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Abstract—Appropriate planning and optimization strategies
for day-ahead power management play important roles in ef-
ficient operation of Microgrids (MGs). Due to the uncertainties
in electricity demand and renewable generations, and the multi-
objective (MO) nature of MG power management, conventional
optimization techniques have not been as effective in giving
satisfactory results. This paper aims at solving the day-ahead
power management problem as a MO optimization problem, with
a focus on increasing the system’s resiliency using an agent-based
Dynamic Programming (DP) approach named Value Iteration
(VI) and a model-free Q-learning (QL) algorithm. The two
objectives of the MO problem are: maximizing load serviceability
and minimizing operational cost. Both the approaches are data-
driven, and the behavior of the agent of each component of a
MG is formulated as a finite-horizon Markov Decision Process
(MDP). VI guarantees an optimal solution to the MO problem
given the MDP model, and QL has the ability to work under
uncertainty and incomplete information. The effectiveness of the
two algorithms have been evaluated using a benchmark MG test
system.

Index Terms—Power Management, Multi-agent System,
Markov Decision Process, Islanded Microgrid.

I. INTRODUCTION

Dividing a distribution system into several independent and
autonomous entities called Microgrids (MGs) has proven to
be a good strategy to deal with the uncertainties of renewable
energy resources, electricity demand, and market retail price
(11, 121, [3].

Many studies have been conducted to resolve the issue of
power management under these uncertainties in MGs. [4] gives
an overview of the importance of centralized controllers for
stability, power quality, protection and power management of
the MG. Stochastic programming is explained in [5] as an
approach for power management. Furthermore, in [6], a two
stage stochastic programming was employed to minimize the
cost due to the variable nature of renewable energy resources,
and in [7], constrained stochastic programming is used to
consider the MG limitations. Value Function Approximation
is used in [8] to solve a bench-marked ESS management
problem. Further, in [9], a deep Recurrent Neural Network
is used to approximate the value function while considering
power flow constraints.
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In general, the agent-based power management in a MG on
a day-ahead basis can be modeled as a sequential decision-
making problem [9], [10]. Under this scheme, the agents con-
trolling the different components of the MG reduce the overall
cost while maximizing the utilization of its microsources for
a finite-horizon (e.g., 24 hours), looking at the electricity de-
mand. These utilities include Dispatchable Generators (DGs),
Renewable Energy Sources (RESs), Energy Storage Systems
(ESSs), and Demand Response (DR) on Price-Sensitive load
(PSR). This paper addresses a MG where the output of the
DGs, charging/discharging paradigm of the ESSs, and the
PSR can be regulated based on different operating conditions
with a primary focus on maximizing the load coverage and
a secondary focus on minimizing the cost, using VI and QL,
which is in the domain of Reinforcement Learning. Therefore,
making the power management problem multi-objective.

II. METHODOLOGY

In this paper, control of the MG components is formulated
as a Markov Decision Process (MDP). We address the load
variations and possible duration and intensity of an upcoming
extreme event, using its probability of occurrence (assumed to
be known from weather forecast) in our simulation. At each
discrete time-step (each hour, for example) the output powers
for the controllable utilities (DGs, ESSs, DR) are considered
as actions, whereas the state-space consists of the supplied
electricity demand and the State-of-Charge (SoC) of the ESS.
The reward function for each agent is actually a penalty when
considering their operating cost or deviation from the target
load (the higher the operating cost or deviation from the
target load results in higher penalties). The agents interact
with the environment to achieve their goal of maximizing their
objective functions.

A. Microgrid Power Management

In general, a MG is connected to the main grid through a
Point of Common Coupling (PCC). In our simulation studies,
the proposed methods are applied on a modified benchmark
MG test system (MG3 from [11]), as shown in Fig. 1. The
components of the MG are: a Diesel Generator as DG, several
solar photovoltaic (PV) systems, several ESSs (an ESS at
each bus with a PV system, not shown in Fig. 1), and
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Fig. 1. Single-line diagram of the benchmark MG system.

some Controlable Loads (CLs). The day-ahead scheduling is
performed for a 24-hour horizon with a 1-hour time-step. In
this paper, the power management problem is formulated as a
MDP for three agents: a DG agent for the operation and control
of the dispatchable generators, a DR agent to perform demand
response on the CLs, and an ESS agent to charge/discharge the
ESSs. The total PV power is used when available. Therefore,
no agent is used for PV generation.

B. Formulation of MDP

A finite-horizon MDP can be defined as a 5-tuple M =<
S, A, R, T,H > where, S is a finite set of state variables, A is
a finite set of actions, R is the immediate reward observed after
reaching a state, s € S. 7 is the set of transition probabilities
for the transition of one state to another with a specific action
[12], and H is the length of the horizon. For simplicity of
implementation for both Value Iteration (VI) and Q-learning
(QL) algorithms, the state-action space is discretized to their
nearest integers. For the implementation of VI algorithm in
our power application, the transition probability of reaching a
particular state s; using an action a;; from state s; is assumed
to be 1, s;,5; € S,a4; € A [13]. The detailed models of the
associated agents are described in the rest of this section.

1) DG agent: The DG agent is responsible for setting the
output of the DG located in the MG, as per the electricity
demand. In a MG, if P}, is the active power output of the DG
at a time step t, then for each DG, the operational constraints
are as follows:

PRE < Phg < PR&” (1)

|Phe — Pha | < px At )
Here, the max and min terms represent the maximum and
minimum output of the generator [9]. The term p represents
the limit of the increase/decrease of generation at each time
step, and is known as the Generation Rate Constant (GRC).
For the DG agent, the set of states consists of the pos-
sible load coverage by the DG, and is defined by Spe =
{sha,| Vi € Spa, PBE < shg, < PB&*}. Only the
active power outputs have been considered in this work.
The action set is the range of feasible discrete set-points of

the generator outputs, defined as: Apg = {ahq| Vi €
Ape. labe, | < p x At}

Each DG has an operational cost, which is a function of
the active power output of the DG. For this paper, a quadratic
cost function is considered, as defined in [14]. The cost
function denotes that the higher output power results in higher
cost, which is a penalty, denoted by a negative sign. At the
same time, the DG focuses on maximum coverage of load.
Therefore, the reward function for the DG agent is defined as
follows:

t t t
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where, o, 8 and ~ are the generation cost coefficients [14],
P! and P}y, are the predictions of electricity demand and
PV output, \! is the market electricity price forecast at time
step t. wy and wo are the weight factors, and N1 and Ny are
the normalization factors, respectively [15]. Here, it should be
noted that during an extreme event resulting in grid blackout,
which islands the MG, the term ! is zero.

2) DR agent: The task of the DR agent is to perform PSR
on CLs. In case of insufficient generation, a percentage of the
electricity demand is available for curtailment (the maximum
percentage is given in Table I), associated with a penalty for
causing discomfort to the user. The total electricity demand
for the time horizon H is denoted by P, = {P}, Vt =
1,2,3,...H}. For the DR agent, only the active power is
considered.

The state space for the DR agent is the permissible range
of the curtailed loads Spp = {sDR | Vj € Spr P <
st R, < P!, The action space for the DR agent is deﬁned
as .ADR = {ahp,| Vi € Apg,labg| < Phr™"}. Apr
is restricted by the range of deviations of set-points, Ph =
P! — P!, . The load-shedding penalty for the DR is expressed

sup*
as the following piece-wise linear model [9]:
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Here, 6, 01,02, ¢o, P1, and ¢ are the constant coefficients
for the load-shedding penalty model. Pfup is the amount of
load that is not curtailed, and hence to be supplied. Both Pil
and PE,Z are set-points representing the mild, and moderate
curtailment levels, as described in [16]. However, at the same
time, the DR agent should consider the cost of supplying the
loads, as per market electricity price. Therefore, the overall

reward function for the DR agent becomes:

Pt )\t Pt _ Pt
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Here, ws and w, are the weight factors, and N3 and N, are
the normalization factors, respectively [17].



3) ESS agent: The ESS agent is responsible for maximum
load coverage during an extreme event, when the generation
units are out of service. The agent considers the extreme event
forecast at each hour of the next day, starts storing energy to
supply the highest possible loads during the extreme event.
Prior to the extreme event, additional energy will charge the
ESS. For controlling the amount of energy stored in the ESS,
the State of Charge (SoC) of the battery at each time step is
defined as follows:

Et
t
SoChLgs Fou (6)
where E? is the amount of energy stored in the ESS at time
step ¢, and E¢,y, is the energy capacity of the storage unit.

Typically, ESS should not be fully discharged; otherwise the
storage unit might be seriously damaged. The limits for SoC
which is known as capacity constraint of the ESS is shown
below:

SoCpin < SoCt g < SoCHaL )

where SoCRi% and SoCE4% respectively denote the mini-
mum and maximum allowed SoC at each time step. Also,
FE,na2 and E,,;, indicate the maximum and minimum allowed
stored energy.

Looking at Eq. 7 the state space for the ESS agent can be
represented as Sgss = {stESSJ,\ Vi € Sgss, SoCmis <
SESSJ_ < SoCp&t} The charging and discharging rates of
the ESS (Pggsys) are considered as actions for the ESS agent.
Accordingly, the action space for this agent is described as
Apss = {agss,| Vi€ Apss, laggs,| < PE§E}

The reward function of the ESS agent is:

SoCet — SoClgg pt>01 A pt#1
SoChgs X Ecap — P, (pt=1V M =1)

SoCt g — SoCmin, otherwise

Rpss =
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where 1! represents the probability of the extreme event at
time step t. M is a flag indicating whether the grid is still
under maintenance, or it is healthy. When healthy, the MG
can be reconnected to the grid.

C. Power Management in a MDP framework

The agent-based scheduling for a MG is formulated as
an optimization problem under a MDP framework with the
following set of objective function:

H
max Z{RDG, Rpr, REss} )
t=1

apG,;a@pR,AESS —
subject to (1),(2),(4),(6).(7)
D. Solution Approaches for the MDP

To solve the above-mentioned MDP problem, the Value
Iteration (VI) algorithm is applied [18]. In this DP method,
the optimal value of a state is calculated with the help of the
following equation [19]:

Q(st,ar) == E[r|ss,a;) + T Z P(s}]se,a0)V(s})
s,eS

(10)

where, E[r|s;,a;] denotes the expected immediate reward.
The probability of transition from state s; to s} by taking
an action ay, is represented by P(s}|s:,at). I' is the discount
factor, which determines the impact of the future rewards for
a specific state. The values are said to converge when the
difference between the values obtained from two consecutive
iterations are less than a pre-defined threshold, 6.

V(st) ZI({IGa}Q(St,at) (11)

max|V (s;)" — V(s))*| < 6

seES (12)

The MDP has also been solved using a temporal difference
algorithm, namely Q-learning (QL). This algorithm learns the
best action to move from one state to another based on the
maximum expected values of the reward functions, without
knowing the transition probability. The transition probability
is used in the case of VI, but not in the case of QL. The
experience gathered by each agent from the interaction with
the state-space is recorded in a look-up-table, named Q-table.
Using a specific state-action pair, the agents interact with the
environment and the corresponding Q-table values are updated
by a running average mechanism [20], [21].

III. NUMERICAL EXPERIMENTS AND RESULTS
A. Test Case

The proposed method is validated on the benchmark test
MG system as a grid-connected MG (MG3 from [11]), as
shown in Fig. 1. A 24-hour time horizon is considered for
the whole simulation with a 1-hour window time-step. In our
simulation, an extreme event occurs at hour 12 when both
the grid and the DG go out of service. The extreme event
continues until hour 14, after which a maintenance phase starts
for the grid and the DG until hour 21, as shown in Fig. 6. The
probability of occurrence of an extreme event at each time
step is also shown in the figure. Note that, the probability
keeps increasing before hour 12 and starts decreasing when
the extreme event is over at hour 14. The forecasted electricity
demand, PV output data, and system specification is adopted
from [11]. The retail electricity price data were obtained from
[17]. The technical information about the components of the
MG is displayed in Table 1.

For the DG agent, the GRC constant, p, the generator cost
coefficients «, 3 and ~ were selected as 700 kW, $14.67,
$0.1709/kWh, and $0.0001773/(kWh)?, respectively. For the
DR agent, the constant coefficients &g, d; and o were set as

TABLE I
POWER/ENERGY CAPACITY OF THE COMPONENTS OF THE
TEST SYSTEM

Components | Max. Capacity (MW) | Min. Capacity (MW)
DG 7 2.5
PV 5.6 0
Pt 7.988 6.63
CL 40% of P 0% of P}
ESS 28.6 (MWh) 4.967 (MWh)




Learning Curve for DR agent and DG agent using Q-learning
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Fig. 2. Cumulative reward of the 24-hour planning horizon for the DG agent
and the DR agent at each iteration using QL algorithm.

0.3, 0.5 and 0.75, respectively. All the ¢ values were set to 0.
The curtailment levels, P} and P} were selected as 90%
and 30% of the permissible range, Spg, respectively. The
weight factors for the reward functions were set as, wy = 0.7,
we = 0.3, wz = 0.7 and wy = 0.5, to ensure that the main
objective of the agents is maximizing load coverage rather
than minimizing cost.

For VI, T" and 6 were chosen to be 0.99 and 0.001,
respectively. For QL, the learning rate 7 is selected to be
0.1. The e-greedy algorithm has been used for the QL action
selection [19], and the value of e (exploration rate) was initially
chosen as 0.9 for every state-action pair in the Q-table with a
decay rate of 0.95 for each visit of the agent.

B. Agent-based Power Management

The DG agent and the DR agent were trained to find a
strategy for the DG, and the supplied load based on the retail
price and customer discomfort level, respectively. Whereas,
the ESS agent learns a strategy to prepare and provide energy
to the MG to cover the essential loads (when possible) in case
of a grid blackout due to a fault or an extreme event. During
this period, the MG is islanded, and the DG is assumed to be
out of service. Therefore, PV and ESS will cover the essential
loads (assumed to be 50% of the total load). Fig. 2 shows
the learning curve of the DG agent and DR agent for QL
with respect to the number of iterations. The reward obtained
through value-iteration is considered to be the target reward.
From Fig. 2, the DR agent reaches the target value in about
12000 iterations and the DG agent in about 19000 iterations.

The selected states by the DG agent and the DR agent using
both VI and QL are shown in Figs. 3 and 4, respectively
along with the forecasted electricity demand and the renewable
generation (PV). The policy that sequentially transits from one
optimal state to another is considered to be the optimal policy.

The learned optimal policy for the ESS is demonstrated in
Fig. 5. As shown in the figure, from ¢ = 3 (when the extreme
event probability is more than 10%) the battery starts storing

as much energy as it can (SoC'%'§%) (Fig. 6) so that it can cover

Actual load vs. load supplied by the DG for a 24-hour Horizon
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Fig. 3. Economic Dispatch of the DG agent using VI and QL.
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Fig. 4. Day-ahead scheduling of the DR agent using VI and QL.

maximum loads possible during the extreme event. After the
recovery time, the normal operation of the MG is continued.

IV. DISCUSSION

As mentioned in section II, the reward function for each
agent has two inversely proportional components of different
weights. Considering that the main focus of the agents is
maximum load coverage, Figs. 3 and 4 show that using both
the VI and QL algorithms, the agents learn to operate in
between the feasible state spaces and take proper actions.
For the DG agent, when the load change is more than the
GRC constant (2), the change of generation is bound by the
GRC. On the other hand, the DR agent is mostly operating
within (80-100)% of the actual electricity demand at each
hour. Finally, the performance of the system was examined
in the presence of an ESS agent, in a scenario where there
was a possibility of an extreme event. As shown in Fig. 5,
before hour 6, 90% of the load is supplied by the generator.
From hour 6 to 11, the combination of the generator and PV
supplies the load. However, during the extreme event, since
the generator is out of service, the combination of the PV and
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pre-extreme event, (2) during extreme event, (3) maintenance period, and (4)
normal operation.

ESS covers the essential load (50% of the total load). After
the recovery time, the MG resumes its normal operation.

V. CONCLUSION AND FUTURE WORK

This paper formulates the power management of a MG as
a MDP, and solves the sequential decision-making problem
using two algorithms: VI and QL. The three agents, controlling
the DG, CLs, and the ESS have been trained to find the
solution to the proposed multiobjective problem, with the pri-
mary focus on maximizing the load coverage and a secondary
focus on minimizing the operation cost for a day-ahead finite-
horizon.

In case of loss of generation due to an extreme event, the
agents would cooperate to make the MG survive with partial
load coverage, thus enhancing the resiliency of the system.

In our future studies, we will investigate the memory needed
for real time application of the proposed techniques, and the
power management of multiple MGs.
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