
AN INTELLIGENT APPROACH TO AUTOMATIC TEST EQUIPMENT

William R. Simpson
John W. Sheppard

ARINC Rese:arch Corporation
2551 Riva Road

Annapolis, MI> 21401

ABSTRACT

In diagnosing a failed system, a smart technician would
choose tests to be performed based on the context of the
situation. Currently, test program sets do not fault-.
isolate within the context of a situation. Instead, testing
follows a rigid, predetermined, fault-isolation sequence
that is based on an embedded fault tree. Current test
programs do not tolerate instrument failure and cannot
redirect testing by incorporating new information.
However, there is a new approach to automatic testing
that emulates the best features of a trained technician
yet, unlike the development of rule-based expert systems,
does not require a trained technician to build the
knowledge base. This new approach is model-based and
has evolved over the last 10 years. This evolution has led
to the development of several maintenance tools and an
architecture for intelligent automatic test equipment
(ATE). The architecture has been implemented for
testing two cards from an AV-8B power supply.

INTRODUCTION

Test program sets as currently configured for ATE have
few characteristics of a “smart” technician. A smart
technician, approaching a unit that has an indication of
malfunction and using a collection of test equipment,
would go about the task of localizing the failure in a
structured manner. First, the observed anomaly would
be cataloged and detailed, then a series of tests would be
chosen to categorize the failure. In choosing these test!;,
the technician might hypothesize an answer and seek to
verify it. Recognizing that some tests are hard to
perform, take a long time, or are inaccurate, the
technician could select alternative tests to minimize co!jt
or uncertainty. Expecting some elements to fail
more frequently than others, the technician could focus
testing first on those high-failure-rate items or might let
the symptoms of the failure direct the testing. If a t a t

instrument failed, the technician might be able to select
alternative tests to bypass the problem. In short, a smart
technician would choose the tests to be performed based
on the context of the situation. In the automatic testing
approach to fault diagnosis, we would like to be able to
use a similar reasoning process.

Automatic test equipment has evolved at an exponential
rate over the last 20 years. We can now measure an
order of magnitude more precisely, more often, and over
far greater ranges than we could before [I], and our
capability in this area continues to grow at an astonishing
pace. However, we are not meeting actual test
requirements. Repair facilities still struggle with test
program sets (TPSs) that find no fault with a known bad
unit under test (UUT) and incorrectly identify
components containing no faults. These problems arise
because UUTs are growing in capability and complexity
at the same pace as the ATE. The technology that
improves our ability to test makes testing more complex.
These types of problems suggest a need to overhaul the
current approach so that test equipment is controlled by
applying inteIligent approaches to fault isolation.

Typical ATE includes a suite of test instruments in a
common test station, a test control computer (TCC) to
control the instruments and interpret the results of tests,
a test unit adapter (TUA) that connects the UUT to the
test station, a TPS that instructs the computer on how to
test the unit, and a test executive that determines the
order in which tests are run and instructs the computer
on how to drive the instruments [2]. Until now, TPSs
and test executives have been developed to test a unit by
following a predetermined fault-isolation sequence, called
a fault tree. TPS developers attempted to minimize the
mean time to fault-isolate by constructing more efficient
fault trees. This approach has worked to a point, but the
problem with writing TPSs around any futed fault tree is
the lack of flexibility in the resulting system. Separate
fault trees and TPSs are often required for different

INTERNATIONAL. TEST CONFERENCE 1991
CH3032-0/91/0000-00419$01 .OO@ 1991 IEEE

Paper 16.1
41 9

symptoms, different optimization criteria, and different
instrument suites. Further, should an instrument fail, a
futed fault tree would fail to reach a conclusion.

Several initiatives are currently under way to standardize
ATE architecture in both the military and commercial
sectors. These initiatives include:

MATE (Modular Automatic Test Equipment)-
Developed to provide a set of standards and
specifications for US. Air Force ATE systems [3].

CASS (Consolidated Automated Support
System)-Developed to provide an industry
definition of operational constraints and
maintenance policy for automatic test in the U.S.
N ~ V 141.

IFTE (Intermediate Forward Test Equipment)-
Developed to provide ATE for U S . Army
equipment close to their operational units [5] .

CAM (Computerized Automatic Machines)-Now
referred to as the T-100 system, developed as a
fully integrated diagnostic system by Electronic
Data Systsms (EDS) for General Motors
Corporation to provide automatic testing of
automobiles in the maintenance shop [6].

SMARTTM (Standard Modular Avionic Repair and
Test)-Designed by Aeronautical Radio, Inc., to
provide the airlines TPSs that will port between a
number of ATE instrument suites [2].

TPS DEVELOPMENT

Current approaches to TPS development entail the
development of static fault-isolation strategies as the
control structure for the test program. Strategies are not
based on the changing state of the UUT, the
instruments, or the ATE system as tests progress; thus,
they are permanently futed. In addition, the strategies
assume that the required resources will always be
available; thus, they cannot tolerate “soft failures” of the
test equipment.

The most common form of search strategy is directed.
Directed search consists of testing a system at its outputs
and proceeding backward toward the inputs until the

*An improper diagnosis results in one of two field maintenance events

problem is isolated. It is equivalent to a sequential
search through the set of possible failure modes. Circuit
simulation is used to determine the effects of failures on
the tests in the system. The use of simulation is
appropriate and will continue; however, nothing is done
to determine if the set of tests available can be
minimized. A number of simulation tools are available
for test program development, including HITS, LASAR,
ZYCAD, and PSPICE. The first three provide models
for common digital faults, and PSPICE is used for both
analog and digital simulation. See, for example, Forster
and Colburn [7] or Calandra and Leahy [SI.

Because directed search and simulation are the primary
means by which diagnostic strategies are constructed, no
facility is available for an adaptive strategy. Directed
search is futed, and simulation models usually
incorporate history in the test specification. In recent
years, TPS developers have realized that significant
inefficiencies result from directed search, and they are
now using analysis tools to assist in building optimized
fault trees. The System Testability and Maintenance
Program (STAMP@) [9] and the Weapon System
Testability Analyzer (WSTA) [lo] are two tools that are
capable of providing efficient fault-isolation strategies.
These fault trees, however, are still fuced and do not
provide the level of flexibility required to address
common problems in automatic testing, as described
previously.

Another concern with the current approach to TPS
development is that resulting TPSs do not provide any
means for technicians to capitalize on their experience in
testing the system. Often, technicians learn to recognize
failures from the reports provided on the system, which
thus enables much of the diagnostic process to be short-
circuited. But current TPSs force the technician to
follow the same procedure every time the system is
tested. The result is that technicians are treated as
operators of the ATE, having no capacity for problem
solving. Currently, little or no “intelligence” goes into
developing efficient ATE systems. There is a need to
improve on flexibility, adaptability, and technician control
while decreasing time to fault-isolate an incidence of
improper diagnosis.*

Incorporating symptomatic information is difficult under
the current approach because multiple TPSs must be
developed for each desired symptom. If combinations of
symptoms are indicated, then the problem suffers from

One is the cannot duplicate (CND) event where a fault indication is not - - -
repeatable. The other is the retest OK (RTOK) event where a unit replaced at one level is found to be functioning nominally at the next level.
See, for example, Simpson et al. [ll] for an extended discussion.

Paper 16.1
420

a combinatorial explosion. Similarly, failed instruments
may be considered in the definition of TPSs, but
including all possible combinations is impractical. Thus
the need exists for the TPS to be able to adapt to the
loss of equipment as it happens.

MODEL-BASED AUTOMATIC TEST EQUIPMENT

There is an approach to model-based automatic testing
that addresses each of the concerns raised in the
previous sections. In the past, some investigators have
considered embedding expert systems into ATE as a
means of addressing those concerns. The approach has
worked for several other disciplines, particularly in
medical diagnosis [12, 131. So far, this approach has not
worked well with the ATE problem for several reasons:

0 In new systems it is difficult to identify an expert
on the maintenance of the system.

Expert systems do not optimize well, either
because there is too much information to process
or the information is not defined well enough to
enable optimization.

0 It is difficult to modify reasoning and search
strategies in the middle of a session. Thus,
technician interaction is limited.

In response to these difficulties, we developed a
modeling approach and a model-based inference
capability. In the intelligent test environment describe:d
below, the test program no longer assumes that require:d
resources are available, and tests act on evolving systeim
states.

Tools for Diagnostics

STAMP is a tool for developing information flow models
of complex systems [9, 141. STAMP then analyzes these
models to evaluate the testability of a design and
generate diagnostic strategies. A tremendous advantage
of this approach is that STAMP provides an analysis of
test suite deficiencies that can be addressed before the
TPSs are coded. This can improve efficiency and remove
potential sources of error. Because of the nature of the
model, STAMP may be applied to systems of varying
complexity and technology, and it is fully hierarchical and
capable of handling problems that cross maintenance
levels.

The STAMP system has evolved through 10 years of
active application to numerous systems. It has provided

solid and sometimes spectacular improvements to system
testability [15]. The companion tool, POINTERW
(Portable Interactive Troubleshooter) provides an
adaptive, interactive environment for diagnosis [16]. The
POINTER engine can be embedded to provide
intelligent troubleshooting in built-in test (BIT) or ATE,
or it can be used as a manual troubleshooting aid. The
POINTER system uses the model generated by STAMP
and provides a dynamic, context-sensitive environment
for manipulating this model. STAMP and POINTER
together also provide a framework for an integrated
diagnostic architecture by using a common modeling
technique and processing system for all diagnostic
problems.

Developing a Model4TAMP

The process by which intelligent ATE systems are
constructed is completely different from the standard
approach to TPS development. The developer no longer
assumes the definition of a fault-isolation strategy
(through either directed search or an optimization
process). Instead, the developer constructs a model
describing the information flow in the system. This
model can then be used in an analysis to improve system
testability before TPSs are coded. Next, the simulation
process changes. The TPS developer can no longer
assume that the tests are using evolving states. Instead,
a neutral point (or points) must be determined for each
test (or test group), and the simulations are run from the
neutral points. This is the test encapsulation process.
Finally, the individual tests are coded and stored in a
library to be accessed by the test executive as required.
There is no longer any need to develop a complete test
program to include the diagnostic strategy.

The information flow model forms the knowledge base
for an application. The model provides the logical
relationships between tests and conclusions in the system
and further enhances and expands on this information by
providing descriptions of test inference types, weighting
factors, test and conclusion groupings, and forced and
recommended sequencing [17].

Manipulating the Model4OINTER

Given an information flow model that has been compiled
as discussed above, we can apply an information-theory-
based inference engine to the model to optimize the
fault-isolation sequence and draw conclusions from the
tests performed. The system that serves as the inference
engine is POINTER. POINTER is an intelligent,
interactive maintenance system that was originally
designed to guide manual troubleshooting. We found

Paper 16.1
421

that the process is directly applicable to other problems
in maintenance and diagnosis, such as ATE and BIT, so
we adapted POINTER to have it run independent
programs. The result is an intelligent diagnostic shell
that became the test executive for an intelligent
ATE [17].

There are five major elements of the POINTER test
executive. The first major element is the process of
optimization. This process is based on Shannon’s Theory
of Information and is called entropy-directed search [18].
Second, the inference engine and the metarules used to
guide the diagnostic process are derived from STAMP.
These metarules provide the model-based reasoning
capability [17]. Third, a number of methods are
incorporated for modifying the optimization process to
meet the requirements inherent in real-world problems.
These modifications are overrides to the optimization
process that allow the solution to be reasonable and still
be verifiable. They include sequencing requirements,
groupings, and other factors that make the test process
realistic and achievable. Fourth, two levels of learning
are incorporated in the POINTER system. These
learning elements include the ability to adapt the
optimization parameters to historical data and to identify
errors in the model and correct them. Finally, reasoning
under uncertainty is incorporated into the test executive.
We adapted the Dempster-Shafer approach to evidential
reasoning [19, 201 to overcome some of its limitations
and added elements of fuzzy logic [21] and neural
networks [22] to devise a complete uncertainty-based
inference engine [23].

THE INTELLIGENT AUTOMATIC TESTER

The ARINC Intelligent Automatic Tester (IAT) is a
small test station that was constructed using the
principles discussed above. The system uses off-the-shelf
test equipment, an MS-DOS-compatible test control
computer, and the POINTER software as the test
executive. All of the test programs are written using the
test encapsulation concept described earlier. The IAT is
shown in Figure 1 [l].

The ARINC IAT was developed for two systems to be
used for depot-level maintenance. The two systems are
high-voltage power supplies for the AV-8B (Harrier)
aircraft being used by the Navy. A prototype manual
diagnostic system for the power supplies incorporating
the same models is being used in Cherry Point, North
Carolina, for depot-level maintenance of the power
supplies.

Architecture

There are seven major elements in the ARINC IAT [l].
First, a library of test procedures contains the executable
programs for each test in the diagnostic model. Second,
an information flow model describes the system to be
tested and serves as the knowledge base for the IAT.
Third, the POINTER software serves as an intelligent
test executive for the IAT. Fourth, MS-DOS serves as
the operating system for the environment. Fifth, an
80386-based microcomputer with an 80387 math
coprocessor functions as the test control computer.
Sixth, VXI and IEEE-488 instrumentation make up the
test instrument suite. And seventh, a test unit
adapter-TUA (or interface test adapter-ITA) provides
a communications interface between the UUT and the
IAT. Specific hardware elements have been described by
Dill [l]. This interface device is configured for testing
the two UUTs for the AV-8B and contains no active
circuitry.

In its role as the test executive for the IAT, POINTER
operates on a STAMP-generated model to select tests to
perform, calls the appropriate test from the library,
invokes the execution of the test, reads the results of the
test, draws appropriate inferences from the test outcome,
and either chooses the next test or reports the results of
the fault-isolation process. The test selection process
may be modified or controlled by the technician.

The test programs for the two power supplies are
individual, independent test procedures that can be called
in any order. They have been written to meet the
definition of an encapsulated test as described. The
programs are written in the C programming language
and control both the VXI bus and the IEEE-488 bus
instrumentation. Each test procedure can return one of
several test results to POINTER, and the result indicates
the appropriate action to be taken by POINTER to
continue fault isolation. In addition to pass/fail
indications, tests can return values that indicate that the
test was not able to be performed, and either these
results are interpreted by the technician or the test is
performed manually.

Three Test Scenarios

Three example scenarios of what may occur in testing a
unit serve to describe the capability of the ARINC IAT.

The first scenario is one in which no information is
known about the system. A fault has occurred, and the
IAT is going to attempt to isolate that fault. The first

Paper 16.1
422

NQME PLATE I

I SCOPE

I

ARINC
.INTELLIGENT &UTOMClTIC TESTER

t

I N T E R F A C E
TEST

A D A P T E R
E q T A 1

//
MONJTOR

P

UUT M O U N T I N G $ fXTURE KEYBOARD

Figure 1. The Intelligent ATE

step in the process is to connect the UUT, via the TUA,
to the IAT. Then the appropriate model is selected.
Next, safe-to-turn-on and signature tests are performed
to verify that fault isolation is ready to proceed. Finally,
diagnosis begins, tests are chosen to optimally isolate the
most likely failure, and the fault is isolated. Test times
are recorded, and failure rates are updated so that the
ATE will continue to improve its efficiency.

In the second scenario, diagnosis proceeds as in the first
scenario. The difference lies in that one of the test
instruments fails during fault isolation. In a traditional
ATE system, a failed instrument could cause fault
isolation to terminate without an answer. However, in
the IAT, if, for example, the oscilloscope fails during one
of the tests, the IAT can detect the problem arid
continue to fault-isolate by choosing alternative tests.*

In the final scenario, assume that the technician is
experienced with the UUT and, based on the reports,
has an idea what the fault is. Following the safe-to-

turn-on and signature tests, the technician enters the
expected fault as a hypothesis. The IAT then proceeds
to choose tests to verify the hypothesis and, if the
hypothesis is the actual fault, locates the problem in
fewer steps. If the wrong hypothesis is entered, the IAT
collects that information, removes the hypothesis, and
continues to fault-isolate.

CONCLUSION

The existence of the IAT demonstrates that it is possible
to develop an intelligent ATE system. Tools for model-
based reasoning systems have evolved to the point where
the use of such systems is practical. The model-based
approach offers a large measure of flexibility that is not
available from conventional approaches. When
combined with the tools for integrated diagnostics, the
model development approach will provide significant
savings. Models developed during design can be used
for testability evaluation and maintenance architecture

*The IAT will not try to derive replacement tests. Instead, it will ichoose lfrom among available tests to provide the best possible diagnosis.

Paper 16.1
423

development. This same modeling process can be used
for BIT evaluation and improvement. When fielded,
these models can be used to develop maintenance
manuals and intelligent ATE test executives. The model-
based reasoning approach offers the proven flexibility for
an integrated diagnostics program.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

Dill, H. “Test Program Sets-A New Approach,”
AUTOTESTCON 90 Conference Record, 1990 IEEE
Automatic Test Conference, San Antonio, Texas,
September 1990, pp. 63-69.

Melendez, E. M., and D. C. Hart. “Airlines Get
SMARTTM for Avionics Testing,” AUTOTESTCON
90 Conference Record, 1990 IEEE Automatic Test
Conference, San Antonio, Texas, September 1990,
pp. 505-508.

Cross, G. “Third Generation MATE-Today’s
Solution,” A UT0 TES TCO N ’87 Symposium
Proceedings, 1987 IEEE Automatic Test Conference,
San Francisco, California, November 1987,
pp. 289-292.

Najaran, M. T. “CASS Revisited-A Case for
Supportability,” A U T 0 TESTCON ’86 Symposium
Proceedings, 1986 IEEE Automatic Test Conference,
San Antonio, Texas, September 1986, pp. 323-327.

Espisito, C. M., et al. “US. Army/IFTE Technical
and Management Overview,” AUTOTESTCON ’86
Symposium Proceedings, 1986 IEEE Automatic Test
Conference, San Antonio, Texas, September 1986,
pp. 319-322.

General Motors Corporation. “GM Service
Information and Diagnostic Technology,” General
Motors Techline, 1989.

Forster, P., and C. Colburn. “HITS: A Current
Status Report,’’ A UT0 TESTCON ’87 Syrnposiuin
Proceedings, 1987 IEEE Automatic Test Conference,
San Francisco, California, November 1987, pp.
145-150.

Calandra, V. P., and P. Leahy. “Applying Advanced
System Simulation Techniques to INFOSEC System
Development,” National Aerospace Electronics
Conference, Dayton, Ohio, May 1990, pp. 1066-1070.

9. Simpson, W. R. “The Application of the Testability
Discipline to Full System Analysis,” 1983 Automatic
Test Program Generation Workshop, San Francisco,
California, March 1983, pp. 12-18.

10. Franco, J. R. “Experiences Gained Using the Navy’s
IDSS Weapon System Testability Analyzer,”
AUTO TESTCON ’88 Symposiunt Proceedings, 1988
IEEE Automatic Test Conference, Minneapolis,
Minnesota, September 1988, pp. 129-132.

11. Simpson, W. R., J. H. Bailey, K. B. Barto, and E.
Esker. Organizational-Level Testability Prediction,
Report 1511-01-1-3623, ARINC Research
Corporation, Annapolis, Maryland, 1985.

12. Pople, H. E. “The Formulation of Composite
Hypotheses in Diagnostic Problem Solving: An
Exercise in Synthetic Reasoning,” Proceedings of the
Fifth Annual International Conference on Artificial
Intelligence, Cambridge, Massachussetts, 1977, pp.
1030-1037.

13. Shortliffe, E. H. Computer-Based Medical
Consultations: MYCIN, American Elsevier, New
York, 1976, pp. 1-77.

14. Johnson, F., and R. Unkle. “The System Testability
and Maintenance Program (STAMP): A Testability
Tool for Aerospace Systems,” Proceedings of the
AIAA/NASA Symposium on Maintainability of
Aerospace Systems, Anaheim, California, July 1989.

15. Esker, E. A. “Testability Analysis: Applications in
the Real World,” 1985 IEEE Integrated Diagnostics
Symposium, Dayton, Ohio, December 1985.

16. Simpson, W. R., J. W. Sheppard, and C. R. Unkle.
“POINTER-An Intelligent Portable Maintenance
Aid,” AUTOTESTCON ’89 Coiiference Record, 1989
IEEE Automatic Test Conference, Philadelphia,
Pennsylvania, September 1989, pp. 26-32.

17. Sheppard, J. W., and William R. Simpson.
“Incorporating Model-Based Reasoning in Interactive
Maintenance Aids,” 1990 National Aerospace
Electronics Conference, Dayton, Ohio, May 1990, pp.
1238-1242.

Paper 16.1
424

18. Shannon, C. E. “A Mathematical Theory of
Communications,” Bell System Technical Journal,
vol. 27, 1948, pp. 379-423.

19. Dempster, A. P. “A Generalization of Bayesian
Inference,” Journal of the Royal Statistical Society,
Series B, 1968, pp. 205-247.

20. Shafer, G . A Mathematical Theoy of Evidence,
Princeton University Press, New Jersey, 1976, pp.
35-73.

21. Zadeh, L. A. “Possibility Theory and Soft Data
Analysis,” Mathematical Frontiers of the Social and
Policy Sciences, L. Cobb and R. M. Thrall (eds.:),
Westview Press, Boulder, Colorado, 1981, pp. 69-129.

22. Sheppard, J. W. “Terminating Evidential Fault
Isolation: A Neural Network Approach,” STAMP
Technical Note 353, ARINC Research Corporation,
Annapolis, Maryland, May 1990.

23. Sheppard, J. W. “Uncertainty Computations in
Model-Based Diagnostics,” to be presented at the
1991 IEEE Automatic Test Conference, Anaheim,
California, September 1991.

Paper 16.1
425

