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Abstract 
 
 The information revolution has created the 
ability for creating tremendous tools to support the 
warfighter. Tools for collecting, analyzing, and 
communicating information are being created to improve 
the efficiency and efficacy of conducting military 
operations. Unfortunately, the same information 
revolution has introduced new vulnerabilities whereby 
adversaries can acquire, exploit, deny, or destroy 
information needed to support mission objectives. 
Information warfare has emerged to provide a new wave 
of warfare in which the focus has shifted from massive 
destruction of enemy physical assets to surgical attack on 
information assets. In this paper, we present a framework 
for supporting information warfare and information 
operations using advanced techniques from artificial 
intelligence and control theory. Specifically, we discuss 
the combination of techniques from approximate 
reasoning, dynamic programming, and game theory to 
define a capability to support the conduct of information 
operations. 
 
Introduction 
 

Information systems have become an essential 
element of military, government, commercial, and 
academic operation. The proliferation of computers, 
networks, and related technologies has provided the 
capability to rapidly collect, store, analyze, and 
disseminate information for a variety of purposes. The 
expediency, efficiency, productivity, and profitability of 
organizations and individuals have been significantly 
enhanced by this information revolution. The military 
especially benefits from this progress by providing 
decision makers unprecedented quantity, quality, and 
timeliness of information. The commander with the 
ability to know the order of battle, analyze events, and 
distribute critical information possesses a powerful 
advantage. 

The benefits afforded by the information 
revolution are balanced by some problems. Information is 
a potent weapon and a lucrative target. The environment 

in which information is disseminated and stored provides 
a means for unauthorized access and manipulation. 
Nations, groups, and individuals seek to acquire, exploit, 
and protect information in support of their objectives. 
This exploitation and protection of information can occur 
for economic and political reasons as well as for military 
advantage. Strategies, both offensive and defensive, are 
being formulated to address actions involving the denial, 
exploitation, corruption, and destruction of enemy 
information. These strategies form the core of Information 
Operations (IO) and Information Warfare (IW). 

In this paper, we discuss a framework for 
supporting a C3/C4 analyst in information operations. To 
understand where such a capability will benefit the 
analyst, we review the concept of the command and 
control decision and execution cycle, also known as the 
“OODA Loop.” The OODA loop consists of four distinct 
phases corresponding, respectively, to observe, orient, 
decide, and act (Figure 1). 

The first phase of the OODA loop is the 
observation phase. At this point, the analyst or command 
collects information about the battlespace (i.e., 
environment) within which information operations will 
occur. Typically, observation is constrained to data 
collection from sensors and any processing necessary to 
support the assessment of the information in the next 
phase. The second phase is orientation. In this phase, the 
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Figure 1. OODA Loop of Command and Control. 



analyst or command interprets the information for 
situation assessment. At this point, inferences are drawn 
from the information that has been inferred to predict 
additional attributes about the situation (e.g., risk and 
strategy). In the third phase, decision, the commander 
evaluates the results of situation assessment and decides 
on an appropriate course of action. The resulting orders 
are passed to those who will execute the orders in the 
fourth phase, action. 

Tools supporting the IO process must work 
within the decision and execution cycle, as shown in the 
OODA Loop. Specifically, through the intelligence 
process, data and information is collected about the target 
system and the processes that use that system. The 
intelligence process is responsible for collecting 
information both in support of planning and real-time 
execution. Therefore, the information to be observed must 
be stored in a database or made available as collected. 
Next, the tool needs to be able to query relevant 
information related to the current state and infer situation 
attributes as describe above. Several techniques exist for 
performing such inference, and we will suggest a 
particular approach later in this paper. Given the inferred 
situation, the tools must be capable of assessing the 
available options in the light of the intended goal, the 
confidence in the current view of the environment, and 
the expected utility of executing any of the options. 
Finally, resulting actions must be reflected in the view of 
the environment, either through prediction of impact or 
through the collection of additional information (or both). 

To ensure accurate representation and analysis of 
opponent capabilities in supporting the IO decision 
process, the opponent’s corresponding decision process 
should be included. This can be represented as an 
interaction of two OODA loops (Figure 2). Since both 

cycles affect the environment, the friendly decision 
process should take into account the enemy’s decision 
cycle to predict expected outcome. This results in the 
interacting decision cycles being represented as a “game,” 
and techniques from game analysis need to be 
incorporated into the decision aid. 
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Figure 2. Interacting Decision and Execution Cycles. 

In a game, three major processes take place that 
coincide with the OOD phases of the OODA Loop 
(Figure 3). First, data and information are collected from 
the environment about the target or opponent. This data is 
used to capture a current “state” of the game and is 
combined with previously collected data and information 
to characterize the entire environment. Such 
characterization may consist of drawing inferences from 
known information to estimate or predict unknown 
attributes of the environment. The combination of known 
and inferred information defines the current “belief state” 
of the game. The belief state is used, in combination with 
a specific objective, to select a course of action for 
achieving the objective. Once the action is taken, the state 
of the environment changes, and the process repeats. 

The architecture will allow analyst-in-the-loop 
reasoning to be conducted during the inference process. 
The intelligence analyst’s experience and estimates 
concerning system architectures, topologies, and 
configurations, about which little data about the actual 
target may be available, will be captured and used to build 
appropriate portions of the Bayesian network. The analyst 
can then examine the results, query the system for 
explanations of why certain conclusions were reached, 
and modify the initial estimates, if necessary. The 
capability for performing sensitivity analysis will guide 
the intelligence analyst in determining which parameters 
are most important for further refinement and research. 
 



A Control-Theory View of Information 
Operations 
 

In general, the information operations (and the 
OODA loop) can be viewed as a special form of feedback 
(or closed loop) control where desired network states are 
obtained by modifying control variables given the current 
state (Atekson, et al., 1997). Typically, control systems 
are modeled in one of two ways—through forward 
models or through inverse models. A forward model uses 
the current state and the actions that can be applied in that 
state to predict the results of the actions (i.e., the next 
state). Typically, this is represented as s(t+1) = f(s(t),a). 
An inverse model, on the other hand, provides an action 
given the current state and the desired “outcome,” which 
may be the next state. Thus, the inverse model can be 
represented as a = f(s(t),s(t+1)).  

Alternatively, rather than using the next state as 
an explicit parameter in the model, an expected payoff, ρ, 
(e.g., percent denial) can be used in the models. Then the 
forward model becomes ρ = f(s(t),a) and the inverse 
model becomes a = f(s(t),ρ). Using this alternative form, 
the feedback control problem can be posed as the problem 
of optimizing the expected payoff for the controller. 

The controller contains a “model” of the process 
being controlled. This may be an explicit model (e.g., a 
set of differential equations) or an implicit model (e.g., a 
neural network or lookup table matching features to 
actions). In the context of intelligent control, it is 
expected that the controller will process and modify an 
implicit model since such a model is both computationally 

efficient and relatively easy to modify based on past 
experience. 
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Figure 3. Intelligent IO Process Flow 

 Once the controller determines the proper action 
to take (based on a control policy that is either stored or 
computed), the action is translated into appropriate 
commands or signals for the actuators that interact with 
the environment. In the following sections, we will 
discuss one possible framework using neural networks for 
implementing this architecture. 
 
Markov Decision Processes 
 
 The most common form of representation for the 
types of decision problems as outlined above are Markov 
Decision Processes (Barto, et al., 1995). A Markov 
decision process (MDP) is defined by a set of states, S, a 
set of actions, A, a set of transitions between states, T, 
associated with a particular action, and a set of discrete 
probability distributions, P, over the set S. Thus 

PAST →×: . Associated with each action while in a 
given state is a cost (or reward), c(s,a). Given a Markov 
decision process, the goal is to determine a policy, π(s), 
(i.e., a set of actions to be applied from a given state) to 
minimize total expected discounted cost. Figure 4 
provides a graphical view of an MDP. 
 Let )( i  represent the total expected 
discounted infinite horizon cost under policy π from state 
s

sf π

i. Let γ (0 ≤ γ ≤ 1) be a discount factor, which has the 
effect of controlling the influence of future cost on π. 
Then, 
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where Eπ[•] is the expectation given policy π, and c(s,a) 
is the cost of applying action a in state s. Note we can 
estimate  for some )( isf π asi =)(π  as follows: 
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From this, we are able to establish a policy, π, based on 
the current estimate Qf; namely, select asi =)(π  such 
that, 
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This equation is in the form of the Bellman optimality 
equation which can be solved for f(sj) using several 
techniques such as dynamic programming (Bellman, 
1957). 
 With the combined OODA loop as depicted in 
Figure 2, we can generalize the development of a policy 
within the context of Markov games (Sheppard, 1997; 
Sheppard, 1998). A Markov game is an extension of the 
MDP in which decisions by multiple players must be 
considered, and these decisions generally conflict. Under 
the restriction of two-person games, we define S to be a 
set of states, A1 and A2 to be sets of actions for players 1 
and 2 respectively, T to be a set of transitions similar to 
the MBP such that . Associated with 
each player is a cost (or reward) function, c

PAAST →×× 21:
1(s,a1,a2) and 

c2(s,a1,a2). From the context of IO, the objective is to find 
a policy π1(s) that maximizes total expected discoutned 
reward in the presence of an opposing policy π2(s). Value 
functions for each player analogous to the MDP case can 
be determined. For alternating games (which is unlikely), 
policies can be determined for each player given their 

value functions using minimax. In the event simultaneous 
games are being played, mixed strategies may be 
required. For zero-sum games, policies at individual states 
can be determined using linear programming. For non-
zero-sum games (which would result when the value 
functions for the two players are not complementary), a 
linear complementarity problem can be constructed and 
solved using various numeric techniques such as the 
Lemke-Howson algorithm (von Stengel, 1998). si
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Figure 4. Markov decision process. 

Given the large state space of the IO scenario, it 
is likely that a traditional approach using dynamic 
programming to solve these MDPs will be infeasible. As a 
result, some form of function approximation will be 
required for generalizing from representative state-action 
pairs to the full range of state-action possibilities. One of 
the more common approaches to function approximation 
is the use of feed-forward neural networks. 

The traditional feed-forward neural network 
calculates the output of a given node, Oj as 

, where n is the number of inputs to the 
current node. Learning consists of modifying the weights, 
w

∑ =
=

n

i ijij xwO
1

ji in such a way to reduce the network error (calculated 
as 2

2
1 )( OzE −= , where z is the expected network output 

and O is the actual network output). This weight update 
(called backpropagation) is accomplished by determining 
the gradient of this error surface and modifying the 
weights in the direction of the gradient. Specifically, the 
weight update rule for backpropagation can be 
represented as OOzw wji ∇−=∆ )(α  (Rumelhart et al., 
1986). 

The standard backpropagation algorithm, while 
performing well on classification tasks, has been shown to 
have difficulties solving highly dynamic problems such as 
control problems. In response to these difficulties, work in 
reinforcement learning and neural networks resulted in 
the development of a class of algorithms capable of 
solving specific types of control problems. In particular, 
temporal difference algorithms have been shown to solve 
highly complex control problems that are posed as MDPs. 

Rich Sutton developed an algorithm for training 
feed-forward neural networks to solve control tasks that 
can be modeled as an MDP (Sutton, 1988). Sutton’s 
temporal difference method focuses on the problem of 
predicting expected discounted payoff from a given state. 
This method is applied in “multi-step prediction 
problems” where payoff is not awarded until several steps 
after a prediction for payoff is made. At each step, the 
controller predicts what its future payoff will be, based on 
several available actions, and chooses its action based on 
that prediction. However, the ramifications for taking the 
sequence of actions are not revealed until (typically) the 
end of the process. 

According to Sutton, the temporal difference 
method is an extension of the prototypical supervised 



learning rule that is based on gradient descent (as 
described above). If we assume a prediction depends upon 
a vector of modifiable weights w, and a vector of state 
variables s, then supervised learning uses a set of paired 
state vectors and actual outcomes to modify the weights 
to reduce the error between the predictions and the known 
outcomes. 

The standard, supervised learning method works 
best for single-step prediction problems. For multi-step 
prediction, the vector w cannot be updated until the end of 
the sequence, and all observations and predictions must 
be remembered until the end of the sequence. Sutton’s 
temporal difference method permits incremental update 
and is based on the observation that 
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where Pt is the predicted payoff at time t, m is the number 
of steps in the sequence, and Pm+1 = z. In this case, the 
supervised learning rule becomes 
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This update can be computed incrementally because it 
depends only on a pair of successive predictions (Pt and 
Pt+1) and on the sum of past values for ∇wPt. 

Sutton goes on to describe a family of temporal 
difference methods based on the influence past updates 
have on the current update of the weight vector. These 
methods are based on a parameter, λ ∈ [0,1], which 
specifies a discount factor in the prediction equation. 
Sutton refers to this family of equations as the TD(λ) 
family. When λ = 0, past updates have no influence on the 
current update. When λ = 1, all past predictions receive 
equal weight. Assuming it is desirable for the update 
procedure to be more sensitive to recent predictions than 
to distant predictions, the changes are weighted according 
to λk. Thus the update equation becomes 
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Note this equation (and the original gradient 

descent equation) assumes a single linear combination of 
weights. This means that for a function to be learned, that 
function must itself be linear in the inputs (i.e., underlying 
concepts must be linearly separable). We will address this 
limitation in the next section and provide a method, based 
on the “generalized delta-rule (Rumelhart et al., 1986),” 
for removing this limitation from the proposed approach. 
 

Learning an Optimal Policy 
 

There are two significant questions that must be 
answered to apply the TD(λ) approach to train a neural 
network-based controller. First, what is the architecture of 
the network? Second, given the problem to be solved is 
likely to be highly non-linear, thus forcing the 
architecture to be multi-layer, how must the TD(λ) 
algorithm be modified to work with multi-layer networks? 

As indicated in the previous section, a single 
layer of linear weights feeding an output layer is 
insufficient to approximate non-linearly separable 
functions. The most prevalent approach to overcoming 
this limitation is to permit multiple layers of nodes in the 
network. Further, multi-layer networks typically apply a 
transfer function other than a simple weighted sum of the 
inputs. Specifically, the most commonly used transfer 
function is a sigmoid function such as the logistic 
function: 
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When such a function is used, the derivative with respect 
to the weights, w

y
∂
∂ , is simply . Thus, at the output 

level, the weight update rule becomes 
)1( yy −

 
 jiiiiji xOOOzw )1()( −−=∆ α  
 
where Oi is the output of node i, and xji is the jth input to 
node i. If we decide not to use a sigmoid transfer function, 
then the update rule becomes 
 
 jiiji xOzw )( −=∆ α . 
 

Updating the weights of the connections to 
internal nodes (also called “hidden” nodes) requires one 
to consider the relative contribution of error from 
successor nodes. At a hidden node, the update rule is 
determined as follows. First let  
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Then jijji xw αδ=∆ . For the base case (i.e., when needing 
to determine δ for an output node), set 

))(1( jjjj OzOO −−=δ . 
We are now prepared to derive the actual 

temporal difference learning rule to be applied to a neural 
network representing the information operations problem. 
At the output layer, we recall from section 2 that we can 
modify the weights as 



 

 . ∑
=

−
+ ∇−=∆

t

k
kw

kt
tt

t
ji PPPw

1
1 )( λα

 
This is readily implemented as 
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where  is the immediate payoff received at time t for 
applying the given action in the current state. Note in this 
equation, P

tr

t corresponds to the current prediction (i.e., the 
prediction at time t), and rt + λPt+1 corresponds to the 
prediction at the next time step (i.e., the prediction at time 
t + 1). If the outputs are linear, the gradient is simply the 
input value, so the weight update rule reduces to 
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If one wishes to use a sigmoid activation function at the 
output, then the weight update rule becomes 
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For the hidden nodes, we still have sigmoid units. Further, 
the discount factor is not needed since it has been 
incorporated directly into the error measure at the output. 
Thus, the weight update rule for the hidden layers remains 
unchanged from the standard backpropagation learning 
rule. 
 
Bayesian Networks 
 
 Given a neural network for computing a value 
function, we need a method of representing the state of 
the control problem being solved. For the IO problem, we 
suggest using a Bayesian network to capture the current 
belief in the state of the network under attack. A Bayesian 
network is a network where the nodes correspond to 
random variables and directed edges correspond to 
dependence (i.e., causal) relationships between the 
random variables (Pearl, 1988). 
 Within the context of IO, a node in the network 
will correspond to some attribute of the network (e.g., 
number and types of radios in a particular subnet, location 
of the subnet, and type of transmission scheme). Expected 
values for these attributes are derived from known 
attributes of the network (obtained through intelligence 
sources) and conditional probabilities of other values 
given certain known values within the network. Using 
basic operations from probability theory, given a 
Bayesian network and certain known data, probabilities 
can be propagated through the network to derive 
expectations for unknown attributes of the network. 

 Bayesian networks are constructed such that the 
“roots” of the network (defined to be those nodes that are 
conditioned on no other random variables) have “prior” 
probabilities associated with them. Interior nodes of the 
network have conditional probability tables associated 
with them indicating the probability of the variable taking 
on some value given a value of the ancestor nodes. In 
addition, the networks are constructed to be “acyclic” 
(i.e., no path exists through the network from a node back 
to the same node). 
 
Combining Bayesian Networks and 
Decision Theory 
 
 Key to determining a policy that solves a 
particular MDP is the proper representation of the state of 
the process. The IO scenario assumes the decision process 
corresponds to controlling the state of the environment 
until it reaches some desired state maximizing a particular 
objective function. Figure 5 provides a graphical view of 
the approach. 
 From this figure, we see that we are using the 
Bayesian network to capture the state of the network. 
From the beginning of the attack scenario, we establish a 
“baseline” state using intelligence data, likely network 
topologies, and likely mission scenarios. Key attributes 
will be derived from the Bayesian network to form the 
actual state description for the Markov decision process. 
Note that this state need not represent the state of the 
entire network. Such a state representation would be too 
massive to be able to process efficiently. Rather, the state 
representation will focus on the area of the network of 
interest to the attacker (e.g., the local subnet and the 
portion of the internet to be disrupted or accessed). 
 From the Bayesian network, an estimate of the 
current state will be formulated. Based on that state and a 
set of objectives to be achieved, feasible actions will be 
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Figure 5. Using Bayesian networks with POMDPs. 



considered. The action selected will be one to maximize 
the ability to achieve the desired objective. Taking this 
action will alter the state of the network. In the simplest 
case, the state change will correspond to a modification of 
the beliefs associated with the random variables within 
the Bayesian net. In more extreme cases, the change in 
state of the network may force a change in the structure of 
the Bayesian net, thus requiring recomputation of the 
beliefs. Either way, the resulting state is used to select the 
next action, and the process continues iteratively. 
 
Modeling Partial Observability with 
Bayesian Networks 
 
 Due to the large state space and the probabilistic 
view on whether or not certain features hold for a given 
scenario, the decision problem posed by information 
operations corresponds to a partially observable MDP 
(POMDP). A POMDP is defined by a set of states S, a set 
of actions, A, a set of transitions between states associated 
with a particular actions, T, a set of probability 
distributions, P, over the set S, a cost function c(s,a), a set 
of observations, Z, and a set of probability distributions, 
O over the set Z. The probability distributions, P, 
determine the probability of transitioning from state s to 
state s′, given action a. The probability distributions, O, 
determine the probability of observing z in state s′ after 
taking action a. 
 In the context of IO, since the current state is 
captured by value assignments for known random 
variables and probabilities associated with possible value 
assignments for unknown random variables, the 
underlying decision process is partially observable. Key 
to addressing partial observability is the concept of a 
belief state (Kaelbling, Littman, & Cassandra 1998). A 
belief state is defined to be a probability distribution over 
the set of states, S. Letting b(s) denote the probability 
assigned to world state s by belief state b, the belief state 
can be updated using a model of the world (as defined by 
the POMDP) as follows: 
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where Pr(z | a, b) can be treated as a normalizer. Note, in 
the case where the state estimation is given by a Bayesian 
network, the belief update process will correspond to 

propagating evidence through the network to revise the 
specific beliefs of the random variables. 
 Given a representation for a belief state, the 
POMDP can be cast as a continuous state-space MDP as 
follows. Define this “belief” MDP to have a set of belief 
states, B, a set of actions, A (as before), a cost function, 
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for the belief net represented by BN(b, a, z). Since the 
belief captures all information known about the state so 
far, even if the underlying decision process is non-
Markovian, the modified decision process utilizing these 
belief states is Markovian. Consequently, any technique 
for solving continuous state-space MDPs can now be 
applied (such as the temporal difference approach 
described earlier). 
 At this point, the major issue becomes 
representation of the belief state. Specifically, two issues 
must be addressed: the dimensionality of the state space 
and the continuous nature of the belief space. Considering 
the dimensionality problem, a naïve approach would 
involve directly mapping the random variables and the 
associated probabilities of their values to a belief state 
vector. For example, consider the simple Bayesian 
network given in Figure 6. In this figure, we see five 
random variables. For simplicity, assume each variable is 
a Boolean variable (i.e., either true or false). Assume we 
have knowledge about nodes A and B that enable us to 
derive probabilities for C, D, and E. Then the belief state 
could be represented in one of three ways. 
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Figure 6. Simple Bayesian network. 



1. {Pr(A), Pr(B), Pr(C), Pr(¬C), Pr(D), 
Pr(¬D), Pr(E), Pr(¬E)} 

2. {arg max{Pr(A)}, arg max{Pr(B)}, arg 
max{Pr(C)}, arg max{Pr(D)}, arg 
max{Pr(E)}} 

3. {〈arg max{Pr(A)}, Pr(A)〉, 〈arg max{Pr(B)}, 
Pr(B)〉, 〈arg max{Pr(C)}, Pr(C)〉, 〈arg 
max{Pr(D)}, Pr(D)〉, 〈arg max{Pr(E)}, 
Pr(E)〉} 

 
The first form simply represents the probabilities of each 
of the values for each of the random variables. The 
second assigns a vector based on the Bayes decision 
criterion (i.e, select the value with the maximum 
probability). The third is the same as the second except 
that it also includes the probabilities. 
 Note that the first representation is the most 
explicit and, thereby, the most complex. The second 
representation is much simpler in that it is no longer 
infinite; however, a significant amount of information is 
lost by discarding the probabilities. The third 
representation provides a compromise between the first 
and second; however, this representation does not 
simplify the state space. It seems clear that some form of 
compaction is required such as the feature selection 
methods discussed in the previous section. 
 The second issue focuses on the problem of a 
continuous state space. Kaelbling, Littman, and Cassandra 
(1998) address this issue using their “witness” algorithm 
to construct policy trees based on dominance properties of 
the underlying policies. Unfortunately, even with clever 
approaches to pruning the space of policy trees, the 
approach still requires time exponential in the size of the 
observation space. Another approach involves 
constructing a Bayesian network between belief states and 
representing the conditional probability tables and reward 
functions using decision trees (Boutilier and Poole 1996). 
Value iteration is then applied to the decision trees to 
learn the optimal value functions and is, again, 
computationally intractable. 

The reason for the computational complexity is 
that both of these approaches focus on computing an 
exact solution to the POMDP. Substantial savings can 
occur, however, when settling for an approximate 
solution. As already discussed, one of the most successful 
approximate solution methods for MDPs in high-
dimensional state spaces is the temporal difference neural 
network (Tesauro 1992). 
 
Generality of the Framework 
 

Learning approaches such as those described in 
the reinforcement learning community are called “model-
free” because they require no specific model of the 
underlying Markov decision process. In some ways, this 

leads to added complexity in that the model must be 
learned from experience. On the other hand, this 
assumption provides tremendous power in the ability to 
adapt the process if network components, sensors, or 
attack tactics change. Specifically, the details of the 
control elements are abstracted out of the control model; 
therefore, it is a simple matter to replace the controller 
(i.e., the network) with a new controller should the 
problem change. A neural network can be represented 
entirely by data (as a set of matrices of weights). Thus no 
software modification would be required except in 
mapping inputs and outputs to the appropriate nodes in 
the network. 

Suppose the environment changes but the inputs 
and outputs remain the same. The only difference to the 
controller will be the feedback signal (i.e., the payoff) 
from the environment. Presumably, the new environment 
will not yield significantly different signals unless there is 
either a radical change in the task to be performed. In any 
event, the temporal difference method will accept the new 
feedback signal and begin to modify its model of the 
environment immediately. 

Adaptation becomes more complicated if the 
inputs or the outputs change. Since the impact is similar, 
we will treat both of these situations together. When using 
a neural network, both the input data and the control data 
being recommended are represented by numerical 
input/output in the network. Changes mean that the 
inputs/outputs must be modified either through inserting a 
new node, deleting an existing node, or changing a node. 
Note that changing a node is analogous to a deletion 
followed by an insertion. If a change is of a similar type, 
it might make sense to use the original weights as a 
starting point; otherwise, the weights can be reinitialized 
for the new node. In all cases, it is probably prudent to 
retrain the network in the simulated environment before 
hosting in the controller. The advantage to this iterative 
approach is that it can bootstrap off of previously learned 
information. 
 
Conclusion 
 

Overall, the framework described in this paper is 
very flexible and powerful. It is flexible in its ability to 
abstract needed information from the environment and in 
its ability to be encapsulated from the environment. It is 
powerful in that it supports a wide variety of capabilities 
including feature extraction, function approximation, and 
adaptive control. In this paper, we discussed several 
different algorithms for each of these. The algorithms are 
not the only ones possible and are offered as 
representative examples rather than design decisions. In 
the end, however, it is felt that adaptive approaches such 
as those offered above will offer superior power and 
flexibility over scripting or static rule-based reasoning. 
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