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Chapter 5
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Abstract: Recent attention to using “case-based” reasoning for intelligent fault
diagnosis has led to the development of very large, complex databases of
diagnostic cases. The performance of case-based reasoners is dependent
upon the size of the case base such that as case bases increase in size, it is
usually reasonable to expect accuracy to improve but computational
performance to degrade. Given one of these large case bases, it is
advantageous to attempt to induce structure from the case base whereby
the diagnostic process can be made more efficient. In addition, certainty
properties of case based reasoning make fault diagnosis difficult, in which
case inducing structure and applying a method for reasoning under
uncertainty becomes advantageous. In this chapter, we discuss an
approach to analyzing a diagnostic case base and inducing a compact
knowledge base using the diagnostic inference model with which efficient
diagnostics can be performed. We then apply an approach to reasoning
using Dempster-Shafer theory to improve the diagnostics using the
resultant model.
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1. INTRODUCTION

In the process of developing an optimized approach to system test and
diagnosis, it is desirable to apply as much available information to the task as
possible. Test and diagnosis is a process of information gathering and analysis,
and several approaches have been applied to the problem. Techniques classified
as “advanced” frequently fall in the realm of artificial intelligence and can include
rule-based methods, model-based methods, and instance-based methods.

Rule-based methods reason with sets of heuristics (i.e., rules of thumb) to
draw inferences from test results to make a diagnosis. Sometimes these rules
include information on ways to “optimize” the test process. This approach
proceeds from the premise that the rules correspond to a reasoning process that
represents approaches “experts” apply to problem solving. Model-based methods
use a model of the system to be tested to determine “optimal” approaches to
testing. Diagnosis involves reasoning about this model under the premise that
anything that can be concluded about the model would also be reflected in the
actual system. Instance-based methods treat the test problem “extensionally.” In
other words, rather than capturing rules for inference or modeling the system to
be tested, instance-based methods tackle the problem by storing examples of past
experience. The premise associated with this approach is that most problem
solving involves considering and adapting past experiences rather than using
some underlying domain theory or reasoning process.

Diagnosis is a favorite problem for researchers in artificial intelligence
and operations research because of the difficulty of the problem, the generality of
the problem, and the applicability of a variety of techniques to solving the
problem. As one might expect, no single approach can be claimed as the “best”
approach to diagnosis. For this reason, it makes sense to consider combining
approaches, taking advantage of the best features of each of the individual
techniques to yield a robust, “multi-strategy” approach to solving the problem.

In this chapter, we discuss ideas for combining an instance-based method
(case based reasoning) with a model-based method (diagnostic inference
modeling) to improve the robustness of diagnostic models and diagnostic problem
solving. The primary objective of this exploration is to consider an approach to
constructing diagnostic inference models from past experience to produce robust
models of the system to be tested. The advantages of such a combination include
robust knowledge (as reflected in the stored experiences), increased efficiency
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(resulting from analysis of the generated model), and improved diagnostic
accuracy.

2. DIAGNOSIS WITH CASE BASED REASONING

Case based reasoning (CBR) is a method of reasoning that combines
elements of instance-based learning and data base query processing. Typically,
CBR systems consist of the following elements:

1. A case base
2. A case retrieval system
3. A case adaptation system
4. A case modification system
5. A case update system

These systems work together is what is called the “CBR” cycle. This cycle is
illustrated in Figure 1 and consists of four activities–case retrieval, case reuse,
case revision, and case retention.

When a problem is presented to the CBR system, it is treated as a “new
case.” This case is matched with other cases in the case base (also referred to as
“memory”) until the case most similar to the new case is found. The process of
identifying the most similar case is referred to as retrieval and may use general
knowledge about the problem to guide the search. Once a case is retrieved from
the case base, it is reused by the CBR system to recommend a solution to the
problem. The process of reuse applies general knowledge about the problem to
adapt the solution associated with the retrieved case to the new problem. The
resulting solution is then recommended to the user. Ultimately, a solution will be
found for the problem at hand. This solution may be different from the
recommended solution. At this point, the solution associated with the case is
further revised to account for the actual solution. This revision may include
adding, deleting, or modifying information in the case to facilitate proper
application of the case in the future. Finally, the new case (with the revised
solution) is retained in the case base for future application.
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Test and diagnosis can use CBR in several ways. The simplest method
involves defining a case as a collection of test results and attempting to determine
an appropriate diagnosis given these results. This use of CBR is equivalent to a
classification problem as characterized by instance-based learning (IBL). When
using the IBL approach, the CBR cycle is simplified in that no adaptation during
reuse is required. Further, revision only occurs when the diagnosis was wrong. At
that point, only the diagnosis is changed in the case. Finally, the retrieval process
is very simple. All of the cases are nothing more that feature vectors with an
associated diagnosis f f f dn i1 2, , , ;�

. The features in the feature vector

correspond to test results and may be unknown. Retrieval then consists of
“matching” the new case with all of the cases stored in the case base and selecting
the most similar case.

When considering possible similarity metrics, numerical features are
frequently compared using a member of the family of Lp norms. An Lp norm is
defined to be
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Figure 1. CBR Cycle (Aamodt and Plaza, 1994)
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The most common values for p are 1, 2, and ∞ and yield “Manhattan” distance,
Euclidean distance, and max-norm distance respectively. Specifically, these
metrics can be computed as
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If we were using pass/fail results for testing, we would use either L1 or L2 (which
would be equivalent). Note this is exactly what is done with fault dictionary-
based diagnosis. With real values, we would most likely use L2. Symbolic results
are a bit more complicated and would require something like Stanfill and Waltz’s
“value difference metric” (1986). Regardless of the metric, retrieval would be
done as

case new c
c CASE BASE

=
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_
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A common variant to this “nearest-neighbor” method is called “k-nearest
neighbor” and involves retrieving the k nearest cases from the case base and
combining (or voting among) the recommended diagnoses. This approach has
been demonstrated to approach the Baye’s optimal solution as k increases. Other
variants involve weighting the solutions based on distance and weighting the
features based on significance (or some other factor).

Note that nearest neighbor classification assumes that the mathematical
“space” corresponding to the classification problem is a metric space. A metric
space is defined to be a pair 〈Σ,δ〉 consisting of a set of points Σ and a distance
measure δ. Further, this distance measure is defined to be single-valued, non-
negative, and real-valued for all members of the set Σ, i.e.,
∀ ∈ ∈ℜ ∪+s s s si j i j, , ( , ) { }Σ δ 0 with the following properties:
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1. Reflexivity: δ(si,sj) = 0 iff si = sj,
2. Symmetry: δ(si,sj) = δ(sj,si),
3. Triangle Inequality: δ(si,sk) ≤ δ(si,sj) + δ(sj,sk).

This assumption will be important when we assess the expected performance of
case-based methods in fault diagnosis.

A second approach to applying CBR to diagnosis considers a complete
“plan” for diagnosis as a case. This approach assumes the plans can be
determined in connection with different situations and that the situations can be
characterized prior to diagnosis. The case features would be this characterization,
and the case solution would be the recommended plan. Due to the complexities of
developing these plans and characterizing the context of diagnosis, this approach
is not usually used.

3. FAULT DICTIONARIES AS CASE BASES

One common approach to fault isolation related to case-based reasoning
is based on the fault dictionary. Fault dictionaries define a mapping from
combinations of input vectors and output vectors to faults. Formally, this is
represented as FD I O F: × →  where FD is the fault dictionary, I is the space of
input vectors, O is the space of output vectors, and F is the space of faults. At a
more basic level, this can be represented as FD Fn m:{ , } { , }0 1 0 1× → . This
representation makes the fact the vectors are binary explicit. In the simplest case,
diagnosis can be performed with a fault dictionary by finding a direct match
between the input/output vectors and a fault in the dictionary. Indeed, with a
proper model, high confidence tests, and a reasonable fault universe, many faults
will be identified in this manner.

For illustration purposes, we will use a simple digital circuit
(Abramovici, Breuer, and Friedman, 1990). This circuit is given in Figure 2.
From this figure and assuming a single-stuck-at fault model, we can identify 26
possible stuck-at faults. Each stuck-at fault is denoted as xi where x is a letter
matching the line where the fault occurs, and i is either 0 or 1 (denoting stuck-at-
0 or stuck-at-1 respectively). We close the fault universe by defining a special
“fault” in which no fault has been detected and denote this nf. The fault dictionary
would then include the input vectors (i.e., the patterns applied to lines a, b, and c)
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and the expected response vector (in this case the value at m). Also associated
with that entry would be the list of faults detected should the response be in error.
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Figure 2. Sample combinational circuit.

In the following sub-sections, we will discuss how to use this information
to construct the fault dictionary and how to diagnose faults with the fault
dictionary. We will then discuss the problem of diagnosis given inexact matches
with elements in the dictionary and describe the nearest neighbor approach for
diagnosis with inexact matches.

3.1 Constructing a Fault Dictionary

To explain how to construct a fault dictionary, we will walk through the
building of the fault dictionary for the circuit given in Figure 2. In this circuit, we
see that there are only three input lines, therefore there are only eight possible
input vectors (disregarding timing and faults other than stuck-ats). For our
example, we can examine all eight inputs; however, in general, enumerating all
possible vectors would be too costly. If the circuit had been a sequential circuit,
then the three input lines might require several additional tests because of the
sensitivity of the circuit on the previous state of the circuit. Not surprisingly, this
combinatorial explosion is significantly worse for larger circuits. Several tools
such as LASAR (Richman and Bowden, 1985; Grant, 1986) provide assistance
to the modeler in developing input vectors and detecting stuck-ats and other faults
at output vectors.

Limiting ourselves to the combinational case (and the example in Figure
2), we begin constructing the fault dictionary by considering the possible input
patterns. Each input pattern can be regarded as a test. For example, one test
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might be the pattern (0 1 1). Tracing through the circuit, we would expect the
output of the circuit to be (0). If the value is (1) then a fault must be present in
the circuit. The question then becomes, what failure modes (i.e., stuck-at faults)
can cause the erroneous output? Again, examining the circuit identifies a1, b0, c0,
d1, f0, i1, h0, k1, l1, or m1 as possible causes. Similarly with the pattern (0 0 0), we
would expect the output of the circuit to be (1) and an output of (0) will implicate
one of the following faults: a1, b0, b1, c0, c1, d1, f0, f1, h0, i1, j1, k0, k1, l1, or m1.

Completing the analysis finds several failure modes are “ambiguous,”
meaning no test vectors can differentiate them. These ambiguity groups, which
were taken from (Abramovici et al., 1990) are shown in Table 1. The approach
used for determining ambiguous faults is called “fault collapsing” and consists of
identifying lines in the circuit that will have identical values regardless of input or
fault because of the logical nature of the gates in the circuit. For example, if we
examine the initial AND gate with inputs b and c, we note that any of b0, c0, and
f0 must be indistinguishable because either b0 or c0 (or both) will force f to have a
value of zero, whether or not f is faulty. This approach to ambiguity analysis is
incomplete, as we will show later, but provides a first cut on the ambiguity in the
fault dictionary. From this point forward, we will refer to a particular ambiguity
group by the first member of the group.

As mentioned above, the fault dictionary can be constructed in one of two
ways. The first approach includes an entry for all of the input/output vectors, and
each entry includes the list of faults detected.1 For the circuit in Figure 2, this

                                               
1 In an attempt to improve the robustness of the standard fault dictionary (based on the single

stuck-at fault model), Richman and Bowden (1985) introduced the concept of a “possible
detection” in their modern fault dictionary. A possible detection is one that “may” be

Table 1. Ambiguity groups for sample circuit.

Number Ambiguity Group Number Ambiguity Group
1 a0 8 g1

2 a1 9 i0, h1, l0, j0, e1

3 b1 10 i1, h0

4 c1 11 j1, e0

5 d1 12 k0, d0, g0

6 f0, b0, c0 13 k1, l1, m1

7 f1 14 m0
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means 16 entries would be required; however, we can eliminate all of the
“nominal” cases (i.e., the cases where the outputs are correct) since the only
associated fault would be nf.2 This reduces the number of entries in the dictionary
to eight. For example, entries to the table for the example vectors would be

0 1 1 1 : a1  d1  f0  i1  k1.
0 0 0 0 : a1  b1  c1  d1  f0  f1   i1   j1  k0  k1.

Diagnosis using this form of fault dictionary consists of collecting the
sets of detections corresponding to erroneous outputs and taking the intersection
of these sets. The fault or faults reported would be given by this intersecting set.
For example, suppose in addition to patterns (0 1 1) and (0 0 0), we also ran
pattern (1 1 1). The entry in the fault dictionary for this pattern would be

1 1 1 0 : a0  f0  k0  m0.

Assuming both of the vectors (0 1 1) and (1 1 1) yielded erroneous outputs, we
would take the intersection of the two sets which would lead to a diagnosis of f0

(intersection of the set {a1  d1  f0  i1  k1} and {a0  f0  k0  m0}). Note that if we had a
circuit with more than one output, we could construct separate fault dictionaries
for each output, “sensitizing” the appropriate paths leading to that output to
determine the faults detected. These dictionaries could be combined into one large
dictionary, but this may lead to further confusion should there be a mismatch
between the target signature and the signatures in the dictionary.

The second approach to representing the fault dictionary is to construct a
table in which each input vector corresponds to a row in the table. The columns
of the table correspond to all of the ambiguity groups in the circuit. Each cell in
the table contains the expected output from the circuit. The fault dictionary for
our example circuit would be represented in this form as in Table 2. This
dictionary assumes eight tests as follows:

t1 : 0 1 1 t2 : 1 1 0 t3 : 1 0 1 t4 : 1 1 1

                                                                                                                   
detected when an unexpected test result is encountered. Possible detections arise when
indeterminate states propagate through the system.

2 Unless there are undetected failure modes in the circuit. Of course, in this case, these
nondetections would be ambiguous with nf, and we decided to refer to the ambiguity group
by a representative member, namely nf. Thus the reduction is still valid.
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t5 : 0 0 1 t6 : 0 0 0 t7 : 0 1 0 t8 : 1 0 0

Diagnosis using the second format matches the results of running the
tests with the columns in the table. For example, suppose we run all eight tests
and get (1 0 0 1 1 1 1 0) as the set of responses. This pattern would match both
d1 and i1, indicating ambiguity between the two associated groups.3 The
significant observation to be made here is that ambiguity is determined by the
actual tests used to test the circuit, and selecting a subset of possible test vectors
could result in a variety of different ambiguity groups. For example, if we only
evaluated t1, t2, t3, and t4, we would find a1 is now ambiguous with both d1 and i1.

3.2 Diagnosis with Nearest Neighbor Classification

The most common approach to generating and using fault dictionaries for
diagnosis is based on the second approach discussed in the previous section. We
will show later in this chapter how the first approach can be used to generate
more robust diagnostics. For now, we will consider the approach of matching
vectors of test results. In particular, we want to consider the case where the
vector of test results fails to match any of the columns in the fault dictionary.

Given the single stuck-at fault model, we assume the circuit simulation
accurately reflects the performance of the actual circuit. In other words, we

                                               
3 The previous set of ambiguities was constructed assuming all of the test vectors were available.

This analysis was performed using a fault-collapsing technique (Abramovici et al. 1990).
However, as we see, d1 and i1 are also inherently ambiguous, as are g1 and j1, illustrating
that fault collapsing is not sufficient for robust ambiguity analysis.

Table 2. Fault dictionary for sample circuit.

a0 a1 b1 c1 d1 f0 f1 g1 i0 i1 j1 k0 k1 m0 nf
t1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0
t2 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0
t3 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0
t4 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1
t5 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1
t6 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1
t7 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1
t8 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0
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assume the only faults of interest to us are stuck-at faults, these faults are
accurately represented in the circuit model, and only one of these faults will be
encountered at a time. Given these assumptions and the fact digital circuit models
are deterministic (i.e., the outputs are directly determined by the inputs and, in the
case of sequential circuits, the internal state), whenever the fault signature fails to
match any exemplars in the fault dictionary, the circuit must be exhibiting
behavior that was not represented in the circuit model (i.e., the problem lies in the
fault model, not the test results).

Debaney and Unkle (1995) assert, “In practice, it is very seldom that an
observed fault signature has an exact match in the fault dictionary.” This result
motivates the need for an “inexact” pattern matching algorithm when using a fault
dictionary. Inexact matches may be caused either by submitting noisy inputs to
the circuit, introducing noise in the output, omitting an important signature from
the dictionary, or having to deal with multiple faults or indeterminate states, thus
invalidating the signatures. Noisy input data may yield unexpected results, but
since we have control over the inputs, noise at this level indicates a problem in the
test equipment or the test itself. Noisy output data indicates either a problem in
the test equipment, a failure mode not included in the model, or an error in the
circuit model. It is possible that vectors have not been included in the fault
dictionary which, when applied to the circuit, would yield unexpected results, but
having control over the test process should preclude applying those input vectors.

The current practice for processing inexact matches in fault dictionaries
applies various distance measures to find the column in the dictionary that most
closely matches the target vector. The literature reports two different distance
measures used with the fault dictionary:

1. Hamming distance: ∑ −=
b

b
j

b
iji ssss ),(δ , where b denotes the bit

compared,

2. Overlap metric: δ ( , )s s
s s

s s
i j

i j

i j

=
∩

∪
.

Given these distance measures, the fault dictionary can be characterized as a
metric space. However, we still need to determined whether any distance measure
satisfying the above properties is reasonable to apply to our problem.
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As mentioned above, the presence of possible detections complicates the
matching algorithm in that matches are considered but mismatches are ignored.
For example, the LASAR approach uses a variation on nearest-neighbor
matching in which it is assumed all of the vectors initially match the target vector,
and scores for signatures in the fault dictionary are penalized when a mismatch
occurs. With mismatches on definite detections and non-detections, a large
penalty is applied, but when the mismatch occurs on a possible detection, only a
small penalty is applied. This has the effect of “weighting” the test attribute based
on the certainty of the test being able to detect (or clear) a particular fault.

4. FAULT DICTIONARY COMPRESSION

Generating and using full fault dictionaries or case bases for complex
systems, in general, is not practical due to the intense computational
requirements, even when limited to simplified fault models. For this reason,
several approaches exist to reduce the size of the case base by either not
generating entries that would add little diagnostic information or by compressing
the case base following generation (Tulloss, 1978; Tulloss, 1980; Ryan, 1994).

The idea behind most of the compression techniques is to apply a greedy
heuristic to decide whether or not to include a case in the case base. The greedy
approach is used since the problem of determining the smallest set of examples to
isolate all faults is reducible to the set-covering problem which is known to be
NP-complete, In general, a heuristic evaluation function (HEF) is used (e.g.,
number of new faults detected or isolated), and cases are added that improve the
value of the HEF the “most.” Alternative approaches begin with all of the cases
or signatures in the case base and “drop” faults with HEFs with the lowest value.

These compression techniques are analogous to the problem of selecting
relevant features in pattern recognition. The two most common approaches to
feature selection are step-wise forward selection and step-wise backward selection
(Devijver and Kittler, 1982). In step-wise forward selection, features are added
until classification accuracy begins to degrade, and the features are selected
incrementally based on maximizing classification accuracy. In step-wise
backward selection, features are removed using the same criteria. These
approaches are analogous to determining which tests to include in the fault
dictionary and form a method of compressing the dictionary along the test axis.
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In the pattern recognition literature (Dasarathy, 1991), approaches to
reducing the size of the instance base that more closely relate to the common fault
dictionary compression methods are known as editing methods. Frequently, it has
been found that editing can improve performance of nearest neighbor
classification, especially when the instance base has a large number of noisy
features or noisy examples. Early work by Wilson (1972) showed that examples
could be removed from a set used for classification and suggested that simply
editing would frequently improve classification accuracy (in the same way that
pruning improves decision trees (Mingers, 1989)). Wilson’s algorithm classifies
each example in a data set with its own k nearest neighbors. Those points that are
incorrectly classified are deleted from the instance base, the idea being that such
points probably represent noise. Tomek (1976) modified this approach by taking
a sample (> 1) of the data and classifying the sample with the remaining
examples. Editing then proceeds using Wilson’s approach. These approaches are
analogous to determining which fault signatures to include in the fault dictionary
and form methods of compressing the dictionary along the fault axis. Any
compression method discards information. In the most benign case, it discards
“unneeded” information resulting in no effective loss in information. However,
when faced with the possibility of being unable to match signatures exactly, it is
unclear what information is unneeded, and compression may aggravate the
matching problem.

5. PROBLEMS WITH INSTANCE BASED DIAGNOSIS

For maintenance to be cost effective, the troubleshooting strategy applied
to a unit under test must be efficient and effective. Efficiency is important for
reducing the cost of doing maintenance by optimizing the required maintenance
resources. Effectiveness is important since ineffective maintenance leads to
increased logistics costs and sparing requirements. Effective includes the
important attribute of accuracy. Ineffective repair and its effects can be attributed
directly to lack of effective troubleshooting.

We claim that applying the nearest neighbor classification method to
outcome-based diagnosis such as that used with most case-based reasoners and
fault dictionaries leads to ineffective diagnostics and, thereby, ineffective repair.
In fact, we find in (Abramovici et al., 1990) that the following problems are
already known to exist in using fault dictionaries. First, the computational
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requirements for computing fault dictionaries is quite high, making generating a
dictionary for a large circuit with long test sequences expensive. Thus dictionary
compression is required. Second, fault dictionaries depend on a pre-defined “fault
universe” and “test universe.” In other words, the fault dictionary will find only
the faults specified in the dictionary, and these faults can be found only with the
specified set of tests. The primary assumption here is that the fault is a member
of the set defined in the fault dictionary and the output vector of tests is in error in
one or more bits. Nearest neighbor would treat this like a noisy signal problem,
finding the existing candidate with the closest match of attributes. Finally,
Abramovici et al. (1990) note that the nearest-neighbor approach to matching
inexact patterns in the dictionary, while effective in many cases, “is not
guaranteed to produce the correct diagnosis.”

In the following sections, we will focus on this third issue and illustrate
that, in fact, nearest neighbor is a poor choice for handling inexact matches in the
general case. We will discuss sources of error in the nearest neighbor approach
and suggest that, due to the discrete nature of the problem, nearest neighbor is
less appropriate than other available approaches for diagnosis with the same data.
Further, we will show that the primary cause of nearest neighbor’s poor
performance is its focus on the classification (i.e., fault) space, rather than the
attribute (i.e., test) space.

5.1 Sources of Error Using Nearest Neighbor

One of the simplest ways to understand how nearest neighbor
classification works is by casting the approach in a geometric framework. In
general, we can think of points stored in a data base as representing concepts to
be identified. When presented with a new point, we look at the “exemplars” stored
in the data base to help us decide which concept best classifies the new point. In a
sense, we are looking for a dividing line between concepts in the data base and
look for the side of the line on which the new point falls.

In fact, this is exactly how nearest neighbor works. Consider the points
shown in Figure 3. If the points represent columns in the fault dictionary,
diagnosis consists of finding the point (called an “exemplar”) in the data base that
most closely matches the point to be classified (i.e., the test results).
Geometrically, the “dividing line” between two exemplars used to determine the
nearest neighbor is a line perpendicular to the line connecting the two exemplars.
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Further this line intersects the connecting line at the midpoint between the two
exemplars. This is shown with the same three points in Figure 4. The set of
dividing lines between the exemplars (i.e., the dividing hyperplanes in higher
dimensions than two) is called a Voronoi diagram. Nearest neighbor
classification consists of determining in which region the point to be classified
falls and assigning the corresponding label.

Assuming the data stored in the dictionary is correct,4 at least three
situations arise in which nearest neighbor classification may result in error. The
first case arises when the attributes (e.g., the test results) are irrelevant or
insignificant. This situation is illustrated in Figure 5. In this figure, assume only
one attribute (corresponding to the x-axis) is significant for classifying the points
as either “black” or “white.” Next assume an irrelevant attribute has been added
to each of the points (corresponding to the y-axis). For all practical purposes, we
can assume the second attribute can be modeled as white noise. The vertical line
in the figure represents the correct decision boundary between “black” and
“white,” but the jagged line represents the Voronoi diagram corresponding to the
exemplar set. If a point to be classified falls inside any of the regions labeled

                                               
4 We will not consider here the case where erroneous data may have been introduced into the

exemplar set. Nevertheless, it should be clear that the ability to classify is limited by the
quality of the exemplars.

A

B

C

Figure 3. Nearest neighbor exemplars.
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“error,” that point will be mis-classified. In the case base, an irrelevant attribute
is analogous to considering an output other than in the system under test. Since
we have complete control over which observable outputs to consider, this source
of error should not be a problem; however, care should be taken not to include
tests that add nothing to diagnostic resolution. Such tests introduce noise since
they are “irrelevant.”

The second source of error arises when a significant attribute is missing
from the exemplar set. For example, suppose the points in Figure 6 are correctly
classified along the decision boundary shown. This boundary assumes both
attributes (corresponding to both the x- and y-axes) are present. But suppose the
fault simulator fails to consider the y-axis. In other words, a particular test vector
is not processed by the simulator. This is equivalent to projecting all of the points
into the x-axis. In Figure 6, we see the decision boundary then overlaps which
leads to another source of error. In the case base, the overlap is equivalent to
increasing ambiguity between failure modes, and can arise as a direct result of
case base compression when reducing the set of tests.

The third source of error arises from the fact that nearest neighbor can be
considered a method for function approximation. In the case where the decision
boundaries do not consist of linear segments, the actual boundary can only be
approximated by nearest neighbor. In outcome-based testing, all of the stored

B

A

C

Figure 4. Voronoi diagram for example points.
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points exist on the corners of an n-dimensional hypercube, so nearest neighbor is
able to model the decision boundaries exactly. However, if points are missing
from the space of possible points, then it is possible that the decision boundaries
will not be modeled correctly. For example, suppose the white point shown in
Figure 7 is missing. Then presentation of that point for classification later will
result in an error since all points on the lower left side of the decision boundary
will be classified as “black.” Unfortunately, this is analogous to what happens
when compressing the set of fault signatures, except in such a case, the missing
point corresponds to a missing failure mode. Thus classification is impossible
since a class is completely unrepresented.

5.2 The Appropriateness of Nearest Neighbor

In determining the appropriateness of nearest neighbor for outcome-based
diagnosis, we must examine the characteristics of diagnosis and outcome-based

White Black

error

error

error

error

Figure 5. Errors arising from irrelevant attributes.
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case bases. Then we consider the characteristics of the exemplars to be used for
diagnosis and look at the impact of these characteristics on the potential for error.
Given our discussion on error sources, in this section, we will only consider the
case where we may have missing attributes, noisy attributes, or missing
exemplars.

When we construct a case base, we assume several characteristics of the
diagnostic process. First, we assume we will be able to apply all of the stimuli
(i.e., all the tests are available and performable). Further, we assume that the
results we obtain from testing reflect the circuit under test (whether failed or not).
Finally, we assume that all of the failure modes of interest to us are modeled in
the fault represented in the case base.

Nearest neighbor classification is appropriate when the exemplars in the
data base are representative of possible examples to be classified. The exemplars
are intended to model the underlying distributions of the classification space.
Cover and Hart (1967) motivated using the nearest neighbor rule with the
following:

WW WB B B

Figure 6. Error arising from missing attributes.
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If it is assumed that the classified samples (xi, θi) are independently
identically distributed according to the distribution of (x, θ), certain
heuristic arguments may be made about good decision procedures. For
example, it is reasonable to assume that observations which are close
together (in some appropriate metric) will have the same classification,
or at least will have almost the same posterior probability distributions
on their respective classifications.

Unfortunately, the set of exemplars defined by outcome-based testing are not
independently identically distributed (i.e., representative of random variables
associated with the underlying classes or failure modes) according to the
distribution of possible points. This is because most case bases are constructed to
maximize detection, and the concern is only to provide at least one input vector to
detect each failure mode. Further, faults within the system affect more than one
test showing some form of dependence.

missing

Figure 7. Errors from missing data.
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Other possible reasons outcome-based diagnostics are not well suited for
nearest neighbor include the following. For the exemplar set to be effective, it
must be representative of the underlying probability distributions. This assumes
sufficient sample size for each of the classes (i.e., failure modes) in the case base.
Unfortunately, computational complexity precludes generating and using a
comprehensive case base. Many tools apply a “detect limit,” n, which results in
signatures corresponding to some fault being discarded when other signatures
detect that fault at least n times. This approach forces under-representation of the
classification space which violates the assumption of the points representing the
underlying distribution. Also when the underlying distributions of the attributes
and classes are not adequately sampled and those distributions are discrete, it is
nearly impossible for the nearest neighbor classification procedure to be reliable.

In addition, the exemplars generally are not independent; although, an
assumption of independence is necessary for the single stuck-at fault model to
apply. Independence breaks down when we consider the effects of one fault on
other parts of the system (e.g., it is not uncommon for the presence of a fault to
cause another fault). Thus it would appear nearest neighbor is not an appropriate
decision rule for outcome-based diagnostics in the general case.

5.3 Nearest Neighbor Diagnosis and the Error Radius

Under very specific conditions, it may be that nearest neighbor will
provide good diagnosis when using outcome-based testing. Recent work in
network fault management and alarm correlation is analogous to fault-dictionary-
based diagnosis (Kliger, Yemini, Yemini, Ohsie, and Stolfo, 1995). In this work,
the relationships between test results and failure modes are represented using
coding theory where a “codebook” is constructed to include the set of alarms
pertinent to diagnosis and the specific failure modes of interest. Diagnosis then
consists of applying a nearest neighbor classification rule to the codebook with a
set of symptoms to determine the associated failure mode.

In the network fault management problem, the possibility of error in the
test results is quite high; therefore, handling erroneous test results in diagnosis is
critical. To guarantee correct diagnosis in the presence of noise, Yemini et al.
(1994) examine the characteristics of the codebook and define precise conditions
under which nearest neighbor classification is appropriate.
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Central to nearest neighbor being applicable to diagnosis with the case
base (or a codebook) is understanding the nature of an error radius. The error
radius is defined to be the minimal Hamming distance among the code vectors in
the codebook. The codebook is constructed in a way similar to constructing a
fault dictionary. In particular, each row of the codebook corresponds to a failure
mode, and each column corresponds to a symptom. These symptoms are the same
as the tests in the fault dictionary. A cell in the codebook receives the value ‘1’
when the associated symptom appears in the presence of the failure mode and ‘0’
otherwise. Thus the fault dictionary can be converted into the codebook by
converting the actual outputs of the circuit to ‘1’ or ‘0’ depending on whether the
outputs are expected to be in error.

This model can be referred to as a “causality likelihood model.” An entry
in the matrix can be interpreted as the likelihood that the test will detect the
presence of the associated failure mode. In the deterministic case where we
assume the model is correct, the likelihood values would either be ‘0’ or ‘1’. In
the more general case, we can associate a value between zero and one
corresponding to the probability of the test failing given the presence of the
failure mode.

When considering the possibility of error in the fault signature, we wish
to match the signature to the codebook recognizing we will not be able to obtain
an exact match. In such a case, we would like to know the number of errors in the
signature we can tolerate and still find the correct fault. A measure of the
tolerance to error is given by the error radius. For example, if the error radius is
one, this means two signatures in the codebook differ by exactly one bit. If that
bit is in error, we will not be able to distinguish between the two failure modes.
From this we can conclude that the higher the error radius, the more resilient the
codebook is to noise.

Several important assumptions underlie the coding method and the use of
the error radius. The key assumption is that, as with the fault dictionary, the
coding method assumes the underlying model is correct and complete.
Correctness requires the code vectors to be accurately modeled and that error
results in the testing process only. Completeness requires that all relevant failure
modes are included and fully represented by the code vectors; errors arising from
an unanticipated failure mode are assumed not to occur or not to be relevant to
the diagnosis underway.

If in fact the cause of an erroneous fault signature is the test process or
the propagation of the signal through the circuit and not the presence of an
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unanticipated fault in the circuit, then testing within the error radius may be
effective. Table 3 shows a codebook corresponding to the circuit in Figure 2 and
based on the reduced fault dictionary in Table 2. Given this codebook, we find the
error radius is one (if we collapse all ambiguity into a single row in the matrix).
Also, of the 28 = 256 possible code vectors, only 13 are represented. Thus this
simple circuit will not be able to process noisy fault signatures well at all.

In larger circuits, the number of possible code vectors increases
exponentially, yet the number of signatures included in the codebook does not
(since it is not generally practical to generate all possible vectors). Unless
ambiguity increases, the subset of signatures must result in an error radius less
than or equal to the error radius of the complete set. To prove this, note that
eliminating a test vector is equivalent to eliminating an attribute in the exemplar
set (not a whole exemplar). Comparing exemplars in which the attribute value is
different, deletion of the attribute must decrease the Hamming distance, thus
potentially decreasing the error radius. Comparing the exemplars in which the
attribute value is the same, deleting the attribute has no effect on the Hamming
distance, thus not changing the error radius. Thus the potential for error cannot
decrease with the smaller attribute set.

Table 3. Codebook for sample circuit.

t1 t2 t3 t4 t5 t6 t7 t8

a0 0 1 1 1 0 0 0 1
a1 1 0 0 0 1 1 1 0
b1 0 0 1 0 1 0 0 0
c1 0 1 0 0 0 0 1 0
d1 1 0 0 0 0 0 0 0
f0 1 0 0 1 0 0 0 0
f1 0 1 1 0 1 1 1 1
g1 0 1 1 0 0 0 0 1
i0 0 0 0 0 1 1 1 0
i1 1 0 0 0 0 0 0 0
j1 0 1 1 0 0 0 0 1
k0 0 0 0 1 0 0 0 0
k1 1 1 1 0 0 0 0 1
m0 0 0 0 1 1 1 1 0
nf 0 0 0 0 0 0 0 0
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6. DIAGNOSIS WITH DIAGNOSTIC INFERENCE
MODELS

In Chapter 6, we discuss using a diagnostic inference model (also called an
information flow model) to capture relationships between test outcomes and diagnoses
(Sheppard and Simpson, 1998). The concept of the diagnostic inference model is
closely related to the fault dictionary, except that it abstracts the concepts of a test and
a fault to address testing at the “system level” (Sheppard and Simpson, 1991;
Simpson and Sheppard, 1994).

Inherently, diagnostic inference models are difficult to construct. This
difficulty arises from the fact that DIMs require the definition of a comprehensive
set of tests, diagnoses (usually based on known failure modes) and relationships
between the two. Further, special inference types (e.g., asymmetric inference or
cross-linked inference) may be required to capture accurately the inferences
derivable from the test results. Unfortunately, such difficulty increases the
potential for inefficient or even incorrect diagnosis. Further, as systems increase
in complexity, the likelihood of erroneous models increases. Two questions
naturally follow from this problem: 1) How does one develop models that
minimize the chance of an error? 2) If errors occur, how does one identify and
correct them?

Results from machine learning research suggest potential answers to both
questions. The most common approach applied is to apply simulation or fault
insertion to generate examples that capture failed behavior and determine test-to-
fault relationships. This is probably the most reliable approach to learning or
constructing a model; however, it tends to take an inordinate amount of time
before useful models are constructed. Related to this approach is using historical
data (when available) to construct the model. The next section discusses an
approach to do just that.

7. CONSTRUCTING A DIAGNOSTIC INFERENCE
MODEL FROM CASE DATA

The primary goal of this section is to discuss methods for constructing
diagnostic inference models from case data used in a CBR system. A
straightforward approach to doing this, but one that is not likely to generalize
well is to treat each case as a unique class (i.e., diagnosis). Then the signature for
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that class would correspond to the feature values associated with the case. For
multi-value features, the binary equivalents in the IFM would be a pairing of the
feature label with the feature value. For example, suppose we have a case base
with the following three cases.

Case Test 1 Test 2 Test 3 Test 4
c1 Pass Fail Unknown Unknown
c1 Unknown Fail Fail-Lo Unknown
c2 Fail Unknown Fail-Hi Pass

Note that two of the cases yield the same diagnosis, and one of the tests has three
possible outcomes (assuming all tests can pass). Since the IFM assumes a test
dependency indicates detection of a fault, an indication of a test passing just
means that the test does not depend on the associated fault. Unknown outcomes
were not evaluated but may have been inferred.

If we treat each case as a separate class, or diagnosis, then this set of
cases would result in the following model:

Case Test 1 Test 2 Test 3-Lo Test 3-Hi Test 4
c1-a X
c1-b X X
c2 X X

The problem with this approach is that diagnosis would occur (with high
confidence) only when a signature is matched exactly (i.e., when one of the cases
is experienced again). But this means there is no facility for generalization. This
is not a desirable feature, so we would like to provide a method for “combining”
cases with the same diagnosis to yield greater generality.

Consider the same three cases. We still need to map multiple-outcome
tests into a set of several binary tests, so the columns would remain the same. We
only have one case for c2; therefore, we would retain this case in the model as in
the previous example. But we should be able to combine the two cases for c1 into
a single signature in the model. To do this, we need to ensure that the two cases
do not conflict. If they do conflict, then we are back to creating separate
signatures.
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For this example, the cases do not conflict. This is clear because all of
the tests whose values are known for all of the cases agree. If they disagreed, then
there would be a conflict. Since there is no conflict, the simplest process for
building the signature is to take the union of the signatures from the first model.
Doing this yields,

Case Test 1 Test 2 Test 3-Lo Test 3-Hi Test 4
c1 X X
c2 X X

The problems arise when there are conflicts in the test results. Previously,
we provided an intuitive “definition” of conflict as occurring when two cases with
the same diagnosis have attributes with different values. Since the case base is not
supposed to hold any incorrect cases (i.e., cases where the either the diagnosis or
the attribute values were in error), we should be safe in assuming that these
conflicts arise only when the attribute can legally take on either value for that
diagnosis.

Consider the following example. In some sense, it is the simplest example
in that it reveals a direct conflict for the same diagnosis. This conflict is on Test
1.

Case Test 1 Test 2 Test 3 Test 4
c1 Pass Fail Unknown Unknown
c1 Fail Unknown Pass Unknown

For the other three tests, we can simply take the union as we did before. For Test
1, since it can either pass or fail, we need to either treat these as two different
conclusions (as we did in the naive example above), or we need to consider what
could lead to the conflict. Assuming the tests are correct and reliable (which is a
standard assumption when constructing IFMs), we can assume Test 1 is actually
asymmetric. In particular, we note that Test 1 detected c1 in the second case, but
when Test 1 passed, we were not able to rule out c1. This would yield a single
signature of

Case Test 1 (–) Test 1 (+) Test 2 Test 3 Test 4
c1 X X
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A brute-force approach for handling this type of conflict when
constructing the IFM is to declare all tests in the model to be fully asymmetric.
This means that the positive and negative inference lists may be different. Next,
group the cases such that all cases with the same diagnosis are in the same group.
For a particular group, define a signature in the IFM. Consider all of the failed
tests first. If a case exists in the group with a failed test, enter the diagnosis as a
dependency of that test on both the positive and negative inference side. Next
consider all of the passed tests. If a case exists in the group with a passed test
where a dependency has been entered, remove that dependency on the positive
inference side. Do not worry about tests whose values are unknown—they will be
treated as not depending on the fault until evidence to the contrary is encountered.
Finally, after the model is constructed, the inference lists can be compared. If any
test has the same list for both the positive and negative inference sides, that test
can be converted back into a symmetric test.

Now consider the case where we have a multiple-outcome test (e.g., Test
3 with possible values of pass, fail-hi, and fail-lo). This may yield a “conflict”
such as the following:

Case Test 1 Test 2 Test 3 Test 4
c1 Pass Unknown Fail-Lo Unknown
c1 Unknown Fail Fail-Hi Unknown

As before, this situation indicates the test can take on two legal values in the
presence of this fault. The difference, however, is that the same “test” succeeds in
detecting the fault. If we construct the model as before, we will still yield non-
conflicting signatures. Thus,

Case Test 1 Test 2 Test 3-Lo Test 3-Hi Test 4
c1-a X X
c1-b X X

would be an acceptable model. Note that the test failure for Test 2 is entered into
both signatures since it is not a point of conflict. In this case, it is also desirable
to create a linked outcome between Test 3-Lo and Test 3-Hi such that if either
fails, the other must pass. This is because it is impossible for Test 3 to have the
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value of Fail-Lo and Fail-Hi at the same time. But this leads to a pass/fail conflict
similar to above.

To combine these two signatures, we would have to treat each “side” of
Test 3 as asymmetric as we did before. Thus, Test 3-Lo and Test 3-Hi would
both be fully asymmetric tests, but c1 would be absent from the dependency list
of the positive inference sides of both tests. Then we would have a single
signature.

Case Test 1 Test 2 Test 3-Lo
(–)

Test 3-Lo
(+)

Test 3-Hi
(–)

Test 3-Lo
(+)

Test 4

c1 X X X

For cases where the structure of the case is more complex than a simple
“feature vector,” the structure would need to be flattened into the feature-vector
form to facilitate mapping into the IFM. This should be straightforward since
most case representations that are not flat use the structure to provide means of
speeding up search and comparison. Leaf values in the structure (possibly with
some propagation downward through the case structure) should be sufficient for
constructing the feature vectors.

It should be apparent that the completeness of the model that results from
mapping the case data depends heavily on the richness of the cases stored in the
case base. Areas of the case base that do not adequately represent the
corresponding set of faults may lead to situations in which the model-based
approach leads to inaccurate or imprecise results. This is not unexpected. In fact,
similar problems are likely to result when applying the CBR system should test
results lead to that part of the case base. Recalling the observation by Cover and
Hart, we see why it is important to have a representative sample of case data for
performing diagnosis with CBR or for inducing an IFM from the case data.

8. REASONING UNDER UNCERTAINTY WITH DIMS

By now it should be apparent that great care should be used when
diagnosing faults with an outcome-based approach. Because of the inherent

linked
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difficulties in processing erroneous test data in these approaches, we developed
two alternative approaches to processing this data which are presented in Chapter
6 (Sheppard and Simpson, 1998). The alternatives consider test results as
evidence for or against the presence of a fault in the system. Test results are
processed sequentially, and the evidence supporting or denying the presence of a
failure mode is attributed to the set of failure modes in the system. These
approaches are based on the Dempster-Shafer method for reasoning under
uncertainty (Dempter, 1968; Shafer, 1976) and certainty factors as incorporated
in the MYCIN system (Shortliffe, 1976).

In related research, Denœux (1995) attempted to overcome some of the
drawbacks of the nearest neighbor classification rule and proposed a modification
to k-nearest neighbor using Dempster-Shafer. Denœux notes that “the main
drawback of the voting k-NN rule is that it implicitly assumes the k nearest
neighbors of a data point x to be contained in a region of relatively small volume,
so that sufficiently good resolution in the estimates of the different conditional
densities can be obtained.” He goes on to point out that in practice, “the distance
between x and one of its closest neighbors is not always negligible, and can even
become very large outside the regions of high density.” Since an outcome-based
case base defines points on the corners of an n-dimensional hypercube, it is
reasonable to assume this “pathological” condition holds.

The proposed solution is to gather “evidence” from the neighbors and use
this evidence to classify the point x. The basic method Denœux uses is to identify
the k nearest neighbors and combine the evidence provided by these neighbors for
each of the classes under consideration. Specifically, he compute the “basic
probability assignments” (BPA) as µs,(i,j) = µs,i ⊕ µs,j where s denotes the sample
to be classified, and xi and xj are two points which are in the set of nearest
neighbors Φs that belong to the same class Cq. The BPAs are computed using sets
of nearest neighbors of each class, Φq

s, and the associated evidence is combined
for each class. Using this formulation, the rankings provided by both support and
plausibility are consistent, so the class assigned to xs is simply the class with the
maximum support (or plausibility).

While providing improvement over the standard k-nearest neighbor rule,
all of the problems described previously still apply. While this approach tends to
reduce the reliance of diagnosis on homogeneous regions of points in the instance
base, it still assumes neighboring regions provide information about the point to
be classified. This is unlikely to hold in outcome-based diagnostics, and we
believe the evidence to be provided for classification (i.e., diagnosis) comes from
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test information rather than neighboring diagnoses. This approach is fundamental
to the diagnostic inference modeling approach.

9. DIAGNOSIS OF A SIMPLE CIRCUIT

In this section, we will walk through an example diagnosis with the
circuit in Figure 2 and illustrate how an inference method such as the Dempster-
Shafer approach can still provide a reasonable answer in the presence of
uncertainty, even when nearest neighbor classification does not. First we will
consider the performance of nearest neighbor on the sample circuit, and then we
will apply Dempster-Shafer inference with the diagnostic inference model on
some example diagnoses. For this example, we must assume we have received an
erroneous fault signature. We will need to define confidence values for the test
results and process the test results through the model.5

9.1 Diagnosis with Nearest Neighbor

First, we will consider the ability of nearest neighbor to process
erroneous fault signatures in a fault dictionary. For the following demonstration,
we considered only the sample circuit and used both Hamming distance and the
overlap metric. The matching procedure was limited to 1-NN, and we expect
worse results for k-NN with k > 1 since faults are only represented by one
signature each. For each fault, we considered all possible fault signatures that can
be generated with one through eight bits in error. We then compared the results of
using 1-NN with the expected fault and recorded the number of correct diagnoses.
The results of these experiments are given in Table 4.

                                               
5 Recall our algorithm for applying Dempster-Shafer includes calculation for support of an

“unanticipated result.” This special conclusion is included to address issues related to
conflicting test results. Fortunately, the presence of conflict does not affect the relative
positions of the conclusions in the table since support for the unanticipated result only
modifies the normalizer for other support values.



104 Chapter 5

From this table, we see some characteristics of introducing error into the
fault signature to be matched. First, we see that the higher the number of bits in
error, the lower the accuracy in matching, down to a limit of 0% accuracy.
Second, the performance of Hamming distance compared to the overlap metric is
very close. In fact, we conjecture that the differences are not statistically
significant; although, we do not have sufficient data to perform a significance
test. Third, the lowest error rate (i.e., one bit error) yielded very poor
performance on this circuit (between 21% and 27% error). This should not be a
surprise given the previous discussion on the appropriateness of nearest neighbor,
but it may be disconcerting to those who apply nearest neighbor in their
diagnostic systems.

Given the poor performance on nearest neighbor, we will take two cases
in which nearest neighbor fails to find the correct failure mode and process those
cases with the diagnostic inference model and the Dempster-Shafer methodology.
We will then reconstruct Table 4 using Dempster-Shafer. The first case will use a
fault signature with one bit in error, and the second case will use a signature with
two bits in error. Given the rapid degradation after two bits (since more than 25%
of the bits are now wrong), we will assume Dempster-Shafer will be affected
similarly with the high error percentages.

In selecting our two test cases, we want nearest neighbor to fail to find
the correct fault. Since we know the number of incorrect bits, we will identify two
failure modes in the fault dictionary whose Hamming distance corresponds to
twice the number of incorrect bits minus one and ensure the proper number of
differentiating bits are in error. This will result in selecting the wrong failure
mode, but with a signature that is not in the fault dictionary.

Table 4. Accuracy using nearest neighbor on a fault dictionary.

Bit Errors 1 2 3 4 5 6 7 8
Hamming Dist.
correct diagnosis
incorrect diagnosis

82
79%
21%

110
30%
70%

42
6%

94%

9
1%

99%

0
0%

100%

0
0%

100%

0
0%

100%

0
0%

100%
Overlap
correct diagnosis
incorrect diagnosis

76
73%
27%

91
25%
75%

57
8%

92%

19
2%

98%

0
0%

100%

0
0%

100%

0
0%

100%

0
0%

100%
Total Cases 104 364 728 910 728 364 104 13
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9.2 One-Bit Error with Dempster-Shafer

For the first case, we note that the Hamming distance between c1 and nf
is two. In other words, two tests detect the presence of c1, and if both of those
tests are in error, no fault will be detected. This is a common occurrence in
testing, and effective diagnostics as well as effective testing are necessary to
combat this problem. For our example, we will assume one of the two tests
capable of detecting c1 fails to make the detection (i.e., the test passes). Without
loss of generality, we will select t2 to pass when it should fail. We will also
assume sufficient test data has been gathered to identify t2 as a problem test, and
we will reduce its confidence to 0.75. All other test confidences will be set to 0.99

The results of processing all eight test vectors through the Dempster-
Shafer calculations with the diagnostic inference model are given in Table 5. The
normalized values for evidential probability, though quite low, show the leading
candidates for diagnosis are c1 and nf. This result is consistent with what we
would expect given the nature of the test data.

Another interesting result when considering the test data applied to the
diagnostic inference model came when we omitted t2 from the calculations.
Although both c1 and nf were still the leading candidates, the differences in
probabilities between c1 and nf were such that c1 could be declared with greater
confidence to be the fault. In fact, this makes sense given the new test result from
t2 contradicts c1 as the hypothesis.

Given this result, we decided to perform a sensitivity analysis on the
erroneous test to determine at what point the incorrect diagnosis would be
returned. For this analysis, we varied the confidence in the test outcome from
0.01 to 0.99 and observed the relative difference in probability of the correct
answer (i.e., c1) and the nearest neighbor (i.e., No Fault). We expected the choice
from Dempster-Shafer to flip at some point and return the incorrect answer. As
we can see from Figure 8, however, this did not happen. In fact, we found that
Dempster-Shafer returned the correct example regardless of the confidence value;
however, as confidence increased, the difference between c1 and No Fault
converged to the point they were no longer significantly different. In fact, the
hypothesis generation routine returned both faults as possible answers.



106 Chapter 5
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Figure 8. Sensitivity of confidence on one-bit error.

9.3 Two-Bit Error with Dempster-Shafer

For the second test case, we identified two failure modes whose
Hamming distance was three. This indicated only three test results distinguished
the two conclusions. Given the application of nearest neighbor with two tests

Table 5. Dempster-Shafer calculations with one bit error.

Failure Mode Support Plausibility Probability
a0 0.043 0.411 0.0505
a1 0.079 0.629 0.0767
b1 0.067 0.629 0.0768
c1 0.111 0.906 0.1057
f0 0.070 0.629 0.0760
f1 0.052 0.411 0.0514
i0 0.093 0.753 0.0902
i1 0.084 0.753 0.0895
j1 0.056 0.535 0.0652
k0 0.084 0.753 0.0895
k1 0.043 0.411 0.0505
m0 0.079 0.629 0.0767
nf 0.098 0.876 0.1024
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results in error when the two tests were among the three distinguishing the
conclusions, we would expect the wrong conclusion to be identified.

Assume the failure mode present in the system is a1. Tests t5, t6, and t7

differentiate this failure mode from failure mode i1. Without loss of generality,
suppose both t6 and t7 are in error. Again, we assume we have sufficient test data
to warrant assigning confidence values of 0.75 to these two tests and 0.99 for all
other tests. The results of processing all eight test vectors through the Dempster-
Shafer calculations with the diagnostic inference model are given in Table 6. The
normalized values for evidential probability, this time, show the leading
candidates for diagnosis are a1 and i0. Again, this result is consistent with what
we would expect given the nature of the test data since the Hamming distance
between a1 and i0 is only 1.0. The erroneous conclusion drawn by nearest
neighbor of i1, though third, never appears as a member of the hypothesis set.

As before, we examined the results of the Dempster-Shafer calculations
without the “conflicting” test results from t6 and t7. No conflict was evident
without these test results. Further, we once again found that the hypothesis
without these two tests was a1 by itself. It was only in the presence of the
conflicting test results that i1 was added to the hypothesis, but a1 remained the
preferred failure mode. Also, when only t6 was included, though conflict was now
present in the test results, the conflict was not sufficient to add another failure
mode to the hypothesis; a1 remained the sole failure mode in the hypothesis set.
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We also conducted a sensitivity analysis on the confidence values of the
two erroneous tests. This time, we varied the confidence values from 0.01 to 0.99
in a factorial study. The results of this analysis are given in Figure 9 and
represent the difference in probability between a1 and i0. As before the correct
fault is always identified as the first choice using Dempster-Shafer, but this time,
as confidence increases, the difference does not become as small.

9.4 Dempster-Shafer and Nearest Neighbor Compared

To further compare the differences between the Dempster-Shafer
approach and nearest-neighbor classification, we computed the accuracy for all
bit-error combinations using Dempster-Shafer as we did for nearest neighbor.
These results are shown in Table 7. In interpreting this table and Table 4, we can
consider the bit errors as corresponding to some amount of lost information. For
example, in the two-bit error case, we assume 25% information loss. From this
we can see that even one bit error is significant in that it corresponds to 12.5%
information loss.

Consider the rows labeled “Correct = 1st.” These rows correspond to the
analysis when we consider the conclusion assigned the highest probability of
being correct. This is analogous to the nearest-neighbor case in which we select

Table 6. Dempster-Shafer calculations with two bit errors.

Failure Mode Support Plausibility Probability
a0 0.035 0.258 0.0392
a1 0.131 0.813 0.1180
b1 0.066 0.535 0.0790
c1 0.029 0.318 0.0465
f0 0.073 0.535 0.0798
f1 0.093 0.535 0.0820
i0 0.100 0.689 0.1012
i1 0.087 0.659 0.0966
j1 0.049 0.381 0.0574
k0 0.043 0.411 0.0606
k1 0.080 0.505 0.0768
m0 0.087 0.565 0.0850
nf 0.056 0.535 0.0779
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the fault whose signature is closest to the test signature as the most likely
diagnosis. Comparing these rows with Table 4, we find that Dempster-Shafer
strongly outperforms both Hamming distance- and Overlap metric-based nearest
neighbor. In fact, we see that with 37.5% information loss, nearest neighbor
performs randomly (i.e., if we randomly select from the 13 possible failure modes
meaning any failure mode might be selected with probability 7.7%, we will be
correct approximately the same number of times as nearest neighbor with three
bits in error). On the other hand, Dempster-Shafer does not reduce to “random”
performance until we have 50% information loss. When information loss exceeds
50%, both techniques fail to find the correct diagnosis, and this is not unexpected.

An interesting result with Dempster-Shafer involves examining the
number of times the correct answer is either the first or second most likely
conclusion identified (shown in the rows labeled “Correct = 1st∨2nd). Here we find
the correct fault a very high percentage of the time, indicating an alternative
answer in the event repair based on the first choice is ineffective. In fact, in all
cases where the answer was ranked either first or second, Dempster-Shafer still
considered it to be a member of the hypothesis set.

A closer examination of the results using Dempster-Shafer yield some
interesting observations. If we limit our consideration to the one-bit error case, we
find that Dempster-Shafer returns the correct diagnosis as either the first or
second choice in all cases. Examining the tests that are in error, we find an
interesting pattern. In all cases where the correct diagnosis is second, either t1 or
t4 is in error, and in five out of the eight cases, both of these tests in error result in
the correct diagnosis being listed second. For the other three cases, one of the
tests result in the “wrong” answer, but the other does not.

Table 7. Accuracy using Dempster-Shafer on a fault dictionary.

Bit Errors 1 2 3 4 5 6 7 8
Correct = 1st

correct diag.
incorrect diag.

89
86%
14%

174
48%
52%

150
21%
79%

62
7%
93%

0
0%

100%

0
0%

100%

0
0%

100%

0
0%

100%
Correct = 1st∨2nd

correct diag.
incorrect diag.

104
100%
0%

331
91%
9%

336
46%
54%

66
7%
93%

0
0%

100%

0
0%

100%

0
0%

100%

0
0%

100%
Total Cases 104 364 728 910 728 364 104 13
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In all cases, we can explain the cause of the error by examining the
Hamming distance between the reported most likely diagnosis and the correct
diagnosis. In these cases, the Hamming distance is one, and the bit that is
different is the bit whose error leads to the wrong diagnosis. This supports the
conclusion of the significance of the error radius and seems to indicate that, as
long as the number of bits in error is less than the error radius of the signatures in
the fault dictionary, Dempster-Shafer will yield the correct result.

We can extend this result by examining the relative Hamming distances
between all of the faults in the fault dictionary. Those faults with a large amount
of similarity will be expected to lead to incorrect diagnosis in the presence of
higher bit errors in the signature. In fact, this is exactly what we observed. With
both the two- and three-bit error cases, we found faults i0, i1, j1, and k0 had
difficulty, but the number of other signatures similar to these four signatures (i.e.,
with Hamming distance less than or equal to three) was high. This further
confirms the significance of the information provided by the tests and its ability to
distinguish faults in contrast to focusing on the conclusion landscape to determine
proper diagnoses.

10. CONCLUSION

In this chapter, we described an approach to generating diagnostic
inference models from case data stored in a CBR system. We also provided an
approach to reasoning under uncertainty using the resultant model. The rationale
for developing this approach was two-fold. First, we wanted to improve the
diagnostic process by providing a more compact representation of the diagnostic
knowledge. Second, we wanted to provide a mechanism whereby understanding
the diagnostic knowledge was possible. CBR systems are typically very slow
where IFM-based systems are fast. Further, it is difficult to develop any
understanding of the structure and meaning of knowledge implicit in the cases of
a CBR system where model-based systems emphasize understanding this
structure. Third, given degraded accuracy resulting from case-based diagnosis
applied to outcome-based testing, we wanted to provide a means for improving
accuracy using the derived models.

The primary disadvantage to any model-based system (including IFM-
based systems) is the difficulty in developing the model. While, conceptually, the
elements required for IFMs are easy to understand, the process of collecting and
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synthesizing the data into the IFM is highly labor-intensive and error-prone. It is
difficult to dispute the accuracy of case data since it corresponds to actual
diagnostic experience (unless erroneous case information is stored). Therefore,
the advantage to processing the case data to generate an IFM is that is provides a
solid foundation of experience from which to derive the models. The resulting
system then enjoys the advantages of both case-based systems and model-based
systems while simultaneously minimizing the effects of the disadvantages.
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