
A SYSTEMS APPROACH TO SPECIFYING BUILT-IN TESTS

John W. Sheppard and William R. Simpson

ARINC Research Corporation
2551 Riva Road

Annapolis, MD 21401

ABSTRACT

The need for specifying robust built-in test
for systems is growing as systems become
more complex. Further, detection-only
BIT—the predominant form of BIT—is
insufficient to meet the needs of system test
on current and future systems; localization
and even isolation is becoming essential. In
response to this need, several computer-
based analysis tools have become available
that provide the ability to assess system
testability and BIT effectiveness. Yet few if
any formal methods exist for providing
optimal BIT specifications. In this paper,
we explore two BIT figures of merit—test
point utilization and optimized resolution
analysis. We will describe evaluation
measures which we then apply to BIT
specified using these two approaches and
explain the resulting differences.

1. INTRODUCTION

Increased complexity of modern electronic
systems has resulted in greater emphasis on
specifying robust built-in test (BIT).
Historically, BIT provided fault-detection
capability with limited fault-localization. In
broad terms, detection refers to the ability to
determine through a set of tests or
information sources whether a failure has
occurred within the system. This has been
the primary design criterion for BIT, with

measures such as detection percent (DP),
BIT coverage, and false alarm rate all being
applied to determine the effectiveness of
BIT1. Detection percent and BIT coverage
frequently are used interchangeably but
actually refer to the percent of failure modes
(detection percent) or system components
(BIT coverage) that will be detected when a
failure occurs. False alarm rate attempts to
predict the percent of alarms in a system that
BIT will identify as faults when in fact no
fault exists.

Studies have shown that it is not possible to
predict false alarm rate for various reasons2.
As a result, cannot duplicate (CND) rates are
being used instead. The difficulty associated
with predicting CND rate for BIT is that the
results of BIT are generally verified at the
next level of maintenance3,4. CNDs apply at
the same level of maintenance. In this case,
it may be more useful to attempt to predict
retest OK (RTOK) rates which relate
specifically to a change in maintenance
level.

Recent trends in systems engineering are
resulting in modern systems having
maintenance architectures with fewer levels.
For example, aircraft avionics maintenance
may take place by sending units from the
aircraft directly to the manufacturer.
Consequently, it is becoming increasingly
important to isolate to higher resolutions

(i.e., smaller replaceable parts) at the
operational level of maintenance. At the
same time, shrinking budgets will require
this to be done with far greater automation.

The emphasis on developing detection-only
BIT on current and future systems is no
longer adequate; localization and even
isolation is becoming essential. Localization
concerns the ability to restrict the set of
candidate failures causing the BIT indication.
Obviously, some localization occurs in all
BIT, but it has been a byproduct of the BIT
development process rather than a design
criterion. In the cases where localization has
been specified in the BIT design, the
industry has labelled these systems as smart
BIT. Almost no BIT systems have been
specified in which the goal is to provide
fault isolation, i.e., the identification of the
specific fault causing the BIT indication.
Typically, isolation is defined to be the
ability to localize to a point consistent with
the current level of repair. In other words,
localization should be sufficient for
identifying a single unit to be repaired at the
operational level (in the case of BIT).

In response to the need for improved BIT
capabilities, several computer-based analysis
tools have become available that provide the
ability to assess system testability and BIT
effectiveness. Two such tools are the
Navy’s Weapon System Testability Analyzer
(WSTA) and ARINC’s System Testability
and Maintenance Program (STAMP)5,6. Both
of these tools apply what the industry calls
information flow models or dependency
models to describe the diagnostic capability
of a system, assess the effectiveness of a set
of tests for that system, and provide
optimized diagnostic strategies using the
available test resources.

This paper discusses approaches to solving a
difficult problem in system test, namely the

specification and use of tests for BIT. It
describes two specification algorithms in
detail and demonstrates the capabilities of
the algorithms on actual examples. It then
assesses the advantages and disadvantages of
the algorithms. Procedures and algorithms
such as those described in this paper are a
necessity for developing BIT on complex
systems of today and tomorrow.

2. METRICS FOR BIT SPECIFICATION

In spite of the availability of more and better
analysis tools, few if any formal methods
exist for providing optimal BIT
specifications. In response to this need, at
least two approaches to specifying BIT have
been developed. Both approaches are based
on the assumption that BIT resources must
be minimized, and they both provide
methods for eliminating ‘‘unneeded’’ tests
from the BIT specification. The first
approach has become known as test point
utilization (TPU). This approach is derived
from examining the frequency of test and
test point use in a fault tree to determine
whether or not to include a specific test in
BIT. The second approach is called
optimized resolution analysis (ORA). This
approach focuses on several requirements of
BIT to provide complete detection and
maintain maximum expected ambiguity
resolution.

2.1 Test Point Utilization

In determining BIT for a system, we assume
that we have developed a dependency or
information flow model for that system
which includes specifying a set of candidate
tests to be used in BIT. Once the model has
been defined, the test point utilization metric
is used to determine which of the tests will
be BIT as follows. First a diagnostic
decision tree is developed with the candidate
BIT tests using some optimization procedure

(e.g., information gain). The tree may
include various cost weights, but the use of
weights at this point should be considered
with care. Once the tree has been generated,
the number of times each test is used in an
isolation sequence is counted, and the tests
are sorted based on these counts. If only n
tests can be used in BIT, then the n tests
with the highest counts (i.e., the most
frequently utilized tests in the tree) are
selected.

More formally, we can compute the TPU for
a test tj (TPUj) as follows. Let S be the set
of isolation sequences in a fault tree ℑ. Let
U be the set of unique fault isolation
conclusions in the tree. Each ui ∈ U will
appear as a leaf of ℑ. Clearly |S| = |U|. Let
si ∈ S be the ith isolation sequence, and let it
terminate by concluding ui. Finally, if usj is
the set of isolation sequences in which tj

occurs, then TPUj = |usj|.

The advantage of this approach is its
apparent simplicity to implement.
Unfortunately, TPU provides the basis of an
approach to specifying BIT that has the
potential of unduly increasing the ambiguity
between potential faults in a system. Worse,
capricious elimination of tests such as in this
approach could conceivably decrease the
detection capability as well. This, of course,
is unacceptable. In this paper, we will
provide several examples demonstrating the
problems associated with test point
utilization. A more precise method for
determining which tests to use as BIT must
be developed that permits developing
efficient BIT, minimizes ambiguity (or
expected ambiguity), and maintains (if
possible) complete fault detection.

2.2 Optimized Resolution Analysis

The optimized resolution analysis also uses
the information flow model and proceeds
from three assumptions:

• Since we are attempting to minimize
BIT resources we need not consider
tests providing redundant or excess
information.

• Detection is still essential in BIT;
therefore, specification of BIT tests
must maintain maximum possible
detection. Any unnecessary
degradation of detection is
unacceptable.

• Maximum isolation capability occurs
when we have minimum ambiguity.
T h i s c a n b e i n t e r p r e t e d
probabilistically as well.

In response to these three assumptions, the
optimized resolution analysis method
proceeds in three steps using the information
flow model. First, an excess test analysis is
performed to eliminate tests providing
redundant or excess information. A
redundant test is defined to be a test that
provides exactly the same information as
another single test. An excess test is defined
to be a test that provides exactly the same
information as a combination of two or more
other tests. We will provide a detailed
algorithm for determining redundant and
excess tests.

The second step in the ORA algorithm is to
generate a fault tree using all of the
remaining BIT tests. This tree may be
optimized according to whatever cost criteria
are appropriate; however, BIT usually has
uniform cost and time. This means the most
often used criteria would be failure rate, thus
emphasizing failure probability in deriving
the decision tree. In addition, the tree
should be generated in such a way that the
fewest expected number of tests on the go-
path will be generated. After the tree is

generated, the number of tests on the go-path
is determined. If this number exceeds the
number allowed, all other tests are
eliminated from the tree, and tests are
eliminated from the go-path starting at the
end of the path until the number of tests
remaining equals the allowance specified.

If there are sufficient tests available to
construct a complete go-path but insufficient
tests to produce a complete decision tree,
then ambiguity must increase as a result of
eliminating tests to meet the allowance.
Following the third assumption, the ORA
algorithm prunes the tree starting at the
leaves, excluding the go-path from
consideration7,8. The pruning algorithm
maintains minimum expected ambiguity by
examining the failure rates at the internal
nodes of the trees and pruning the nodes
with the lowest probability of failure.

More formally, as in the TPU calculation,
we let ℑ be a fault tree generated to fault
isolate a system using proposed BIT tests.
We assume the fault tree has been generated
using a model such as the information flow
model described by Simpson and Sheppard9.
Let I be the set of information sources
available, F be the complete set of fault
isolation conclusions (including ambiguous
conclusions), and D* be the closed
dependency matrix for the model of the unit
under test. For each test ti, compute the
expected information value of that test E[φi]
as follows:

• Compute the information gained when
ti passes (gi)

where

• Compute the information gained when
ti fails (bi)

where

where G is the set of ambiguity groups
and G is the set of ambiguity groups
after tj is removed.

• Compute the information value of the
test φi = min {g i,bi}.

• Compute the expected information
value E[φi] using probabilities of
failure for the conclusions upon which
ti depends.

• Rank the tests in nondecreasing order
by E[φi].

• Processing the tests in order, if |I| -
{ti} ⇒ |G | > |G|, then ORA i = 0.

• With the remaining I (i.e., set of
information sources with redundant
and excess tests removed), generate ℑ,
applying the hypothesis directed search
to generate the go-path with No Fault
as the hypothesis14.

• Let S be the set of isolation sequences.
• Let sm

j be the mth isolation sequence up
to tj (noninclusive).

• Let am
j be the set of fault isolations in

ambiguity given sm
j.

• Let

• (Note: each internal

node of ℑ has an ORA value.)

3. EXPERIMENTS

In order to evaluate the two BIT
specification measures, experiments were run
on two diagnostic models to determine the
effects of following each measure in
determining which tests to retain for BIT.
The first model is a hypothetical model used
in a series of articles describing a formal
approach to integrated diagnostics. The
model is derived from an anti-tank missile
launcher circuit. The model consists of 20
possible tests and 26 fault isolation
conclusions. The experiments considered the
model given a set of failure rate data for the
fault isolation conclusions9-14.

The second model comes from a real
analysis performed on the AN/SQS-53C
Active Receive Beamformer for the U.S.
Navy. The primary objective of the analysis
was to assess system testability and evaluate
a set of program monitoring/fault
detection/fault location (PM/FD/FL) tests.
The analysis procedure described in this
paper was not available for this project, so
we performed the analysis as a test case of
the algorithm. The SQS-53 model has
approximately 300 fault isolation
conclusions, but only 18 PM/FD/FL tests.
Also, no failure rate information was
available, so we assumed uniform probability
of failure in our analysis.

The experiments proceeded in four steps.
First, fault trees were constructed for each
model. Second, after the fault tree was
generated, we computed the ORA and TPU

measures and ranked the tests according the
each criterion. Note that for TPU,
detectability is not an issue, and this had a
direct outcome on the comparison. Third,
we sequentially eliminated one test at a time
from the model. Fourth, after each test was
eliminated, we computed three testability
statistics to determine the impact of ordering
BIT tests based on these criteria.

The three testability measures used to
evaluate TPU and ORA were non-detection
percent (ND), operational isolation (OI[1]),
and isolation level (IL). Non-detection
percent is the ratio of undetectable faults to
the total number of faults and is computed
as

where

and SFi is the fault signature of fault i. The
first operational isolation measure (OI[1]) is
the percentage of the time one is able to
fault isolate to exactly one fault conclusion.
This measure is computed as

where

RU = the set of replaceable units (for our
analysis, the set of individual conclusions).
There is, in general, one value of OI, OI[n],
for each of n levels of ambiguity.

Finally, isolation level is the ratio of the
number of isolatable groups (i.e., ambiguity
groups) to the total number of fault isolation
conclusions and is computed as

where UF is the set of unique fault isolation
conclusions.

4. RESULTS

Comparing the results of eliminating tests
based on ORA and TPU indicate strong
differences with respect to detection while
isolation capability is comparable. For the
hypothetical system, maximum detection was
maintained throughout (Figure 1). This is
because only one test is required to detect all
detectable faults and the ORA does not
recommend eliminating go-path tests until
absolutely necessary. TPU, on the other
hand, does not differentiate between a
detection test and an isolation test; therefore,
nondetection increases substantially as tests
are removed. For the SQS-53, this
conclusion is also supported, but there was
not a single test to detect all failures (Figure
2). Consequently, the differences between
ORA and TPU are not as pronounced.

Operational isolation tends to track fairly
closely between ORA and TPU for the two
systems, but a couple of interesting
observations can be made. First, we should
expect OI[1] to be identical for the two BIT
measures when we have all of the tests

available and when we have a minimum set
of tests available. This is because the
isolation potential is identical before deleting
any tests and because OI[1] converges to
0.0. In both of the systems examined for
this paper, OI[1] indeed converged to 0.0.
Another interesting difference, however,
becomes evident when examining the
hypothetical model (Figure 3). This model
includes failure rate information (the SQS-53
did not), and OI[1] includes weighting (e.g.,
failure probability) in its calculation. When
the weights are not uniform, we would
expect the ORA to yield better results, and
this is demonstrated in the hypothetical
system. The SQS-53, on the other hand,
shows performance alternating between ORA
and TPU, but they perform very closely
(Figure 4).

Finally, the isolation level measure shows
almost no difference between the ORA and
the TPU, but the difference is significant.
(Note that IL has the same convergence
properties as OI[1].) Both the hypothetical
system (Figure 5) and the SQS-53 (Figure 6)
show ORA with a slight advantage, but (with
two exceptions on the hypothetical system),
ORA is consistently equal to or better than
TPU. Thus in all three cases, using ORA to
determine the BIT tests to use provides a
better result than TPU.

5. DISCUSSION

The advantages of the ORA algorithm over
the TPU algorithm should be evident. First,
detection is paramount to effective BIT.
ORA ensures maximum possible detection is
maintained by focusing on using tests to
minimize ambiguity with detection receiving
the highest priority. TPU, on the other hand,
has no control over ambiguity groups that
may be performed which in turn has the
potential of decreasing detection ability of
BIT. Second, ORA is concerned with

minimizing the impact of eliminating BIT
tests on ambiguity. TPU, on the other hand,
is more interested in maximizing the use of
available tests at the expense of ambiguity.
Third, the ORA procedure is well suited to
incorporating with other optimization
procedures so that the types of ambiguity to
be minimized and the types of test resources
to be utilized can be taken into account. To
some extent, TPU can incorporate this
information as well, but it does not. Fourth,
ORA (and to some extent TPU) can
incorporate multiple failure diagnostics.

Once the BIT tests have been specified, BIT
will be used in a system to detect, localize,
and ideally isolate faults as they occur.
Historically, BIT has been designed using a
table-lookup approach where a BIT signature
is matched against entries in a fault
dictionary to determine the fault detected.
Approaches based on the information flow
model can be used to construct decision
procedures using the available BIT tests. In
fact, these procedures (as indicated above)
form an integral part of the BIT
recommendation process.

The premise behind the diagnostic process is
that table lookup operations are more
expensive than they need to be. Without an
architecture such as a content-addressable
memory in which entries can be found in
constant time, some sequential analysis of
the BIT readings is required to make a
diagnosis. Further, in many cases, the BIT
values are determined in a sequential fashion
rather than in parallel. Diagnostic
algorithms exist that optimize the sequential
query of BIT values for performing
diagnosis13. These algorithms use
information as a figure of merit for
determining BIT attributes to evaluate, and
the information figure of merit can be
weighted by appropriate cost criteria. In
addition, mechanisms for rapid inference

exist that minimize the effects of sequential
processing and permits parallel inference to
take place. These algorithms can be
implemented in hardware in a straight
forward way.

6. CONCLUSIONS

In this paper, we discussed and compared
two algorithms for determining an optimal
set of built-in tests for a system. The
approaches rely on the ability to analyze a
fault tree generated in one of several ways.
The test point utilization metric is used from
fault trees and does not require a particular
form of tree to be generated; most systems
that use TPU do not apply any special
constraints for generating the tree.
Considerable improvement can be achieved
with TPU if a few changes are made in its
use. First, since detection is paramount for
reliable BIT, TPU should prefer tests on the
go-path rather than treating all tests equally.
Second, trees can be generated that optimize
the use of tests based on several criteria.
The most effective criterion for optimization
of BIT when an isolation capability is
required is failure probability (frequently
provided in terms of failure rate). Failure
probability weighted trees will result in
improved performance for TPU since tests
examining higher probability failures will
appear closer to the root of the tree and
thereby have higher TPU values.

Aside from the approaches to improving
TPU for determining BIT tests, TPU has
problems as demonstrated in this paper. One
potential problem not discussed arises after
the set of tests has been determined. If we
develop a tree using all of the tests and then
eliminate several tests based on TPU, using
the resulting set of tests to generate the tree
may lead to a tree that is not consistent with
the original tree. Ideally, the tree resulting
after eliminating undesirable tests should be

the subtree induced by the set of tests
retained. Unfortunately, the TPU may
preclude this in the event it recommends the
elimination of a test that is the parent of a
test that has been retained. This can only
happen if a test appears more than once in
the tree, and we encountered this in the trees
generated for our two examples.

Because the ORA is calculated from the
leaves of the tree upward toward the root
and the ORA of any internal node of the tree
is strictly greater than the ORA of any of its
children, most tree development algorithms
will develop subtrees induced by the subset
of tests retained from applying the ORA.
This is because no test will be recommended
for deletion if any of its descendants are still
in the tree. This represents a clear
advantage of ORA based test sets over TPU
based test sets.

In addition to the potential improvements to
TPU and the difficulty associated with
generating subtrees, it is clear that the ORA
analysis led to a better set of tests to be
retained for BIT than TPU did. Further,
other measures can be considered for
comparison that were not included in this
paper due to space limitations. For example,
the OI[n] measures identify the impact of
eliminating tests on the ability to isolate to
n or fewer units. Related to this measure is
the maximum size of the ambiguity groups
that result. Other measures that may be
considered for BIT include the tolerance to
false alarms and susceptibility to false failure
indications. These will be considering in
future work on BIT specification.

ACKNOWLEDGEMENTS

The authors would like to thank several
people for their assistance in the preparation
of this paper. First, thanks go to Michael
Seldes who indicated an interest in

evaluating the performance of test sets for
meeting special requirements. We also
thank Jerry Hadfield, Brian Pickerall, and
Broady Cash who constantly bring
interesting problems to our attention.
Finally, we wish to thank Sheryl Sieracki
and Elizabeth Reed for their comments on
an early draft of this paper.

REFERENCES

1. Coppola, Anthony, A Design Guide for
Built-in Test (BIT), RADC-TR-78-224,
Rome Air Development Center, April
1979.

2. Simpson, W. R., and J. W. Sheppard,
‘‘Analysis of False Alarms During
System Design,’’ Proceedings of the
National Aerospace Electronics
Conference, Dayton, Ohio, May 1992.

3. Hughes Aircraft Company, Analysis of
Built-in Test (BIT) False Alarm
Conditions, RADC-TR-81-220, Rome
Air Development Center, August 1981.

4. Malcom, J. G., ‘‘BIT False Alarms:
An Important Factor in Operational
Readiness,’’ Proceedings of the
Reliability and Maintainability
Symposium, 1982, p. 206.

5. Franco, J. R., ‘‘Experiences Gained
Using the Navy’s IDSS Weapon
System Testability Analyzer,’’
Proceedings of AUTOTESTCON ’88,
Minneapolis, Minnesota, September
1988.

6. Johnson, F., and C. R. Unkle, ‘‘The
System Testability and Maintenance
Program (STAMP): A Testability
Assessment Tool for Aerospace
Systems,’’ Proceedings of the
AIAA/NASA Symposium on the
Maintainability of Aerospace Systems,
Anaheim, California, July 1989.

7. Quinlan, J. R., ‘‘Simplifying Decision
Trees,’’ Journal of Man-Machine
Studies, Vol. 27, 1987, pp. 221-234.

8. Mingers, J., ‘‘An Empirical
Comparison of Pruning Methods for
Decision Tree Induction,’’ Machine
Learning, Vol. 3, 1989, pp. 227-243.

9. Simpson, W. R., and J. W. Sheppard,
‘‘System Complexity and Integrated

Diagnostics,’’ IEEE Design and Test
of Computers, Vol. 8, No. 3,
September 1991, pp. 16-30.

10. Sheppard, J. W., and W. R. Simpson,
‘‘A Mathematical Model for Integrated
Diagnostics,’’ IEEE Design and Test
of Computers, Vol. 8, No. 4,
December 1991, pp. 25-38.

11. Simpson, W. R., and J. W., Sheppard,
‘‘System Testability Assessment for
Integrated Diagnostics,’’ IEEE Design
and Test of Computers, Vol. 9, No. 1,
March 1992, pp. 40-54.

12. Sheppard, J. W., and W. R. Simpson,
‘‘Applying Testability Analysis for
Integrated Diagnostics,’’ IEEE Design
and Test of Computers, Vol. 9, No. 3,
September 1992, pp. 65-78.

13. Simpson, W. R., and J. W. Sheppard,
‘‘Fault Isolation in an Integrated
Diagnostics Environment, IEEE
Design and Test of Computers, Vol.
10, No. 1, March 1993, pp. 52-66.

14. Sheppard, J. W., and W. R. Simpson,
‘‘Performing Effective Fault Isolation
in Integrated Diagnostics,’’ to appear
IEEE Design and Test of Computers,
Vol. 10, No. 2, June 1993.

Figure 1. Nondetection Percent for
Hypothetical System.

Figure 3. Operational Isolation for
Hypothetical System.

Figure 5. Isolation Level for Hypothetical
System.

Figure 2. Nondetection Percent for SQS-53
Beamformer.

Figure 4. Operational Isolation for SQS-53
Beamformer.

Figure 6. Isolation Level for SQS-53
Beamformer.

