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diagnostic reasoners in any test environment. We describe 
the defined formats and services, an example application, 
and current industry acceptance. 
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We also discuss several software services to be provided by an 
AI-ESTATE conformant diagnostic system standardized in 
IEEE Std P1232.2 [3]. In addition, we describe example 
application scenarios using these standards and suggest 
alternative uses of the standards in various test environments. 
Finally, we discuss industry involvement and acceptance of 
the standards and provide directions for future work on AI- 
ESTATE. 

1.  Introduction 
2. Background 

Recent initiatives by the Institute of Electrical and 
Electronics Engineers (IEEE) on standardizing test 
architectures have provided a unique opportunity to 
improve the development of test systems. The IEEE 
P1232 “Artificial Intelligence Exchange and Service Tie 
to All Test Environments (AI-ESTATE)”’ initiative is 
attempting to usher in the next generation in product 
diagnostics by standardizing diagnostic services and 
development tool interfaces. By using problem 
encapsulation, defining interface boundaries, developing 
exchange formats and specifying standard services, AI- 
ESTATE provides a methodology for developing diagnostic 
systems that will be interoperable, have transportable 
software, and move beyond vendor and product specific 
solutions. 

The concepts in the AI-ESTA’IE s t a n ~ d  are not 
limited to the arena of automatic test equipment, but apply to 
manual, automatic, and semi-automatic test, as well as the 
domains of electronic, mechanical, pneumatic, and other 
types of systems. The AI-ESTATE subcommittee designed 
the P1232 standards to abstract specific test and product 
details out of the diagnostic models and tie these models to 
domain-specific models as needed to complete the test system. 

In this paper, we describe the AI-ESTATE architecture 
[l] and two “component” standards of the AI-ESTATE 
family of standards. We discuss a neutral exchange f m a t  for 
diagnostic models standardized in DEEE Std 1232.1-1997 [2]. 

’ Previously, Artificial Intelligence and Expert System Tie 
to Automatic Test Equipment. 

Increasing complexity and cost of current systems, the 
inability to consistently diagnose and isolate faults in the 
system using conventional means, and the advances in 
artificial intelligence technology have fostered the growth 
of AI technology in test and diagnosis. The proliferation 
of diagnostic reasoners and tools necessitates establishing 
standard interfaces to these tools and formal data 
specifications to capture relevant diagnostic information. 
Current test standards (e.g., Boundary Scan and STIL) 
[4,5] provide no guidance for using AI technology in test 
applications. Proposed AI standards (e.g., KIF) do not 
specifically address the concems of the test community 
[6]. Thus, no standard exists, currently, addressing the use 
of AI systems in test environments. The AI-ESTATE 
standards are intended to fill this void. 

The AI-ESTATE subcommittee has established 
several ambitious goals for the AI-ESTATE standards that 
include: 

0 Provide a standard interface between diagnostic 
reasoners and other functional elements that 
reside within an AI-ESTATE system. 
Provide formal data specifications to support the 
exchange of information relevant to the 
techniques commonly used in system test and 
diagnosis. 
Maximize compatibility of diagnostic reasoning 
system implementations. 
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Figure 1. AI-ESTATE Architectural Concept 

Accommodate embedded, coupled, and ,star Id- 
alone diagnostic systems. 
Facilitate portability, reuse, and sharing of 
diagnostic knowledge. 

To achieve these goals, the AI-ESTATE subcormnittee 
proceeded to define ani architecture for a standard 
diagnostic system and them defined component standar 3s 
for information exchange ;and software interfaces. 

3. An Architecture ,for Diagnosis 

The AI-ESTATE architecture presented in Figure 1 
shows a conceptual view of an AI-ESTATE-conformalt 
system. AI-ESTATE applications may use ar y 
combination of functional elements and interfunctic n 
communication as shown in the figure. The servitme 
specification (P1232.2), or other specifications relevant IO 
the particular functional element, define the form and 
method of communication between reasoning systems and 
other functional elements. AI-ESTATE idenitifie s 
reasoning services provided by a diagnostic reasoner so 
that transactions between test system components and the 
reasoner are portable. AI-ESTATE assumes a clienl- 
server or cooperative processing model in defining the 
diagnostic services. 

As indicated in Figurt: 1, AI-ESTATE includes tw) 
component standards focusing on two distinct aspects c f 
the stated objectives. The first aspect concerns the need to 
exchange data and knowledge between confonnant 
diagnostic systems. B y  ]providing a standarc 1 
representation of test and diagnostic data and knowltxigi: 
and standard interfaces between reasoners and other 
elements of a test environment, test, production, 
operation, and support costa will be reduced. 

Two approaches can tc taken to address this need 
providing interchangeable files (P1232.1) and provitling: 

services for retrieving the required data or knowledge 
through a set of standard accessor services (P1232.2). AI- 
ESTATE is structured such that either approach can be 
used [2,3]. 

The second aspect concerns the need for functional 
elements of an AI-ESTATE conformant system to interact 
and interoperate. The AI-ESTATE architectural concept 
provides for the functional elements to communicate with 
one another via a “communications pathway.” Essentially, 
this pathway is an abstraction of the services provided by 
the functional elements to one another. Thus, 
implementing services of a reasoner for a test system to 
use results in a communication pathway being established 
between the reasoner and the test system. 

AI-ESTATE services (P1232.2) are provided by 
reasoners to the other functional elements fitting within 
the architecture illustrated by Figure 1. These reasoners 
may include (but are not necessarily limited to) diagnostic 
systems, test sequencers, maintenance data feedback 
analyzers, intelligent user interfaces, and intelligent test 
programs. The current focus of the standards is on 
diagnostic reasoners. In addition to providing services to 
the test system, the human presentation system, a 
maintenance data collection system, and possibly the unit 
under test, the reasoner also uses services provided by 
these other systems as required. These services are not 
specified by the standards. 

4. Models for Diagnosis 

The current version of IEEE Std 1232.1 defines three 
models for use in diagnostic systems-a common element 
model, a fault tree model, and an enhanced diagnostic 
inference model. All of the models were defined using 
IS0 10303-11, EXPRESS [7]. EXPRESS is a language 
for defining information models and has received wide- 
spread acceptance in the international standards 
communities of IS0 and IEC. For example, EDIF 3 0 0 
and EDIF 4 0 0 were defined using EXPRESS. 

The common element model defines information 
entities, such as a test, a diagnosis, an anomaly, and a 
resource, which are expected to be needed by any 
diagnostic system. The common element model also 
includes a formal specification of costs to be considered in 
the test process. A graphical view of the common element 
model is shown in Figure 2. The cost model associated 
with the common element model is shown in Figure 3. 
These models are shown graphically in EXPRESS-G [7]. 
Entity relationships are shown with lines terminated by 
circles. For example, from Figure 2, we see that 
diagnostic-model is composed of sets of 
model-anomaly,model-test, model-resource, 
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Figure 3. Cost Model 

and model-diagnosis. Dashed lines indicate the 
associated relationships are optional, and dashed boxes 
indicate defined types. Heavy lines indicate a supertype 
relationship. For example, cost is a supertype of one of 
time-cost or non-time-cost. The “(ABS)” 
notation indicates cost is an abstract supertype, meaning 
the cost entity cannot be instantiated without one of its 
subtypes. 

Figure 4. Fault Tree Model 

The remaining two models represent knowledge that 
may be used by specific types of diagnostic systems. The 
fault tree model defines a decision tree based on outcomes 
from tests performed by the test system [8]. Each node of 
the tree corresponds to a test with some set of outcomes. 
The outcomes of the tests are branches extending from the 
test node to other tests or to diagnostic conclusions (such 
as No Fault). Typically, test programs are designed 
around static fault trees; therefore, the AI-ESTATE 
subcommittee decided to include a representation for a 
fault tree in the standard, even though fault trees are not 
typically considered to be AI systems. The EXPRESS-G 
representation of the fault tree model is shown in Figure 
4. 

The AI-ESTATE fault tree model imports elements 
and attributes from the common element model. 
Typically, test systems process fault trees by starting at the 
first test step, performing the indicated test, and traversing 
the branch corresponding to the test’s outcome. The test 
program follows this procedure recursively until it reaches 
a leaf in the tree, indicating it can make a diagnosis. 

The enhanced diagnostic inference model (EDIM) is 
based on the dependency model. Historically, test 
engineers used the dependency model to map 
relationships between functional entities in a system under 
test and tests that determine whether or not these 
functions are being performed correctly [9]. In the past, 
the model characterized the connectivity of the system 
under test from a functional perspective using observation 
points (or test points) as the junctions joining the 
functional entities together. If a portion of the system fed a 
test point, then the model assumed that the test associated 
with that test point depended on the function defined by 
that part of the system. This type of model is also referred 
to as a causal model [10,11]. 
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Figure 5. Enhanced Diagnostic Inference Model. 

Recently, researchers and practitioners of diagnostic 
modeling found that the functional dependency approach 
to modeling was problematic and could lead to inaccurate 
models. Believing the algorithnis processing the models 
were correct, researchers began to identify the problems 
with the modeling approach and to determine how to 
capitalize on the power of the algorithms withlout 
inventing a new approach to model-based diagnosis. They 
found that the focus of the model should be on the ti:sts 
and the faults those tests detect rather than on functions of 
the system [12]. In particular, the focus of the mcdel 
shifted to the inferences drzwable from real tests and their 
outcomes, resulting in a new find of model called the 
"diagnostic inference model." 

The enhanced diagnostic inference model, defined by 
AI-ESTATE, generalizes the diagnostic inference model 
by capturing hierarchical relationships and general logical 
relationships between tests amd diagnoses. The EXPRESS- 
G of the resulting model is shown in Figure 5 .  

The information models defined in the ALESTATE! 
standard, by themselves, provide a common way of talking 
about the information used in diagnosis, but this is no1 
enough for a standard. In ALESTATE, these models idsa 
provide the basis for a neutral exchange format. Using 
this neutral format, mu1,tiple vendors can produce 
diagnostic models in the format to enable their use by 
other tools that understand that format. 

To specify the neutraJ exchange format, the AI- 
ESTATE subcommittee dlecidad to use an instance 
language defined by the IS0 STEP (Standards for the 
Exchange of Product data) community based on 
EXPRESS-EXPRESS-I. EXPRESS-I is an instance 

Perform 
Test 

Load Model Ready 

Report 

Figure 6. State Diagram for Diagnostic Process 

language defined to facilitate developing example 
instances of information models and to facilitate 
developing test cases for these models. 

As an alternative, the IS0  STEP community has 
defined a standard physical file format derived from 
EXPRESS models [ 131. Unfortunately, the STEP physical 
file format is very difficult for a human to read but very 
easy for a computer to process. The AI-ESTATE 
subcommittee found added benefit in EXPRESS-I over the 
STEP physical file format in that the language is both 
computer-processable and human-readable. For example, 
the following defines the inferences drawable from a 
particular test of a half-adder that has passed: 

t4gass-implies = 
outcome-inference( 

test-outcome -> @t4qass; 
conjuncts -> 

(@x-saO-absent,@y-sal_absent, 
@y-saO_absent,@S-sal-absent, 
@C-saO-absent); 

disjuncts -> ( ) ;  
1 ;  

5. Services for Diagnosis 

In addition to defining models for knowledge 
exchange, the AI-ESTATE standard defines several 
software services to be provided by a diagnostic reasoner. 
The nature of these services enables the reasoner to be 
embedded in a larger test system; however, it is possible 
that the diagnostic system is a stand-alone application 
connected to a graphical user interface of some kind. 

In defining the standard services for AI-ESTATE, the 
AI-ESTATE subcommittee began by considered several 
use cases of diagnostic applications. The most general use 
case is shown as a state diagram in Figure 6 .  This 
diagram shows five states with several transitions based 
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on service requests to the reasoner. These states are 
intended to be internal states for the reasoner, but it may 
be necessary for a client of a reasoner to also maintain 
knowledge of the current state. This will define the set of 
services available to the client at that point in the 
diagnostic process. 

The first thing to note is that there are two states in 
Figure 6 that correspond to mode settings defined in 
1232.2 [3]. In 1232.2, the reasoner is assumed to be in 
one of three states: NULL, INACTIVE, or ACTIVE. In Figure 
6, STANDBY would correspond to W L ,  and READY would 
cover both INACTIVE and ACTIVE. For our examples, we 
can consider transitioning to the READY state being 
equivalent to passing through INACTIVE straight to 
ACTIVE. It is assumed that all services “descendent from” 
the READY state occur within the ready mode of the 
reasoner. These other states are not explicitly identified in 
1232.2 and, in some sense, may indicate a particular 
implementation 

The process illustrated in Figure 6 can be interpreted 
as follows. At the start of any diagnostic process, the 
reasoner would be in a quiescent (or STANDBY) state. Prior 
to taking any action, a diagnostic model must be available 
to the reasoner. The service indicated is load-model; 
however, it is possible that the model may be processed in 
a “lazy” manner where the model itself need not be 
resident. Either way, the model must be identified, and 
this identification is performed via the load-model 
transition. 

Once a model is identified and (optionally) loaded, 
the reasoner enters the READY state from which it can 
control the diagnostic process. In one scenario, it is 
possible for several test results to be available at startup. 
For the sake of discussion, we will call these test results, 
“symptoms.” In Figure 6, the symptoms are processed in 
batch form (i.e., all of the test results are evaluated in the 
evaluate-symptoms transition). We would expect this 
transition to consist of a sequence of low-order services. A 
particular application might offer this derived service, but 
it is an open issue whether such a powerful service would 
be appropriate for the standard. One sequence of service 
requests for loading a model and processing a set of 
symptoms follows. 

model-id = attach-model(model-mme)- 
status-code = set-mode(lNACTIVE) 
status-code = set-mode(ACTIVE) 
for all test-id in symptoms do 

get-test-outcome(test-id, &outcome,&confidence) 
status-code = 

apply-test-outcome(mode1-id, test-id, 
outcome,confidence) 

od 

At any point in the process, it might be desirable to 
determine the current “hypothesis.” Obviously, for this eo 
be possible, the reasoner must have the ability to generate 
a hypothesis. The current belief is that a service such as 
get-currenr-hypothesis might be reasoner-specific; 
however, all of the models currently specified in 1232.1 
[2] provide the ability to compute a hypothesis. Further, it 
is possible the service, get-rnost-likely-diagnoses could 
be used to generate a hypothesis. Using primitive services, 
one method of computing a hypothesis is as follows: 

hypothesis-set = 0 
step-no = get-number-steps(mode1-id) 
diagnoses = get-all-diagnoses(model_id) 
for all diagnosis-id in diagnoses do 

confidence = 

if confidence 2 8, 
get-diagnosis(mode1-id,diagnosis-id, step-no) 

hypothesis = hypothesis U [diagnosis} 
od 

This method assumes some threshold, 8, has been 
defined and confidence values for each of the diagnoses in 
the current model are computed as test outcomes are 
applied. It is the latter assumption that is reasoner- 
specific, thus justifying the claim that a 
get-current-hypothesis service is not necessarily 
appropriate. Further, this sequence demonstrates that such 
a service may not be needed. For the remainder of this 
paper, we will assume our implementation has this 
derived service at its disposal and that the underlying 
reasoner is able to provide the required confidence 
information. 

According to the state diagram in Figure 1, 
hypothesis computation only occurs following the 
evaluation of a test result. A more general scenario would 
tie a service request (or transition) off the READY State to 
compute the hypothesis. This leads naturally to the service 
report-answer that would be a service provided by the 
user of the reasoner rather than the reasoner itself. Once 
an answer is available (in the hypothesis set), the 
application that requested the hypothesis can then use 
services, perhaps from a presentation system, to actually 
report the answer. Depending on the hypothesis, the user 
may then request the reasoner to revert some number of 
steps or to continue its diagnosis. For reverting to a 
previous state, the service call, revert(num-steps) would 
be used. 

From some point in the diagnosis, the test 
environment may be required to perform an additional 
test. One of the intended roles for the diagnostic reasoner 
is as an optmizer that selects tests to be performed, 
minimizing some cost function. A possible sequence of 
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Figure 7. Mod el of System Test. 

service calls in which this optimization capability would 
be used might follow the READY -- evaluate-symptoms - 
HYPOTHESIS-COMPUTED - choose-test - READY - 
result-known - HYPOTHESIS-COMPUTED - choose-rest 
- READY cycle in the state diagram. Following this cycle, 
the set of symptoms would be empty, and then a sequence 
of tests would be selected, evaluated, applied, etc., until an 
answer is obtained. The corresponding services for this 
procedure (assuming we have already attached a model 
and determined the desired set of cost attributes) might 
include the following: 

symptoms = 0 
evaluate-symptoms(mode1-id, symptoms) 
get-current-hypothesis(mod,el-id) 
put-active-cost-attributes(n;rodel-id, cost-attributes) 
do while ((test-id = select-test(lmodel-id)) # NULL) 

perform-test(test-id) 
get-test-outcome(test-id, &outcome,&conjidence) 
status-code = 

apply-test-outcome(moQe1-id, 

get-current-hypothesis(,model-id) 
test-id,outcome,conBdence) 

od 

As with the data models;, providing a list of softw,are 
services such as evaluate-symptoms, apply-test-outcome, 
and get-current-hypothesis are not sufficient to define a 
standard. The interface itselif must be standardized with 

appropriate bindings (or mappings) to implementations in 
a programming language. 

The approach taken by the AI-ESTATE 
subcommittee to standardizing the software services is 
somewhat unique. AI-ESTATE decided to specify the 
services using the functional and procedural notation of 
EXPRESS. Typically, this aspect of EXPRESS is used 
only within the context of defining rules and constraints 
on information entities. For consistency, the AI-ESTATE 
subcommittee decided these facilities would work equally 
well with the services too. 

To define the services, the models specified in 1232.1 
provided the data types of the information to be passed 
into and out of the services. Next the services themselves 
were specified in EXPRESS as if they were used by 
constraints on the information models. For example, 
apply-test-outcome was specified as follows: 

PROCEDURE apply-test-outcome( 
model-id : diagnostic-model; 
test-id : test; 
outcome-id : outcome; 
confidence : confidence-value); 

From this specification, bindings were created in the 
target programming language. For example, in the target 
application language C, the function prototype for 
apply-test-outcome, derived from the EXPRESS 
specification, is as follows: 
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void apply-test-outcome( 
diagnostic-model *, 
test * I  
outcome * I  

confidence-value) ; 

This also defines the function call and expected 
parameters, with types, for an implementation of the 
service in the target reasoner. 

6. Applying AI-ESTATE 

Since the purpose of testing is to gain information 
about the system under test, and diagnosis is the process 
of interpreting the test information, we assert all testing is 
done in the context of diagnosis. More simply, the only 
purpose a test serves is to provide an outcome that can be 
used to infer something about the system being tested. 
This premise broadens the view of diagnosis beyond the 
process for only isolating faults. Rather, diagnosis is 
considered to be the process of determining the state of the 
system under test relative to some anticipated state. 
Therefore, we envision AI-ESTATE being applied in a 
wide variety of test contexts. 

To capture this expanded role of a diagnostic system 
in test, we developed a model of the test process. This 
model is described in detail in [ 141 and is reproduced here 
in Figure 7. In interpreting this model, note that we have 
not applied any of the standard object [15,16], activity 
[ 171, or information modeling [ 181 techniques commonly 
in use today. 

To read this model, each of the blocks represents 
entities or objects within the test environment. The 
relationships between the entities provide “processes” or 
“constraints” that one entity performs or imposes on 
another. In some cases, the processes are highly dynamic 
(e.g., diagnostics selects test), and in others 
they simply define a relationship (e.g., knowledge 
applies-in context). In all cases, the entity to 
entity relationships can be read as a simple sentence 
(subject verb object). Given this approach, we can now 
read the model as a narrative description of the test 
process. 

The element of this model that is of the greatest 
interest to AI-ESTATE is the diagnostics. We believe 
diagnostics drives the test process. As we said before, the 
purpose of testing is information discovery and drawing 
conclusions about the test-sub ject. The process of 
drawing conclusions from test information is referred to 
as “diagnostics.” Thus we consider the diagnostic process 
centering on the entity labeled diagnostics. Here 
diagnostics uses knowledge to 
draw-inferences-from outcome to then 

identify diagnosis. As one might expect, 
diagnostics selects test which in turn 
produces outcome. Then outcome either 
indicts or exonerates anomaly. Once the 
diagnosis has been determined, one can take 
appropriate action since diagnosis maps-to 
anoma 1 y and is-associated-with 
correct ive-act ion. The whole process of 
performing a diagnosis is fully dependent on what 
diagnostics knows about the test-sub ject. This 
is captured by knowledge that models 
test-subjectandapplies-in context. 

Testing can be performed under a wide variety of 
contexts. Indeed, the context completely defines the 
requirements and objectives of the test process. For 
example, in the context of specification compliance, 
testing can determine whether or not a design or a 
manufactured unit conforms to specifications. In the 
context of acceptance testing or product delivery, testing 
can determine if the unit satisfies a set of customer 
requirements. During performance or operational 
evaluation, testing can be used to determine optimal 
performance parameters for the system. In maintenance, 
testing can assist in detecting and isolating faults. 

The primary advantage of providing an abstract 
model for test and diagnosis and associating that model 
with a “system view” of the test subject is that it provides 
a means for abstracting details out of the test problem 
until needed. This in turn permits optimizing the structure 
of the test problem, thus managing the complexities 
inherent in manipulating large, heterogeneous systems. 
For this to work, we need to be able to see how to map 
real systems into the model. This in turn enables us to 
identify the critical elements of the test problem and to 
optimize the solution. In this section, we map two 
“systems” into the model to illustrate. 

The first system we consider is very simple. Consider 
an integrated circuit containing four D flip-flops (e.g., an 
SN5475). The test-sub ject would correspond to the 
this IC, and we would identify the attributes of the 
IC as the nominal behavior of the chip (as we might find 
in the truth table for each of the flip-flops). In addition, 
we might add characteristics such as voltage, temperature 
range, orientation of the pins, size and color of the 
packaging, etc. The actual set of attributes of interest to us 
would depend on the context under which we are 
testing. If we only care about failure modes associated 
with the pins and the logic of the chip, we may restrict our 
focus to the logic values observed at the pins. If we are 
interested in manufacturing issues, we might include 
characteristics of packaging. 

For the sake of discussion, we limit the context to be 
assessing the logical performance of the chip at the pins. 
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Thus we will restrict our attention to the logi: 
specification and to the set of stuck-at faults. This set cf 
faults would define the anomalies that might b: 
exhibited by the chip. If we use a digital tester with a .fault 
dictionary, then knowledge would correspond to th]: 
fault dictionary itself and Idiagnostics would includl: 
the test controller and the matching algorithm in tb: 
dictionary. The tests woluld be defined by the vectors ill 
the fault dictionary (actually, each of the output values for 
each vector would correspond to a different test). 
Whenever a vector is proceissed, the associated tests ~ " d d  
either pass or fail (thus we know the outcomes), ancl 
these outcomes would point to the possible anomalieis of 
the chip. In th event the chip is faulty, poss;iblc: 
correct ive-act ions include replacing the chip or 
re-setting (or re-soldering) ithe chip in the socket. 

The role AI-ESTATE plays in this environment i,; 
two-fold. First, a model coinforming to the EDIM defined 
by 1232.1 can be used to capture the diagnostic know1e:dgc: 
resident in the fault dictioriary [19]. This means that thc: 
diagnostic knowledge inherent in fault dictionaries can h: 
exchanged in a standard way between test systems by 
using IEEE Std 1232.1. When coupled with anothe: 
standard such as P1029.1 (WAVES), P1445 (DTIF), 0: 
PI450 (STIL), complete digital test information can h; 
tied to an encapsulated diagnostic system to facilitatt : 
efficient and accurate diagnostics. 

The second role for A:I-ESTATE facilitates a mean!; 
for replacing the traditional, but often proprietary, faul L 
dictionary signature matching process. By provitlinj; 
standard services for aplplying and interpreting tes : 
results, an AI-ESTATE-coinfomant reasoner can replact: 
the signature matcher. 

For the second system, we consider a case at the other 
end of the spectrum. Consider a network of satellites iri 
orbit that provide the backbone for a communicat.ion: I 
network. One test context of interest would be to vc:rifir 
that all of the defined links in the network are presen: 
(including satellite-to-satellite cross links and ground 
links). Thus we have defined our test-sub ject to br 
the connectivity of the network. Attributes of thi:; 
system might include transmission of messages bemeer I 

two points in the network in a reasonable period of time, 
and we could define t e s t s  to be a set of messages tha: 
traverse the network in some predictable way. Tht: 
anomalies would correspond to links being down. 

For this system, the knowledge required foi. 
diagnosis and the associated diagnostics might hi 
significantly different from the fault dictionary of the firs: 
system. For example, it is possible we would be ablle tcl 

rely on a set of SNMP (simple network managemen: 
protocol) traps to signify when a link drops in the network: 
(assuming the endpoints of the links are treated as SNME' 

managed objects). In this case, the knowledge would 
correspond to the MIB (managed-object information 
base), and the diagnostics would be a passive 
network monitoring system or alarm correlator. 

Here, the AI-ESTATE application is also two-fold. 
Many network systems and associated network 
management systems utilize heterogeneous software 
technology. To date, they have focused on information 
provided by standard protocols and specifications of 
managed objects and not on capturing information 
relating network alarms to possible causes. Similar to the 
fault dictionary discussed above, models to be used in 
alarm correlation can be developed, merged, and 
exchanged between applications in a network 
environment using IEEE Std 1232.1. Similarly, the alarm 
correlation and fault isolation services needed in network 
fault management and trouble ticketing systems can 
utilize IEEE Std 1232.2. 

7. Industry Acceptance 

The AI-ESTATE standard has been under 
development for six years under the sponsorship of three 
IEEE societies-the Computer Society, the Aerospace 
Electronic Systems Society, and the Instrumentation and 
Measurement Society. Current membership on the 
subcommittee includes representatives from academia 
(University of Connecticut and Johns Hopkins University), 
government (U.S. Navy, U.S. Air Force, U.S. Army), and 
industry (McDonnell Douglas, Boeing, NCR, 
AlliedSignal, IET Intelligent Electronics, ARINC, Etec). 
In addition, the subcommittee has representatives from 
several countries other than the United States (United 
Kingdom, France, Germany). 

Recently, with the approval of IEEE Std 1232-1995 
and IEEE Std 1232.1-1997, the International 
Electrotechnical Commission's Technical Committee 93 
(IEC/TC93), which focuses on standards for design 
automation, accepted a proposal to advance the AI- 
ESTATE standard for fast track standardization at the 
IEC level. Current membership of IECRC93 includes 
representatives from Denmark, Finland, France, 
Germany, Japan, the United Kingdom, and the United 
States. Sponsorship for AI-ESTATE fast track came from 
the French delegation. The IECRC93 is best know for 
standardizing EDIF 3 0 0 and VHDL at the international 
level. 

In addition to the broad support within the standards 
community, several tool vendors are committed to 
enhancing or providing tools that conform to the AI- 
ESTATE standard. Several tools already implement pre- 
standard versions of the AI-ESTATE models, including 

Paper 40.3 
1027 



ARINC’s System Testability and Maintenance Program 
(STAMP) and Portable Interactive Troubleshooter 
(POINTER), Detex’s System Testability Analysis Tool 
(STAT), IET’s TechMate, Giordano Associates’ 
Diagnostician, Qualitech’s Testability Engineering and 
Maintenance System (TEAMS), and the Navy’s 
Integrated Diagnostic Support System (IDSS). These tools 
are likely to be upgraded to the AI-ESTATE standards in 
the near future. 

8. Future Work 

In spite of the large amount of work that has been 
done on the AI-ESTATE standards and the wide 
acceptance of the standards in government and industry, 
much additional work needs to be done to keep the 
standards in pace with technology advances. Currently, 
several projects are underway within the AI-ESTATE 
subcommittee to do just that. 

First, we recognize that there are more approaches to 
performing diagnosis than using fault trees and diagnostic 
inference models. Currently, we are in the process of 
defining a constraint model that will capture temporal, 
logical, and resource constraints in testing and diagnosing 
a system. Related to this is work underway in the ABBET 
(A Broad Based Environment for Test) subcommittee and 
EDIF committee defining a test requirements model 
(TeRM). TeRM that includes constraints for capturing 
information about the behavior of a product and a test 
resource. We expect to be able to work with the 
constraints defined in TeRh4 to facilitate reasoning with 
constraint-based systems. 

In addition to the constraint model, we anticipate 
developing models for rule-based systems and for 
connectionist systems. Rule-based systems provided the 
first success stories in diagnosis and artificial intelligence. 
While both the EDIM and the constraint model would be 
able to capture the logical information contained in a rule 
base, a separate model is required that is tailored to the 
rule-based architecture. 

In addition, neural networks and fuzzy systems have 
shown tremendous promise in diagnostics, especially in 
the presence of noise and error. While it is unclear at this 
time what a standard representation of a neural network 
would look like, we feel it is a worthwhile endeavor to 
explore the possibility of defining such a standard. 

Upon defining additional models for knowledge 
exchange, we will also need to define standard services for 
accessing and manipulating these models. Thus we see 
that the development of services and the development of 
data models cannot be done independently. While 
objectives for these two activities can be separated, the 

common role the information plays in both contexts 
necessitates developing the models and the services 
together. 

As discussed in section 6, diagnosis occurs within 
some context. In fact, the context is central to determining 
the scope of the test and diagnosis problem. 
Unfortunately, capturing information about context in a 
standard way is problematic. The number of variables 
associated with context is excessive, and the relationships 
between those variables are frequently unknown. 
Nevertheless, we find that proper interpretation of 
diagnostic and test information relies upon a common 
understanding of the context in which testing takes place. 
As a result, we are beginning to develop a model of 
context for diagnosis. Recent work in non-monotonic 
reasoning and categorical reasoning offer promise in 
formalizing context for this problem [20].  

9. Conclusion 

Reasoning system technology has progressed to the 
point where electronic systems are employing artificial 
intelligence as a primary component in meeting system 
test and verification requirements. This is giving rise to a 
proliferation of AI-based design, test, and diagnostic tools. 
Unfortunately, the lack of standard interfaces between 
these reasoning systems is increasing the likelihood of 
significantly higher product life-cycle cost. Such costs 
would arise from redundant engineering efforts during 
design and test phases, sizable investment in special- 
purpose tools, and loss of system configuration control. 

The AI-ESTATE standard promises to facilitate ease 
in production testing and long-term support of systems as 
well as reducing overall product life-cycle cost. This will 
be accomplished by facilitating portability and knowledge 
reuse and sharing of test and diagnostic information, 
among embedded, automatic, and stand-alone test systems 
within the broader scope of product design, manufacture, 
and support. 
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