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ABSTRACT 

In diagnosing a failed system, a smart technician would 
choose tests to be performed based on the context of the 
situation. Currently, test program sets do not fault-. 
isolate within the context of a situation. Instead, testing 
follows a rigid, predetermined, fault-isolation sequence 
that is based on an embedded fault tree. Current test 
programs do not tolerate instrument failure and cannot 
redirect testing by incorporating new information. 
However, there is a new approach to automatic testing 
that emulates the best features of a trained technician 
yet, unlike the development of rule-based expert systems, 
does not require a trained technician to build the 
knowledge base. This new approach is model-based and 
has evolved over the last 10 years. This evolution has led 
to the development of several maintenance tools and an 
architecture for intelligent automatic test equipment 
(ATE). The architecture has been implemented for 
testing two cards from an AV-8B power supply. 

INTRODUCTION 

Test program sets as currently configured for ATE have 
few characteristics of a “smart” technician. A smart 
technician, approaching a unit that has an indication of 
malfunction and using a collection of test equipment, 
would go about the task of localizing the failure in a 
structured manner. First, the observed anomaly would 
be cataloged and detailed, then a series of tests would be 
chosen to categorize the failure. In choosing these test!;, 
the technician might hypothesize an answer and seek to 
verify it. Recognizing that some tests are hard to 
perform, take a long time, or are inaccurate, the 
technician could select alternative tests to minimize co!jt 
or uncertainty. Expecting some elements to fail 
more frequently than others, the technician could focus 
testing first on those high-failure-rate items or might let 
the symptoms of the failure direct the testing. If a t a t  

instrument failed, the technician might be able to select 
alternative tests to bypass the problem. In short, a smart 
technician would choose the tests to be performed based 
on the context of the situation. In the automatic testing 
approach to fault diagnosis, we would like to be able to 
use a similar reasoning process. 

Automatic test equipment has evolved at an exponential 
rate over the last 20 years. We can now measure an 
order of magnitude more precisely, more often, and over 
far greater ranges than we could before [I], and our 
capability in this area continues to grow at an astonishing 
pace. However, we are not meeting actual test 
requirements. Repair facilities still struggle with test 
program sets (TPSs) that find no fault with a known bad 
unit under test (UUT) and incorrectly identify 
components containing no faults. These problems arise 
because UUTs are growing in capability and complexity 
at the same pace as the ATE. The technology that 
improves our ability to test makes testing more complex. 
These types of problems suggest a need to overhaul the 
current approach so that test equipment is controlled by 
applying inteIligent approaches to fault isolation. 

Typical ATE includes a suite of test instruments in a 
common test station, a test control computer (TCC) to 
control the instruments and interpret the results of tests, 
a test unit adapter (TUA) that connects the UUT to the 
test station, a TPS that instructs the computer on how to 
test the unit, and a test executive that determines the 
order in which tests are run and instructs the computer 
on how to drive the instruments [2]. Until now, TPSs 
and test executives have been developed to test a unit by 
following a predetermined fault-isolation sequence, called 
a fault tree. TPS developers attempted to minimize the 
mean time to fault-isolate by constructing more efficient 
fault trees. This approach has worked to a point, but the 
problem with writing TPSs around any futed fault tree is 
the lack of flexibility in the resulting system. Separate 
fault trees and TPSs are often required for different 
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symptoms, different optimization criteria, and different 
instrument suites. Further, should an instrument fail, a 
futed fault tree would fail to reach a conclusion. 

Several initiatives are currently under way to standardize 
ATE architecture in both the military and commercial 
sectors. These initiatives include: 

MATE (Modular Automatic Test Equipment)- 
Developed to provide a set of standards and 
specifications for US. Air Force ATE systems [3]. 

CASS (Consolidated Automated Support 
System)-Developed to provide an industry 
definition of operational constraints and 
maintenance policy for automatic test in the U.S. 
N ~ V  141. 

IFTE (Intermediate Forward Test Equipment)- 
Developed to provide ATE for U S .  Army 
equipment close to their operational units [5] .  

CAM (Computerized Automatic Machines)-Now 
referred to as the T-100 system, developed as a 
fully integrated diagnostic system by Electronic 
Data Systsms (EDS) for General Motors 
Corporation to provide automatic testing of 
automobiles in the maintenance shop [6].  

SMARTTM (Standard Modular Avionic Repair and 
Test)-Designed by Aeronautical Radio, Inc., to 
provide the airlines TPSs that will port between a 
number of ATE instrument suites [2]. 

TPS DEVELOPMENT 

Current approaches to TPS development entail the 
development of static fault-isolation strategies as the 
control structure for the test program. Strategies are not 
based on the changing state of the UUT, the 
instruments, or the ATE system as tests progress; thus, 
they are permanently futed. In addition, the strategies 
assume that the required resources will always be 
available; thus, they cannot tolerate “soft failures” of the 
test equipment. 

The most common form of search strategy is directed. 
Directed search consists of testing a system at its outputs 
and proceeding backward toward the inputs until the 

*An improper diagnosis results in  one of two field maintenance events 

problem is isolated. It is equivalent to a sequential 
search through the set of possible failure modes. Circuit 
simulation is used to determine the effects of failures on 
the tests in the system. The use of simulation is 
appropriate and will continue; however, nothing is done 
to determine if the set of tests available can be 
minimized. A number of simulation tools are available 
for test program development, including HITS, LASAR, 
ZYCAD, and PSPICE. The first three provide models 
for common digital faults, and PSPICE is used for both 
analog and digital simulation. See, for example, Forster 
and Colburn [7] or Calandra and Leahy [SI. 

Because directed search and simulation are the primary 
means by which diagnostic strategies are constructed, no 
facility is available for an adaptive strategy. Directed 
search is futed, and simulation models usually 
incorporate history in the test specification. In recent 
years, TPS developers have realized that significant 
inefficiencies result from directed search, and they are 
now using analysis tools to assist in building optimized 
fault trees. The System Testability and Maintenance 
Program (STAMP@) [9] and the Weapon System 
Testability Analyzer (WSTA) [lo] are two tools that are 
capable of providing efficient fault-isolation strategies. 
These fault trees, however, are still fuced and do not 
provide the level of flexibility required to address 
common problems in automatic testing, as described 
previously. 

Another concern with the current approach to TPS 
development is that resulting TPSs do not provide any 
means for technicians to capitalize on their experience in 
testing the system. Often, technicians learn to recognize 
failures from the reports provided on the system, which 
thus enables much of the diagnostic process to be short- 
circuited. But current TPSs force the technician to 
follow the same procedure every time the system is 
tested. The result is that technicians are treated as 
operators of the ATE, having no capacity for problem 
solving. Currently, little or no “intelligence” goes into 
developing efficient ATE systems. There is a need to 
improve on flexibility, adaptability, and technician control 
while decreasing time to fault-isolate an incidence of 
improper diagnosis.* 

Incorporating symptomatic information is difficult under 
the current approach because multiple TPSs must be 
developed for each desired symptom. If combinations of 
symptoms are indicated, then the problem suffers from 

One is the cannot duplicate (CND) event where a fault indication is not - -  - 
repeatable. The other is the retest OK (RTOK) event where a unit replaced at one level is found to be functioning nominally at the next level. 
See, for example, Simpson et al. [ll] for an extended discussion. 
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a combinatorial explosion. Similarly, failed instruments 
may be considered in the definition of TPSs, but 
including all possible combinations is impractical. Thus 
the need exists for the TPS to be able to adapt to the 
loss of equipment as it happens. 

MODEL-BASED AUTOMATIC TEST EQUIPMENT 

There is an approach to model-based automatic testing 
that addresses each of the concerns raised in the 
previous sections. In the past, some investigators have 
considered embedding expert systems into ATE as a 
means of addressing those concerns. The approach has 
worked for several other disciplines, particularly in 
medical diagnosis [12, 131. So far, this approach has not 
worked well with the ATE problem for several reasons: 

0 In new systems it is difficult to identify an expert 
on the maintenance of the system. 

Expert systems do not optimize well, either 
because there is too much information to process 
or the information is not defined well enough to 
enable optimization. 

0 It is difficult to modify reasoning and search 
strategies in the middle of a session. Thus, 
technician interaction is limited. 

In response to these difficulties, we developed a 
modeling approach and a model-based inference 
capability. In the intelligent test environment describe:d 
below, the test program no longer assumes that require:d 
resources are available, and tests act on evolving systeim 
states. 

Tools for Diagnostics 

STAMP is a tool for developing information flow models 
of complex systems [9, 141. STAMP then analyzes these 
models to evaluate the testability of a design and 
generate diagnostic strategies. A tremendous advantage 
of this approach is that STAMP provides an analysis of 
test suite deficiencies that can be addressed before the 
TPSs are coded. This can improve efficiency and remove 
potential sources of error. Because of the nature of the 
model, STAMP may be applied to systems of varying 
complexity and technology, and it is fully hierarchical and 
capable of handling problems that cross maintenance 
levels. 

The STAMP system has evolved through 10 years of 
active application to numerous systems. It has provided 

solid and sometimes spectacular improvements to system 
testability [15]. The companion tool, POINTERW 
(Portable Interactive Troubleshooter) provides an 
adaptive, interactive environment for diagnosis [16]. The 
POINTER engine can be embedded to provide 
intelligent troubleshooting in built-in test (BIT) or ATE, 
or it can be used as a manual troubleshooting aid. The 
POINTER system uses the model generated by STAMP 
and provides a dynamic, context-sensitive environment 
for manipulating this model. STAMP and POINTER 
together also provide a framework for an integrated 
diagnostic architecture by using a common modeling 
technique and processing system for all diagnostic 
problems. 

Developing a Model4TAMP 

The process by which intelligent ATE systems are 
constructed is completely different from the standard 
approach to TPS development. The developer no longer 
assumes the definition of a fault-isolation strategy 
(through either directed search or an optimization 
process). Instead, the developer constructs a model 
describing the information flow in the system. This 
model can then be used in an analysis to improve system 
testability before TPSs are coded. Next, the simulation 
process changes. The TPS developer can no longer 
assume that the tests are using evolving states. Instead, 
a neutral point (or points) must be determined for each 
test (or test group), and the simulations are run from the 
neutral points. This is the test encapsulation process. 
Finally, the individual tests are coded and stored in a 
library to be accessed by the test executive as required. 
There is no longer any need to develop a complete test 
program to include the diagnostic strategy. 

The information flow model forms the knowledge base 
for an application. The model provides the logical 
relationships between tests and conclusions in the system 
and further enhances and expands on this information by 
providing descriptions of test inference types, weighting 
factors, test and conclusion groupings, and forced and 
recommended sequencing [17]. 

Manipulating the Model4OINTER 

Given an information flow model that has been compiled 
as discussed above, we can apply an information-theory- 
based inference engine to the model to optimize the 
fault-isolation sequence and draw conclusions from the 
tests performed. The system that serves as the inference 
engine is POINTER. POINTER is an intelligent, 
interactive maintenance system that was originally 
designed to guide manual troubleshooting. We found 
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that the process is directly applicable to other problems 
in maintenance and diagnosis, such as ATE and BIT, so 
we adapted POINTER to have it run independent 
programs. The result is an intelligent diagnostic shell 
that became the test executive for an intelligent 
ATE [17]. 

There are five major elements of the POINTER test 
executive. The first major element is the process of 
optimization. This process is based on Shannon’s Theory 
of Information and is called entropy-directed search [18]. 
Second, the inference engine and the metarules used to 
guide the diagnostic process are derived from STAMP. 
These metarules provide the model-based reasoning 
capability [17]. Third, a number of methods are 
incorporated for modifying the optimization process to 
meet the requirements inherent in real-world problems. 
These modifications are overrides to the optimization 
process that allow the solution to be reasonable and still 
be verifiable. They include sequencing requirements, 
groupings, and other factors that make the test process 
realistic and achievable. Fourth, two levels of learning 
are incorporated in the POINTER system. These 
learning elements include the ability to adapt the 
optimization parameters to historical data and to identify 
errors in the model and correct them. Finally, reasoning 
under uncertainty is incorporated into the test executive. 
We adapted the Dempster-Shafer approach to evidential 
reasoning [19, 201 to overcome some of its limitations 
and added elements of fuzzy logic [21] and neural 
networks [22] to devise a complete uncertainty-based 
inference engine [23]. 

THE INTELLIGENT AUTOMATIC TESTER 

The ARINC Intelligent Automatic Tester (IAT) is a 
small test station that was constructed using the 
principles discussed above. The system uses off-the-shelf 
test equipment, an MS-DOS-compatible test control 
computer, and the POINTER software as the test 
executive. All of the test programs are written using the 
test encapsulation concept described earlier. The IAT is 
shown in Figure 1 [l]. 

The ARINC IAT was developed for two systems to be 
used for depot-level maintenance. The two systems are 
high-voltage power supplies for the AV-8B (Harrier) 
aircraft being used by the Navy. A prototype manual 
diagnostic system for the power supplies incorporating 
the same models is being used in Cherry Point, North 
Carolina, for depot-level maintenance of the power 
supplies. 

Architecture 

There are seven major elements in the ARINC IAT [l]. 
First, a library of test procedures contains the executable 
programs for each test in the diagnostic model. Second, 
an information flow model describes the system to be 
tested and serves as the knowledge base for the IAT. 
Third, the POINTER software serves as an intelligent 
test executive for the IAT. Fourth, MS-DOS serves as 
the operating system for the environment. Fifth, an 
80386-based microcomputer with an 80387 math 
coprocessor functions as the test control computer. 
Sixth, VXI and IEEE-488 instrumentation make up the 
test instrument suite. And seventh, a test unit 
adapter-TUA (or interface test adapter-ITA) provides 
a communications interface between the UUT and the 
IAT. Specific hardware elements have been described by 
Dill [l]. This interface device is configured for testing 
the two UUTs for the AV-8B and contains no active 
circuitry. 

In its role as the test executive for the IAT, POINTER 
operates on a STAMP-generated model to select tests to 
perform, calls the appropriate test from the library, 
invokes the execution of the test, reads the results of the 
test, draws appropriate inferences from the test outcome, 
and either chooses the next test or reports the results of 
the fault-isolation process. The test selection process 
may be modified or controlled by the technician. 

The test programs for the two power supplies are 
individual, independent test procedures that can be called 
in any order. They have been written to meet the 
definition of an encapsulated test as described. The 
programs are written in the C programming language 
and control both the VXI bus and the IEEE-488 bus 
instrumentation. Each test procedure can return one of 
several test results to POINTER, and the result indicates 
the appropriate action to be taken by POINTER to 
continue fault isolation. In addition to pass/fail 
indications, tests can return values that indicate that the 
test was not able to be performed, and either these 
results are interpreted by the technician or the test is 
performed manually. 

Three Test Scenarios 

Three example scenarios of what may occur in testing a 
unit serve to describe the capability of the ARINC IAT. 

The first scenario is one in which no information is 
known about the system. A fault has occurred, and the 
IAT is going to attempt to isolate that fault. The first 
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Figure 1. The Intelligent ATE 

step in the process is to connect the UUT, via the TUA, 
to the IAT. Then the appropriate model is selected. 
Next, safe-to-turn-on and signature tests are performed 
to verify that fault isolation is ready to proceed. Finally, 
diagnosis begins, tests are chosen to optimally isolate the 
most likely failure, and the fault is isolated. Test times 
are recorded, and failure rates are updated so that the 
ATE will continue to improve its efficiency. 

In the second scenario, diagnosis proceeds as in the first 
scenario. The difference lies in that one of the test 
instruments fails during fault isolation. In a traditional 
ATE system, a failed instrument could cause fault 
isolation to terminate without an answer. However, in 
the IAT, if, for example, the oscilloscope fails during one 
of the tests, the IAT can detect the problem arid 
continue to fault-isolate by choosing alternative tests.* 

In the final scenario, assume that the technician is 
experienced with the UUT and, based on the reports, 
has an idea what the fault is. Following the safe-to- 

turn-on and signature tests, the technician enters the 
expected fault as a hypothesis. The IAT then proceeds 
to choose tests to verify the hypothesis and, if the 
hypothesis is the actual fault, locates the problem in 
fewer steps. If the wrong hypothesis is entered, the IAT 
collects that information, removes the hypothesis, and 
continues to fault-isolate. 

CONCLUSION 

The existence of the IAT demonstrates that it is possible 
to develop an intelligent ATE system. Tools for model- 
based reasoning systems have evolved to the point where 
the use of such systems is practical. The model-based 
approach offers a large measure of flexibility that is not 
available from conventional approaches. When 
combined with the tools for integrated diagnostics, the 
model development approach will provide significant 
savings. Models developed during design can be used 
for testability evaluation and maintenance architecture 

*The IAT will not try to derive replacement tests. Instead, it will ichoose lfrom among available tests to provide the best possible diagnosis. 
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development. This same modeling process can be used 
for BIT evaluation and improvement. When fielded, 
these models can be used to develop maintenance 
manuals and intelligent ATE test executives. The model- 
based reasoning approach offers the proven flexibility for 
an integrated diagnostics program. 
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