
Artificial Intelligence Exchange and Service Tie to All Test Environments
(AI-ESTATE)-A New Standard for System Diagnostics

John W. Sheppard
ARWC

2551 Riva Road
Annapolis, MD 21401

jsheppar@arinc.com

Abstract

We describe a recently approved IEEE standard for
exchanging diagnostic information and embedding
diagnostic reasoners in any test environment. We describe
the defined formats and services, an example application,
and current industry acceptance.

Leslie A. Orlidge
hiedSignal Aerospace

Guidance and Control Systems
Teterboro, NJ 07608

leslie.orlidge@alliedsignal.com

We also discuss several software services to be provided by an
AI-ESTATE conformant diagnostic system standardized in
IEEE Std P1232.2 [3]. In addition, we describe example
application scenarios using these standards and suggest
alternative uses of the standards in various test environments.
Finally, we discuss industry involvement and acceptance of
the standards and provide directions for future work on AI-
ESTATE.

1. Introduction
2. Background

Recent initiatives by the Institute of Electrical and
Electronics Engineers (IEEE) on standardizing test
architectures have provided a unique opportunity to
improve the development of test systems. The IEEE
P1232 “Artificial Intelligence Exchange and Service Tie
to All Test Environments (AI-ESTATE)”’ initiative is
attempting to usher in the next generation in product
diagnostics by standardizing diagnostic services and
development tool interfaces. By using problem
encapsulation, defining interface boundaries, developing
exchange formats and specifying standard services, AI-
ESTATE provides a methodology for developing diagnostic
systems that will be interoperable, have transportable
software, and move beyond vendor and product specific
solutions.

The concepts in the AI-ESTA’IE s t a n ~ d are not
limited to the arena of automatic test equipment, but apply to
manual, automatic, and semi-automatic test, as well as the
domains of electronic, mechanical, pneumatic, and other
types of systems. The AI-ESTATE subcommittee designed
the P1232 standards to abstract specific test and product
details out of the diagnostic models and tie these models to
domain-specific models as needed to complete the test system.

In this paper, we describe the AI-ESTATE architecture
[l] and two “component” standards of the AI-ESTATE
family of standards. We discuss a neutral exchange f m a t for
diagnostic models standardized in DEEE Std 1232.1-1997 [2].

’ Previously, Artificial Intelligence and Expert System Tie
to Automatic Test Equipment.

Increasing complexity and cost of current systems, the
inability to consistently diagnose and isolate faults in the
system using conventional means, and the advances in
artificial intelligence technology have fostered the growth
of AI technology in test and diagnosis. The proliferation
of diagnostic reasoners and tools necessitates establishing
standard interfaces to these tools and formal data
specifications to capture relevant diagnostic information.
Current test standards (e.g., Boundary Scan and STIL)
[4,5] provide no guidance for using AI technology in test
applications. Proposed AI standards (e.g., KIF) do not
specifically address the concems of the test community
[6]. Thus, no standard exists, currently, addressing the use
of AI systems in test environments. The AI-ESTATE
standards are intended to fill this void.

The AI-ESTATE subcommittee has established
several ambitious goals for the AI-ESTATE standards that
include:

0 Provide a standard interface between diagnostic
reasoners and other functional elements that
reside within an AI-ESTATE system.
Provide formal data specifications to support the
exchange of information relevant to the
techniques commonly used in system test and
diagnosis.
Maximize compatibility of diagnostic reasoning
system implementations.

Paper 40.3
1020

INTERNATIONAL TEST CONFERENCE
0-7803-4209-7197 $1 0.00 o 1 997 IEEE

mailto:jsheppar@arinc.com
mailto:leslie.orlidge@alliedsignal.com

Cornmunilcations Pathway

Services 1232.2 I - r r -
1232.1 Format

Figure 1. AI-ESTATE Architectural Concept

Accommodate embedded, coupled, and ,star Id-
alone diagnostic systems.
Facilitate portability, reuse, and sharing of
diagnostic knowledge.

To achieve these goals, the AI-ESTATE subcormnittee
proceeded to define ani architecture for a standard
diagnostic system and them defined component standar 3s
for information exchange ;and software interfaces.

3. An Architecture ,for Diagnosis

The AI-ESTATE architecture presented in Figure 1
shows a conceptual view of an AI-ESTATE-conformalt
system. AI-ESTATE applications may use ar y
combination of functional elements and interfunctic n
communication as shown in the figure. The servitme
specification (P1232.2), or other specifications relevant IO
the particular functional element, define the form and
method of communication between reasoning systems and
other functional elements. AI-ESTATE idenitifie s
reasoning services provided by a diagnostic reasoner so
that transactions between test system components and the
reasoner are portable. AI-ESTATE assumes a clienl-
server or cooperative processing model in defining the
diagnostic services.

As indicated in Figurt: 1, AI-ESTATE includes tw)
component standards focusing on two distinct aspects c f
the stated objectives. The first aspect concerns the need to
exchange data and knowledge between confonnant
diagnostic systems. B y]providing a standarc 1
representation of test and diagnostic data and knowltxigi:
and standard interfaces between reasoners and other
elements of a test environment, test, production,
operation, and support costa will be reduced.

Two approaches can tc taken to address this need
providing interchangeable files (P1232.1) and provitling:

services for retrieving the required data or knowledge
through a set of standard accessor services (P1232.2). AI-
ESTATE is structured such that either approach can be
used [2,3].

The second aspect concerns the need for functional
elements of an AI-ESTATE conformant system to interact
and interoperate. The AI-ESTATE architectural concept
provides for the functional elements to communicate with
one another via a “communications pathway.” Essentially,
this pathway is an abstraction of the services provided by
the functional elements to one another. Thus,
implementing services of a reasoner for a test system to
use results in a communication pathway being established
between the reasoner and the test system.

AI-ESTATE services (P1232.2) are provided by
reasoners to the other functional elements fitting within
the architecture illustrated by Figure 1. These reasoners
may include (but are not necessarily limited to) diagnostic
systems, test sequencers, maintenance data feedback
analyzers, intelligent user interfaces, and intelligent test
programs. The current focus of the standards is on
diagnostic reasoners. In addition to providing services to
the test system, the human presentation system, a
maintenance data collection system, and possibly the unit
under test, the reasoner also uses services provided by
these other systems as required. These services are not
specified by the standards.

4. Models for Diagnosis

The current version of IEEE Std 1232.1 defines three
models for use in diagnostic systems-a common element
model, a fault tree model, and an enhanced diagnostic
inference model. All of the models were defined using
IS0 10303-11, EXPRESS [7]. EXPRESS is a language
for defining information models and has received wide-
spread acceptance in the international standards
communities of IS0 and IEC. For example, EDIF 3 0 0
and EDIF 4 0 0 were defined using EXPRESS.

The common element model defines information
entities, such as a test, a diagnosis, an anomaly, and a
resource, which are expected to be needed by any
diagnostic system. The common element model also
includes a formal specification of costs to be considered in
the test process. A graphical view of the common element
model is shown in Figure 2. The cost model associated
with the common element model is shown in Figure 3.
These models are shown graphically in EXPRESS-G [7].
Entity relationships are shown with lines terminated by
circles. For example, from Figure 2, we see that
diagnostic-model is composed of sets of
model-anomaly,model-test, model-resource,

Paper 40.3
1021

P dad im

0
i I

dcscripicn
ldiaenostic mcxie~l

.________--

Figure 2. Common Element Model

I I I 1

I
I * dcnrmul-

Figure 3. Cost Model

and model-diagnosis. Dashed lines indicate the
associated relationships are optional, and dashed boxes
indicate defined types. Heavy lines indicate a supertype
relationship. For example, cost is a supertype of one of
time-cost or non-time-cost. The “(ABS)”
notation indicates cost is an abstract supertype, meaning
the cost entity cannot be instantiated without one of its
subtypes.

Figure 4. Fault Tree Model

The remaining two models represent knowledge that
may be used by specific types of diagnostic systems. The
fault tree model defines a decision tree based on outcomes
from tests performed by the test system [8]. Each node of
the tree corresponds to a test with some set of outcomes.
The outcomes of the tests are branches extending from the
test node to other tests or to diagnostic conclusions (such
as No Fault). Typically, test programs are designed
around static fault trees; therefore, the AI-ESTATE
subcommittee decided to include a representation for a
fault tree in the standard, even though fault trees are not
typically considered to be AI systems. The EXPRESS-G
representation of the fault tree model is shown in Figure
4.

The AI-ESTATE fault tree model imports elements
and attributes from the common element model.
Typically, test systems process fault trees by starting at the
first test step, performing the indicated test, and traversing
the branch corresponding to the test’s outcome. The test
program follows this procedure recursively until it reaches
a leaf in the tree, indicating it can make a diagnosis.

The enhanced diagnostic inference model (EDIM) is
based on the dependency model. Historically, test
engineers used the dependency model to map
relationships between functional entities in a system under
test and tests that determine whether or not these
functions are being performed correctly [9]. In the past,
the model characterized the connectivity of the system
under test from a functional perspective using observation
points (or test points) as the junctions joining the
functional entities together. If a portion of the system fed a
test point, then the model assumed that the test associated
with that test point depended on the function defined by
that part of the system. This type of model is also referred
to as a causal model [10,11].

Paper 40.3
1022

....................... , _ _ _ _ _ _ . d . ,
........................... , " f a a r c .fypc

Figure 5. Enhanced Diagnostic Inference Model.

Recently, researchers and practitioners of diagnostic
modeling found that the functional dependency approach
to modeling was problematic and could lead to inaccurate
models. Believing the algorithnis processing the models
were correct, researchers began to identify the problems
with the modeling approach and to determine how to
capitalize on the power of the algorithms withlout
inventing a new approach to model-based diagnosis. They
found that the focus of the model should be on the ti:sts
and the faults those tests detect rather than on functions of
the system [12]. In particular, the focus of the mcdel
shifted to the inferences drzwable from real tests and their
outcomes, resulting in a new find of model called the
"diagnostic inference model."

The enhanced diagnostic inference model, defined by
AI-ESTATE, generalizes the diagnostic inference model
by capturing hierarchical relationships and general logical
relationships between tests amd diagnoses. The EXPRESS-
G of the resulting model is shown in Figure 5 .

The information models defined in the ALESTATE!
standard, by themselves, provide a common way of talking
about the information used in diagnosis, but this is no1
enough for a standard. In ALESTATE, these models idsa
provide the basis for a neutral exchange format. Using
this neutral format, mu1,tiple vendors can produce
diagnostic models in the format to enable their use by
other tools that understand that format.

To specify the neutraJ exchange format, the AI-
ESTATE subcommittee dlecidad to use an instance
language defined by the IS0 STEP (Standards for the
Exchange of Product data) community based on
EXPRESS-EXPRESS-I. EXPRESS-I is an instance

Perform
Test

Load Model Ready

Report

Figure 6. State Diagram for Diagnostic Process

language defined to facilitate developing example
instances of information models and to facilitate
developing test cases for these models.

As an alternative, the IS0 STEP community has
defined a standard physical file format derived from
EXPRESS models [131. Unfortunately, the STEP physical
file format is very difficult for a human to read but very
easy for a computer to process. The AI-ESTATE
subcommittee found added benefit in EXPRESS-I over the
STEP physical file format in that the language is both
computer-processable and human-readable. For example,
the following defines the inferences drawable from a
particular test of a half-adder that has passed:

t4gass-implies =
outcome-inference(

test-outcome -> @t4qass;
conjuncts ->

(@x-saO-absent,@y-sal_absent,
@y-saO_absent,@S-sal-absent,
@C-saO-absent);

disjuncts -> () ;
1 ;

5. Services for Diagnosis

In addition to defining models for knowledge
exchange, the AI-ESTATE standard defines several
software services to be provided by a diagnostic reasoner.
The nature of these services enables the reasoner to be
embedded in a larger test system; however, it is possible
that the diagnostic system is a stand-alone application
connected to a graphical user interface of some kind.

In defining the standard services for AI-ESTATE, the
AI-ESTATE subcommittee began by considered several
use cases of diagnostic applications. The most general use
case is shown as a state diagram in Figure 6 . This
diagram shows five states with several transitions based

Paper 40.3
1023

on service requests to the reasoner. These states are
intended to be internal states for the reasoner, but it may
be necessary for a client of a reasoner to also maintain
knowledge of the current state. This will define the set of
services available to the client at that point in the
diagnostic process.

The first thing to note is that there are two states in
Figure 6 that correspond to mode settings defined in
1232.2 [3]. In 1232.2, the reasoner is assumed to be in
one of three states: NULL, INACTIVE, or ACTIVE. In Figure
6, STANDBY would correspond to W L , and READY would
cover both INACTIVE and ACTIVE. For our examples, we
can consider transitioning to the READY state being
equivalent to passing through INACTIVE straight to
ACTIVE. It is assumed that all services “descendent from”
the READY state occur within the ready mode of the
reasoner. These other states are not explicitly identified in
1232.2 and, in some sense, may indicate a particular
implementation

The process illustrated in Figure 6 can be interpreted
as follows. At the start of any diagnostic process, the
reasoner would be in a quiescent (or STANDBY) state. Prior
to taking any action, a diagnostic model must be available
to the reasoner. The service indicated is load-model;
however, it is possible that the model may be processed in
a “lazy” manner where the model itself need not be
resident. Either way, the model must be identified, and
this identification is performed via the load-model
transition.

Once a model is identified and (optionally) loaded,
the reasoner enters the READY state from which it can
control the diagnostic process. In one scenario, it is
possible for several test results to be available at startup.
For the sake of discussion, we will call these test results,
“symptoms.” In Figure 6, the symptoms are processed in
batch form (i.e., all of the test results are evaluated in the
evaluate-symptoms transition). We would expect this
transition to consist of a sequence of low-order services. A
particular application might offer this derived service, but
it is an open issue whether such a powerful service would
be appropriate for the standard. One sequence of service
requests for loading a model and processing a set of
symptoms follows.

model-id = attach-model(model-mme)-
status-code = set-mode(lNACTIVE)
status-code = set-mode(ACTIVE)
for all test-id in symptoms do

get-test-outcome(test-id, &outcome,&confidence)
status-code =

apply-test-outcome(mode1-id, test-id,
outcome,confidence)

od

At any point in the process, it might be desirable to
determine the current “hypothesis.” Obviously, for this eo
be possible, the reasoner must have the ability to generate
a hypothesis. The current belief is that a service such as
get-currenr-hypothesis might be reasoner-specific;
however, all of the models currently specified in 1232.1
[2] provide the ability to compute a hypothesis. Further, it
is possible the service, get-rnost-likely-diagnoses could
be used to generate a hypothesis. Using primitive services,
one method of computing a hypothesis is as follows:

hypothesis-set = 0
step-no = get-number-steps(mode1-id)
diagnoses = get-all-diagnoses(model_id)
for all diagnosis-id in diagnoses do

confidence =

if confidence 2 8,
get-diagnosis(mode1-id,diagnosis-id, step-no)

hypothesis = hypothesis U [diagnosis}
od

This method assumes some threshold, 8, has been
defined and confidence values for each of the diagnoses in
the current model are computed as test outcomes are
applied. It is the latter assumption that is reasoner-
specific, thus justifying the claim that a
get-current-hypothesis service is not necessarily
appropriate. Further, this sequence demonstrates that such
a service may not be needed. For the remainder of this
paper, we will assume our implementation has this
derived service at its disposal and that the underlying
reasoner is able to provide the required confidence
information.

According to the state diagram in Figure 1,
hypothesis computation only occurs following the
evaluation of a test result. A more general scenario would
tie a service request (or transition) off the READY State to
compute the hypothesis. This leads naturally to the service
report-answer that would be a service provided by the
user of the reasoner rather than the reasoner itself. Once
an answer is available (in the hypothesis set), the
application that requested the hypothesis can then use
services, perhaps from a presentation system, to actually
report the answer. Depending on the hypothesis, the user
may then request the reasoner to revert some number of
steps or to continue its diagnosis. For reverting to a
previous state, the service call, revert(num-steps) would
be used.

From some point in the diagnosis, the test
environment may be required to perform an additional
test. One of the intended roles for the diagnostic reasoner
is as an optmizer that selects tests to be performed,
minimizing some cost function. A possible sequence of

Paper 40.3
1024

r---

comnnunicatei I [-TI
through characterizes -

captures

context
is applied to

corwtive action
corrects

anomaly
exonerates

alters indicts

interface a bservation

interprets

E r e s o u r c e outcome

models selects
7

r k n o wledge
I

applies in

is associated with

Figure 7. Mod el of System Test.

service calls in which this optimization capability would
be used might follow the READY -- evaluate-symptoms -
HYPOTHESIS-COMPUTED - choose-test - READY -
result-known - HYPOTHESIS-COMPUTED - choose-rest
- READY cycle in the state diagram. Following this cycle,
the set of symptoms would be empty, and then a sequence
of tests would be selected, evaluated, applied, etc., until an
answer is obtained. The corresponding services for this
procedure (assuming we have already attached a model
and determined the desired set of cost attributes) might
include the following:

symptoms = 0
evaluate-symptoms(mode1-id, symptoms)
get-current-hypothesis(mod,el-id)
put-active-cost-attributes(n;rodel-id, cost-attributes)
do while ((test-id = select-test(lmodel-id)) # NULL)

perform-test(test-id)
get-test-outcome(test-id, &outcome,&conjidence)
status-code =

apply-test-outcome(moQe1-id,

get-current-hypothesis(,model-id)
test-id,outcome,conBdence)

od

As with the data models;, providing a list of softw,are
services such as evaluate-symptoms, apply-test-outcome,
and get-current-hypothesis are not sufficient to define a
standard. The interface itselif must be standardized with

appropriate bindings (or mappings) to implementations in
a programming language.

The approach taken by the AI-ESTATE
subcommittee to standardizing the software services is
somewhat unique. AI-ESTATE decided to specify the
services using the functional and procedural notation of
EXPRESS. Typically, this aspect of EXPRESS is used
only within the context of defining rules and constraints
on information entities. For consistency, the AI-ESTATE
subcommittee decided these facilities would work equally
well with the services too.

To define the services, the models specified in 1232.1
provided the data types of the information to be passed
into and out of the services. Next the services themselves
were specified in EXPRESS as if they were used by
constraints on the information models. For example,
apply-test-outcome was specified as follows:

PROCEDURE apply-test-outcome(
model-id : diagnostic-model;
test-id : test;
outcome-id : outcome;
confidence : confidence-value);

From this specification, bindings were created in the
target programming language. For example, in the target
application language C, the function prototype for
apply-test-outcome, derived from the EXPRESS
specification, is as follows:

Paper 40.3
1025

void apply-test-outcome(
diagnostic-model *,
test * I
outcome * I

confidence-value) ;

This also defines the function call and expected
parameters, with types, for an implementation of the
service in the target reasoner.

6. Applying AI-ESTATE

Since the purpose of testing is to gain information
about the system under test, and diagnosis is the process
of interpreting the test information, we assert all testing is
done in the context of diagnosis. More simply, the only
purpose a test serves is to provide an outcome that can be
used to infer something about the system being tested.
This premise broadens the view of diagnosis beyond the
process for only isolating faults. Rather, diagnosis is
considered to be the process of determining the state of the
system under test relative to some anticipated state.
Therefore, we envision AI-ESTATE being applied in a
wide variety of test contexts.

To capture this expanded role of a diagnostic system
in test, we developed a model of the test process. This
model is described in detail in [141 and is reproduced here
in Figure 7. In interpreting this model, note that we have
not applied any of the standard object [15,16], activity
[171, or information modeling [181 techniques commonly
in use today.

To read this model, each of the blocks represents
entities or objects within the test environment. The
relationships between the entities provide “processes” or
“constraints” that one entity performs or imposes on
another. In some cases, the processes are highly dynamic
(e.g., diagnostics selects test), and in others
they simply define a relationship (e.g., knowledge
applies-in context). In all cases, the entity to
entity relationships can be read as a simple sentence
(subject verb object). Given this approach, we can now
read the model as a narrative description of the test
process.

The element of this model that is of the greatest
interest to AI-ESTATE is the diagnostics. We believe
diagnostics drives the test process. As we said before, the
purpose of testing is information discovery and drawing
conclusions about the test-sub ject. The process of
drawing conclusions from test information is referred to
as “diagnostics.” Thus we consider the diagnostic process
centering on the entity labeled diagnostics. Here
diagnostics uses knowledge to
draw-inferences-from outcome to then

identify diagnosis. As one might expect,
diagnostics selects test which in turn
produces outcome. Then outcome either
indicts or exonerates anomaly. Once the
diagnosis has been determined, one can take
appropriate action since diagnosis maps-to
anoma 1 y and is-associated-with
correct ive-act ion. The whole process of
performing a diagnosis is fully dependent on what
diagnostics knows about the test-sub ject. This
is captured by knowledge that models
test-subjectandapplies-in context.

Testing can be performed under a wide variety of
contexts. Indeed, the context completely defines the
requirements and objectives of the test process. For
example, in the context of specification compliance,
testing can determine whether or not a design or a
manufactured unit conforms to specifications. In the
context of acceptance testing or product delivery, testing
can determine if the unit satisfies a set of customer
requirements. During performance or operational
evaluation, testing can be used to determine optimal
performance parameters for the system. In maintenance,
testing can assist in detecting and isolating faults.

The primary advantage of providing an abstract
model for test and diagnosis and associating that model
with a “system view” of the test subject is that it provides
a means for abstracting details out of the test problem
until needed. This in turn permits optimizing the structure
of the test problem, thus managing the complexities
inherent in manipulating large, heterogeneous systems.
For this to work, we need to be able to see how to map
real systems into the model. This in turn enables us to
identify the critical elements of the test problem and to
optimize the solution. In this section, we map two
“systems” into the model to illustrate.

The first system we consider is very simple. Consider
an integrated circuit containing four D flip-flops (e.g., an
SN5475). The test-sub ject would correspond to the
this IC, and we would identify the attributes of the
IC as the nominal behavior of the chip (as we might find
in the truth table for each of the flip-flops). In addition,
we might add characteristics such as voltage, temperature
range, orientation of the pins, size and color of the
packaging, etc. The actual set of attributes of interest to us
would depend on the context under which we are
testing. If we only care about failure modes associated
with the pins and the logic of the chip, we may restrict our
focus to the logic values observed at the pins. If we are
interested in manufacturing issues, we might include
characteristics of packaging.

For the sake of discussion, we limit the context to be
assessing the logical performance of the chip at the pins.

Paper 40.3
1026

Thus we will restrict our attention to the logi:
specification and to the set of stuck-at faults. This set cf
faults would define the anomalies that might b:
exhibited by the chip. If we use a digital tester with a .fault
dictionary, then knowledge would correspond to th]:
fault dictionary itself and Idiagnostics would includl:
the test controller and the matching algorithm in tb:
dictionary. The tests woluld be defined by the vectors ill
the fault dictionary (actually, each of the output values for
each vector would correspond to a different test).
Whenever a vector is proceissed, the associated tests ~ " d d
either pass or fail (thus we know the outcomes), ancl
these outcomes would point to the possible anomalieis of
the chip. In th event the chip is faulty, poss;iblc:
correct ive-act ions include replacing the chip or
re-setting (or re-soldering) ithe chip in the socket.

The role AI-ESTATE plays in this environment i,;
two-fold. First, a model coinforming to the EDIM defined
by 1232.1 can be used to capture the diagnostic know1e:dgc:
resident in the fault dictioriary [19]. This means that thc:
diagnostic knowledge inherent in fault dictionaries can h:
exchanged in a standard way between test systems by
using IEEE Std 1232.1. When coupled with anothe:
standard such as P1029.1 (WAVES), P1445 (DTIF), 0:
PI450 (STIL), complete digital test information can h;
tied to an encapsulated diagnostic system to facilitatt :
efficient and accurate diagnostics.

The second role for A:I-ESTATE facilitates a mean!;
for replacing the traditional, but often proprietary, faul L
dictionary signature matching process. By provitlinj;
standard services for aplplying and interpreting tes :
results, an AI-ESTATE-coinfomant reasoner can replact:
the signature matcher.

For the second system, we consider a case at the other
end of the spectrum. Consider a network of satellites iri
orbit that provide the backbone for a communicat.ion: I
network. One test context of interest would be to vc:rifir
that all of the defined links in the network are presen:
(including satellite-to-satellite cross links and ground
links). Thus we have defined our test-sub ject to br
the connectivity of the network. Attributes of thi:;
system might include transmission of messages bemeer I

two points in the network in a reasonable period of time,
and we could define t e s t s to be a set of messages tha:
traverse the network in some predictable way. Tht:
anomalies would correspond to links being down.

For this system, the knowledge required foi.
diagnosis and the associated diagnostics might hi
significantly different from the fault dictionary of the firs:
system. For example, it is possible we would be ablle tcl

rely on a set of SNMP (simple network managemen:
protocol) traps to signify when a link drops in the network:
(assuming the endpoints of the links are treated as SNME'

managed objects). In this case, the knowledge would
correspond to the MIB (managed-object information
base), and the diagnostics would be a passive
network monitoring system or alarm correlator.

Here, the AI-ESTATE application is also two-fold.
Many network systems and associated network
management systems utilize heterogeneous software
technology. To date, they have focused on information
provided by standard protocols and specifications of
managed objects and not on capturing information
relating network alarms to possible causes. Similar to the
fault dictionary discussed above, models to be used in
alarm correlation can be developed, merged, and
exchanged between applications in a network
environment using IEEE Std 1232.1. Similarly, the alarm
correlation and fault isolation services needed in network
fault management and trouble ticketing systems can
utilize IEEE Std 1232.2.

7. Industry Acceptance

The AI-ESTATE standard has been under
development for six years under the sponsorship of three
IEEE societies-the Computer Society, the Aerospace
Electronic Systems Society, and the Instrumentation and
Measurement Society. Current membership on the
subcommittee includes representatives from academia
(University of Connecticut and Johns Hopkins University),
government (U.S. Navy, U.S. Air Force, U.S. Army), and
industry (McDonnell Douglas, Boeing, NCR,
AlliedSignal, IET Intelligent Electronics, ARINC, Etec).
In addition, the subcommittee has representatives from
several countries other than the United States (United
Kingdom, France, Germany).

Recently, with the approval of IEEE Std 1232-1995
and IEEE Std 1232.1-1997, the International
Electrotechnical Commission's Technical Committee 93
(IEC/TC93), which focuses on standards for design
automation, accepted a proposal to advance the AI-
ESTATE standard for fast track standardization at the
IEC level. Current membership of IECRC93 includes
representatives from Denmark, Finland, France,
Germany, Japan, the United Kingdom, and the United
States. Sponsorship for AI-ESTATE fast track came from
the French delegation. The IECRC93 is best know for
standardizing EDIF 3 0 0 and VHDL at the international
level.

In addition to the broad support within the standards
community, several tool vendors are committed to
enhancing or providing tools that conform to the AI-
ESTATE standard. Several tools already implement pre-
standard versions of the AI-ESTATE models, including

Paper 40.3
1027

ARINC’s System Testability and Maintenance Program
(STAMP) and Portable Interactive Troubleshooter
(POINTER), Detex’s System Testability Analysis Tool
(STAT), IET’s TechMate, Giordano Associates’
Diagnostician, Qualitech’s Testability Engineering and
Maintenance System (TEAMS), and the Navy’s
Integrated Diagnostic Support System (IDSS). These tools
are likely to be upgraded to the AI-ESTATE standards in
the near future.

8. Future Work

In spite of the large amount of work that has been
done on the AI-ESTATE standards and the wide
acceptance of the standards in government and industry,
much additional work needs to be done to keep the
standards in pace with technology advances. Currently,
several projects are underway within the AI-ESTATE
subcommittee to do just that.

First, we recognize that there are more approaches to
performing diagnosis than using fault trees and diagnostic
inference models. Currently, we are in the process of
defining a constraint model that will capture temporal,
logical, and resource constraints in testing and diagnosing
a system. Related to this is work underway in the ABBET
(A Broad Based Environment for Test) subcommittee and
EDIF committee defining a test requirements model
(TeRM). TeRM that includes constraints for capturing
information about the behavior of a product and a test
resource. We expect to be able to work with the
constraints defined in TeRh4 to facilitate reasoning with
constraint-based systems.

In addition to the constraint model, we anticipate
developing models for rule-based systems and for
connectionist systems. Rule-based systems provided the
first success stories in diagnosis and artificial intelligence.
While both the EDIM and the constraint model would be
able to capture the logical information contained in a rule
base, a separate model is required that is tailored to the
rule-based architecture.

In addition, neural networks and fuzzy systems have
shown tremendous promise in diagnostics, especially in
the presence of noise and error. While it is unclear at this
time what a standard representation of a neural network
would look like, we feel it is a worthwhile endeavor to
explore the possibility of defining such a standard.

Upon defining additional models for knowledge
exchange, we will also need to define standard services for
accessing and manipulating these models. Thus we see
that the development of services and the development of
data models cannot be done independently. While
objectives for these two activities can be separated, the

common role the information plays in both contexts
necessitates developing the models and the services
together.

As discussed in section 6, diagnosis occurs within
some context. In fact, the context is central to determining
the scope of the test and diagnosis problem.
Unfortunately, capturing information about context in a
standard way is problematic. The number of variables
associated with context is excessive, and the relationships
between those variables are frequently unknown.
Nevertheless, we find that proper interpretation of
diagnostic and test information relies upon a common
understanding of the context in which testing takes place.
As a result, we are beginning to develop a model of
context for diagnosis. Recent work in non-monotonic
reasoning and categorical reasoning offer promise in
formalizing context for this problem [20].

9. Conclusion

Reasoning system technology has progressed to the
point where electronic systems are employing artificial
intelligence as a primary component in meeting system
test and verification requirements. This is giving rise to a
proliferation of AI-based design, test, and diagnostic tools.
Unfortunately, the lack of standard interfaces between
these reasoning systems is increasing the likelihood of
significantly higher product life-cycle cost. Such costs
would arise from redundant engineering efforts during
design and test phases, sizable investment in special-
purpose tools, and loss of system configuration control.

The AI-ESTATE standard promises to facilitate ease
in production testing and long-term support of systems as
well as reducing overall product life-cycle cost. This will
be accomplished by facilitating portability and knowledge
reuse and sharing of test and diagnostic information,
among embedded, automatic, and stand-alone test systems
within the broader scope of product design, manufacture,
and support.

Acknowledgments

We would like to thank the members of the AI-
ESTATE subcommittee of SCC20 and to the many
reviewers of the AI-ESTATE standards. Especially, we
thank Randy Simpson, Greg Bowman, Tim Bearse, Tim
Wilmering, Rick Maguire, Mark Kaufman, Tony
Bartolini, Jack Taylor, Sharon Goodall, Mukund Modi,
and Helmut Scheibenzuber for their assistance in bringing
this standard to fruition.

Paper 40.3
1028

References

[l] IEEE Std 1232-1995. 1995. Trial Use Standard “for
Artificial Intelligence and Expert System Tie to
Automatic Test Equipment (AI-ESTATE): Overview
and Architecture, Piscataway, New Jersey: IElEE
Standards Press.

[2] IEEE Std 1232.1-1997. 1997. Trial Use Standard,for
Artificial Intelligence Exchange and Service Tie to
All Test Environments (AI-ESTATE): Data and
Knowledge Specification, Piscataway, New Jersey:
IEEE Standards Press.

[3] IEEE P1232.2. 1996. Trial Use Standard Jfbr
Artificial Intelligence Ekchange and Service Tie to
All Test Environments (AI-ESTATE): Serv,;ce
Specification, Draft 2.2.

[4] IEEE Std-1149.1-1990. 1990. Standard Test Access
Port and Boundary Scan Architecture, Piscatawi~y,
New Jersey” IEEE Stanclards Press.

[5] IEEE P1450. 1996. Standard Test Zntetjiirce
Language (STIL), Draft 0.23.

[6] IEEE P1252. 1993. Standard for a Frame Based
Knowledge Representation, Draft 2.1.

[7] IS0 10303-11:1994. 1994. Indusm’al Automahon
Systems and Integration--Product Data Representah on
and Exchange-Part I I : EXPRESS Lunguage Refererre
Manual, Geneva: IS0 Press.

[8] Simpson, W. R and J. W. Sheppard. 1993. ‘Fault
Isolation in an Integrated Diagnostic Environment,”
IEEE Design and Test of Computers, 10(1):52-66.

[9] Simpson, W. R and H. S. Balaban. 1982. ‘The ARJ.PJC
System Testability and Maintenance Program
(STAMP),” Proceeding:r of A UTOTESTCON ‘82,
Dayton, Ohio.

[lOIPeng, Y. and J. A. Reggia. 1990. Abductive Inference
Models for Diagnostic Problem-Solving, New York:
Springer-Verlag.

[1 11 Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, San Mateo,
California: Morgan-Kaufmann Publishers.

[121 Simpson, W. R. and J. W. Sheppard. 1994. System Test
and Diagnosis, Norwell, Massachusetts: Kluwer
Academic Publishers.

[131 IS0 10303-21: 1994. 1994. Industrial Automation
Systems and Integration-Product Data Representation
and Exchange-Part 21: Clear Text Encoding of the
Exchange Structure, Geneva: IS0 Press.

[14]Sheppard, J. W. and W. R. Simpson. 1996. “A
Systems View of Test Standardization,” Proceedings
of AUTOTESTCON ‘96, Dayton, Ohio, pp. 384-389.

[15]Booch, G. 1994. Object-Oriented Analysis And
Design With Applications, 2nd Ed. Benjamin
Cummings.

[16]Schlaer, S . , and Mellor, S. L. 1992. Object
Lifecycles: Modeling the World in States, Englewood
Cliffs, New Jersey: Yourdon Press.

[171 FIPS-183. 1993. Integrated Definition for Function
Modeling (IDEFO). National Institute of Standards
and Technology.

[18]Schenk, D. A. and P. R. Wilson. 1994 Information
Modeling: The EXPRESS Way, New York: Oxford
University Press.

[19]Sheppard, J. W. and W. R. Simpson. 1996.
“Improving the Accuracy of Diagnostics Provided by
Fault Dictionaries,” Proceedings of the 14th IEEE
V U 1 Test Symposium, Los Alamitos, California:
IEEE Computer Society Press, pp. 180-185.

[20]Akman, V. and M. Surav. 1996. “Steps Toward
Formalizing Context,” AI Magazine, 17(3):55-72.

Paper 40.3
1029

