ‘family’, ‘help’, ‘year’]
8 11 [‘work’, ‘get’, ‘help’, ‘class’, ‘would’, ‘school’,

‘make’, ‘year’, ‘go’, ‘time’]

to a vector ei = T (di), ei ∈ Rd, where d is the embedding
dimensionality.

Since clustering in high-dimensional space can be compu-
tationally expensive, BERTopic employs Uniform Manifold
Approximation and Projection (UMAP) for dimensionality
reduction [21]. The embeddings ei are mapped to a lower-
dimensional space zi = UMAP(ei), zi ∈ Rm, m < d.
UMAP retains the global and local structures of the orig-
inal embeddings while making the data more amenable to
clustering.

After dimensionality reduction, BERTopic applies Hierar-
chical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [22] to identify groups of documents
that form coherent topics. The algorithm clusters the reduced
embeddings zi, assigning a topic label ti to each document
di: ti = HDBSCAN(zi), ti ∈ {1, 2, . . . , k} where k is the
total number of discovered topics. HDBSCAN is particularly
well-suited for this task because it can handle noise in
the data, effectively identifying meaningful clusters while
ignoring outliers.

To provide a meaningful representation for each topic,
BERTopic computes a class-based Term Frequency–Inverse
Document Frequency (c-TF-IDF) score. This score quantifies
the importance of a term w within a topic T :

c-TF-IDF(w, T ) =
TF(w, T )∑

w′∈T TF(w′, T )
log

|D|
|{d ∈ D : w ∈ d}|

,

where TF(w, T ) is the term frequency of w in topic T , |D|
is the total number of documents, and |{d ∈ D : w ∈ d}| is
the number of documents containing the term w. The terms
with the highest c-TF-IDF scores for a topic are selected as
its representative keywords.

Once the topics are identified and represented, BERTopic
assigns each document di a probability distribution θi,j over
the topics Tj . The final topic assignment for a document is
determined by selecting the topic with the highest probability:

T̂ (di) = argmax
j

θi,j

This ensures that each document is associated with the topic
most relevant to its content.



We leveraged BERTopic model to extract latent topics that
reflect student’s academic interests, career goals, and personal
motivations. Table I summarizes the output of the BERTopic
model, which extracted latent topics from student responses.
Each topic is represented by a unique identifier, the number of
documents assigned to it (Count), and a list of representative
keywords. These topics reflect common patterns in the data.

B. Similarity Based Social Network

The social network was constructed to represent students
as vertices and their relationships as edges based on their
word pattern similarities. This process utilized the topic prob-
abilities generated from the BERTopic model and relied on
cosine similarity between the embedding vectors to quantify
the relationships between student responses.

Given a set of student responses D = {d1, d2, . . . , dn},
each response di is encoded into a topic probability vector

pi = {P (T1 | di), P (T2 | di), . . . , P (Tk | di)}

where P (Tj | di) represents the probability of di belonging
to topic Tj , and k is the number of topics.

To compute the relationships between responses, the cosine
similarity Sim(di, dj) between the topic probability vectors
pi and pj of two responses was calculated as:

Sim(di, dj) =
pi · pj

∥pi∥∥pj∥
where ∥pi∥ denotes the Euclidean norm of pi. The similarity
score measures the alignment between two responses in terms
of their topic distributions.

The graph G = (V,E) is then constructed as follows:
• Each node vi ∈ V corresponds to a student where ti

is the most probable topic for di, determined as: ti =
argmaxj P (Tj | di).

• An edge (vi, vj) ∈ E is added between two nodes if
their cosine similarity exceeds a predefined threshold τ :

(vi, vj) ∈ E ⇐⇒ Sim(di, dj) > τ, τ = 0.90

• In BERTopic, the topic indices start from −1, indicating
that topic −1 is an outlier that has very few similar
documents. As some of the documents have a similarity
less than threshold τ , they are assigned to the sub-
community having the closest similarity to the topic −1.

The edge weight wij is set to the cosine similarity value:
wij = Sim(di, dj). An example social network formed by
student response data is shown in the Figure 1.

C. Community Detection

Community detection is a crucial step in our analysis for
identifying groups of students with shared characteristics. We
used the Louvain method and a hierarchical extension to dis-
cover primary communities and sub-communities within the
student social network. The Louvain method is an iterative,
modularity-based algorithm for detecting communities in a
graph G = (V,E), where V represents the set of nodes
(students) and E represents the edges (relationships) between
them. Modularity Q is used as the optimization objective to
evaluate the quality of a community partition, defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where, Aij is the weight of the edge between nodes i and j,
ki is the sum of the edge weights connected to node i, m is
the total weight of all edges in the graph, ci is the community
assignment of node i, and δ(ci, cj) is an indicator function,
equal to 1 if ci = cj , and 0 otherwise.

The Louvain algorithm proceeds in two phases:

1) Local Modularity Optimization: Each node is ini-
tially assigned to its own community. Nodes are moved
between communities to maximize the modularity Q.

2) Community Aggregation: Communities identified in
the first phase are collapsed into super-nodes, creating
a new, smaller graph. The process is repeated until no
further modularity improvement is possible.

The output is a partition P = {C1, C2, . . . , Ck}, where each
Ci is a community.

To capture fine-grained communities, we applied a recent
extension to the Louvain method recursively where, after
detecting the primary communities P , we apply the Louvain
method to each community’s subgraph [23].

1) Primary Community Detection: The Louvain method
is applied to the original graph G to obtain primary
communities:

P = Louvain(G)

Each community Ci ∈ P forms a subgraph Gi:

Gi = G[Vi], Vi = {v ∈ V | v ∈ Ci}

2) Sub-Community Detection: The Louvain method is
recursively applied to each subgraph Gi to uncover
sub-communities: Pi = Louvain(Gi). This dynamic
process enables the identification of nested community
structures within the graph.

3) Filtering Sub-Communities: We have used modular-
ity gain to detect sub-communities in the main com-
munity. For a community partition to be meaningful,
its modularity score should improve significantly when
divided into sub-communities. We define “sufficient
modularity gain” as the improvement in modularity
∆Q = Qnew − Qcurrent between the current level of
the graph and its sub-communities, where Qcurrent is
the modularity of the current partition and Qnew is the
modularity of the sub-partition after further dividing
the community. If ∆Q is below a predefined threshold
ϵ (e.g., ϵ = 0.5), the division stops.

Figure 1 shows the results of Hierarchical Louvain applied
to the student social network where the main communities
are represented by different colors. We also extract the
subcommuntiies; however, they are not able to be shown in
this figure but are captured in Table II.

D. Course Ranking

The course ranking and selection procedure leverages
Jensen-Shannon Divergence (JSD) to determine the similarity
between a new student’s topic distribution and those of
students within the identified sub-community. The similarity
scores are combined with grade point information to rank
courses taken by students in these communities and recom-
mend the top options.



Fig. 1: Hierarchical Louvain applied to student network

Probability Normalization: The topic probability vector
for the new student’s response, pnew, is normalized to ensure
it sums to 1:

pnew =
pnew∑k

j=1 pnew,j

where pnew,j represents the probability of the new student’s
response belonging to topic j, and k is the total number
of topics. Similarly, the topic probability vectors for each
student in the sub-community, pi, are normalized:

pi =
pi∑k

j=1 pi,j

Jensen-Shannon Divergence Calculation: The Jensen-
Shannon Divergence (JSD) is used to measure the similarity
between the new student’s normalized topic distribution pnew
and each sub-community member’s distribution pi. JSD is
defined as:

JSD(pnew,pi) =
1

2

k∑
j=1

[
pnew,j log

pnew,j

mj
+ pi,j log

pi,j
mj

]
where:

mj =
pnew,j + pi,j

2

JSD ranges from 0 to 1, with smaller values indicating greater
similarity between the two distributions.

To convert the divergence into a similarity score, let

Simi = max(0, 1− JSD(pnew,pi))

This bounds the similarity score to the range [0, 1].
Normalizing Similarity Scores: The similarity scores for

all sub-community members are normalized to ensure their
sum equals 1:

Simnorm
i =

Simi∑n
i=1 Simi

, if
n∑

i=1

Simi > 0

where n is the number of sub-community members.

Course Weight Calculation: For calculating the course
weight, JSD similarity and grade points are aggregated for
all students in that particular subject. For a course c, the
weighted similarity score is calculated as:

WeightedScorec =

∑
s∈Sc

(Sims ×Gs)

|Sc|
where:

• Sc is the set of students who have taken course c,
• Sims is the similarity score for student s,
• Gs is the grade points achieved by student s in course

c,
• |Sc| is the total number of students who have taken the

course.
This approach computes the average weighted score for

each course. This way we can ensure that courses taken by
similar students with high grades receive higher scores.

Course Ranking: The weighted scores for all courses are
aggregated, and the top N courses (e.g., N = 5) are selected
for recommendation. This procedure ranks courses based on
their relevance to the new student, as determined by both
textual similarity (captured through topic probabilities) and
academic performance (captured through grades).

VI. EXPERIMENTAL DESIGN

While the following does not provide a comprehensive
evaluation of our approach, we discuss a sample applica-
tion of the approach to real students at our university. To
implement our approach, we constructed the topic model
using the student responses. In the initial step, we utilized
Python’s NLTK library [24] to preprocess the text-based data
by performing tasks such as removing digits, punctuation,
and stop words, as well as lemmatizing and tokenizing
words. Figure 2a shows the word count distribution across
documents before preprocessing. We can see that the ESSAYS
dataset has a wide range of word counts, including very
short responses. Figure 2b, shows the word count after
lemmatization and filtering. We excluded documents with
fewer than 175 words, as such short responses were deemed
insufficient for meaningful analysis.

The ESSAYS dataset contains responses for the Hilleman
Scholars program from the years 2016 – 2024. Each year the
number of questionnaires and the questions asked change. To
address the problem, we have combined answers for all of
the responses provided by each student into one contiguous
document. This document was then used as the basis for
generating the topics.

After preprocessing and lemmatization, we fine-tuned the
BERTopic model using the written responses. We used
the pre-trained paraphrase-mpnet-base-v2 model from the
SentenceTransformer library [25] as the embedding model.
This model is designed for semantic similarity tasks and
works well with unstructured textual data. It creates dense
embeddings that represent the semantic structure of the re-
sponses. For dimensionality reduction, we used UMAP with
parameters that balance local and global structures. We set the
neighborhood size to 15, which helps the embeddings capture
both local relationships and global patterns. The embeddings



(a) Word distribution before lemmatization

(b) Word distribution after lemmatization

Fig. 2: Word frequency distribution by document

were reduced to 5 dimensions to make computations faster
and remove noise.

To create compact clusters, we set the minimum distance
to 0.0. Cosine similarity was chosen as the distance metric
because it handles high-dimensional embeddings effectively.
For clustering, we used HDBSCAN with a minimum clus-
ter size of 10. This ensures that each topic had at least
10 documents and prevented overly small or insignificant
topics. Although we used cosine similarity for generating
embeddings, Euclidean distance was used for clustering, as
it works well with UMAP-reduced embeddings. We used the
“excess of mass” method [26] to find dense regions in the
data in order to identify coherent topics. We also configured
BERTopic to improve topic extraction. A minimum topic
size of 10 ensured that small and irrelevant topics were
avoided. The model also provides topic probabilities for
each document, which gives detailed insights into the word
patterns in the responses.

Since this was a simulated experiment, we used data based
on students already admitted to consider recommendations
vs courses taken. For this experiment, the combined dataset
was split into 90% training data and 10% test data. We
recognize that the test set is small, but the dataset itself is
limited. Allocating too many responses to the test set would
create smaller and less coherent social groups. To construct
the social network, we began by encoding the student re-
sponses into dense vector representations using a pre-trained
embedding model. The graph was then initialized using the

(a) 60% similarity threshold (b) 90% similarity threshold

(c) 95% similarity threshold

Fig. 3: Social network for different similarity thresholds

networkx library [27]. Each node consist of two attributes:
their corresponding embedding and topic assignment. For
weighting edge between nodes, we computed the pairwise
cosine similarity of their topic probability vectors. An edge
was added between two nodes if their similarity exceeded
a tuned threshold of 90%. When a very low threshold was
used, (e.g., 60% as in Figure 3a), the network became
overly dense, resulting in decreased modularity. In this
case, the Louvain algorithm struggles to identify meaningful
communities because the excessive number of connections
obscures the underlying structure. On the other hand, when
a very high threshold, such as 95%, was applied (Figure
3c), the network became a forest with many disconnected
components. This reduces edge density, and the Louvain
algorithm has difficulty optimizing modularity due to the
lack of sufficient connections. We found the 90% similarity
threshold to be optimal.

VII. RESULTS AND DISCUSSION

Table II shows the results of applying Hierarchical Louvain
to our student network. It detected a total of 12 main
communities within the network, and each main community
was divided further into sub-communities based on modu-
larity optimization. From the results, we can see that the
size and structure of the communities vary significantly.
Main Community 0, for example, is divided into three sub-
communities with 26, 19, and 9 nodes, respectively. On the
other hand, the largest community, Main Community 7 has
four sub-communities containing 58, 44, 30, and 22 nodes.



TABLE II: Communities and sub-communities discovered

Main Community Sub-Community Number of Students

0
Sub-Community 0 26
Sub-Community 1 19
Sub-Community 2 9

1
Sub-Community 0 22
Sub-Community 1 24

2 Sub-Community 0 11
3 Sub-Community 0 12
4 Sub-Community 0 15
5 Sub-Community 0 10

6
Sub-Community 0 57
Sub-Community 1 60

7

Sub-Community 0 30
Sub-Community 1 58
Sub-Community 2 22
Sub-Community 3 44

8 Sub-Community 0 18

9
Sub-Community 0 53
Sub-Community 1 53

10 Sub-Community 0 13
11 Sub-Community 0 43

From this, we deduce that NH-Louvain can adapt to the
density and size of different network regions and can capture
fine-grained relationships. The smaller communities, such as
occur in Main Communities 2, 3, 4, and 5, each contain a
single sub-community (i.e., are not decomposed further) with
fewer than 20 nodes, indicating more localized and isolated
clusters.

As shown in Figure 1, densely connected regions repre-
sent large sub-communities and sparse connections, indicate
smaller or more isolated groups. This highlights the modular
nature of the network, where students cluster based on shared
interests, experiences, or similarities in their responses.

Figure 4 presents sample WordClouds for three of the
largest discovered communities. These WordClouds highlight
the most important differentiating terms based on differences
in the topic distributions used by students within each com-
munity. The WordCloud in Figure 4a for Main Community
0 shows prominent terms such as “learn,” “always,” “need,”
“hard,” and “home.” This suggests a strong focus on personal
development, resilience, and education. The WordCloud in
Figure 4b for Main Community 6 includes key terms such
as “know,” “volunteer,” “take,” and “want.” This community
has a similar self-development and education theme but has
a distinct emphasis on volunteering and community involve-
ment. The WordCloud in Figure 4c for Main Community 7
highlights terms like “able,” “need,” “one,” and “become.”
This community appears to focus on personal capability,
transformation, and ethical values, as suggested by words
like “ethic” and “good.”

After discovering communities and sub-communites, we
tested our method with the 10% test data. We randomly
selected a Student ID from the test set, calculated its proba-
bility distribution and matched it with the nearest node in the
social network. After that we queried our database with the
Student IDs of the best matched community, determined to
be the community to which that nearest node belonged, and

(a) Main community 0

(b) Main community 6

(c) Main community 7

Fig. 4: Word clouds of the three largest communities

ranked the core courses outlined in Section V-D to select
the N most appropriate courses for the student. Table III
shows the ranked courses recommended for the student by
our recommender system.

When examining this table, we see that a wide variety of
courses are being recommended to the student, ranked based
on other students’ prior performance, combined with the
common interests of these students, as reflected in the topic
model-generated social network. In some cases, multiple
choices in the same category are suggested, such as LIT
169IH and JPNS 325IH, both of which are humanities core
courses. Even, so the literature courses is ranked higher than
the Japanese studies course, perhaps due to the student’s
specific areas of interest.

Note that some students may have already completed core
courses, in which case, such recommendations should be
filtered out. We did not include that filter in this demonstra-
tion. In addition, some courses have conditions that must be
satisfied before the students is eligible to take it. For example,
HONR 201IH is a “humanities” core course offered as part



TABLE III: Recommended core courses for a sample student

Course ID Course Name Avg. Weight
HONR 202IH Text & Critics 4.00

ERTH 102CS Topics in Earth Science 4.00

LIT 169IH Literature as Popular Culture 3.85

SOCI 318R Sociological Research Methods 3.70

GRMN 102D German 2 3.57

SOCI 150D Social Difference 3.30

M 171Q Calculus 1 3.19

ARCH 121IA Intro Design 3.06

JPNS 325IH Outcast Literature 3.00

of the university’s Honors College. The student would need
to be a member of the Honors College to be eligible to take
this course. Furthermore, GRMN 102D is the second course
in the introductory German sequence, so the student would
have needed to complete the equivalent of GRMN 101 before
being able to enroll in this course. None of these constraints
were considered in this initial demonstration of our method.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a new approach to recommend
“core” courses for incoming students, especially those at a
disadvantage, based on topics derived from their responses
to a variety of general interest questions and their similarity
with to topics associated with prior students. The idea was
to match interests to courses that also have a history of
successful student completion as a way of enhancing student
success and promoting a sense of community, purpose, and
belonging among the incoming students. We acknowledge
that our methodology is still in the early stages, for example
in how we are ranking the courses. As our data already
include other student information, such as writing and math
placement scores (i.e., standardized test scores), we anticipate
that incorporating this information may result in more robust
course recommendations.

The primary area of future work is a full-scale evaluation
of the method on the effects of student retention. We also plan
to develop explainability methods to provide better insight
into the recommendations made. Finally, there is the potential
for biased recommendations due to possible latent biases in
the data, especially with respect to how topics are filtered.

While our work is exploratory, the practical and prospec-
tive application of our method allows universities improved
means to support students through common/matched pair
interests, improved sense of purpose and belonging, and
justifiable course registrations. This is consistent with both
emerging needs and long-standing practices in student de-
velopment, where student groups might be organized as
informed by the same or similar characteristics of their more
tenured student peers.
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