

Information Superiority through Intelligent Information Operations

John W. Sheppard

ARINC
2551 Riva Road

Annapolis, MD 21401
jsheppar@arinc.com

Abstract

 The information revolution has created the
ability for creating tremendous tools to support the
warfighter. Tools for collecting, analyzing, and
communicating information are being created to improve
the efficiency and efficacy of conducting military
operations. Unfortunately, the same information
revolution has introduced new vulnerabilities whereby
adversaries can acquire, exploit, deny, or destroy
information needed to support mission objectives.
Information warfare has emerged to provide a new wave
of warfare in which the focus has shifted from massive
destruction of enemy physical assets to surgical attack on
information assets. In this paper, we present a framework
for supporting information warfare and information
operations using advanced techniques from artificial
intelligence and control theory. Specifically, we discuss
the combination of techniques from approximate
reasoning, dynamic programming, and game theory to
define a capability to support the conduct of information
operations.

Introduction

Information systems have become an essential
element of military, government, commercial, and
academic operation. The proliferation of computers,
networks, and related technologies has provided the
capability to rapidly collect, store, analyze, and
disseminate information for a variety of purposes. The
expediency, efficiency, productivity, and profitability of
organizations and individuals have been significantly
enhanced by this information revolution. The military
especially benefits from this progress by providing
decision makers unprecedented quantity, quality, and
timeliness of information. The commander with the
ability to know the order of battle, analyze events, and
distribute critical information possesses a powerful
advantage.

The benefits afforded by the information
revolution are balanced by some problems. Information is
a potent weapon and a lucrative target. The environment

in which information is disseminated and stored provides
a means for unauthorized access and manipulation.
Nations, groups, and individuals seek to acquire, exploit,
and protect information in support of their objectives.
This exploitation and protection of information can occur
for economic and political reasons as well as for military
advantage. Strategies, both offensive and defensive, are
being formulated to address actions involving the denial,
exploitation, corruption, and destruction of enemy
information. These strategies form the core of Information
Operations (IO) and Information Warfare (IW).

In this paper, we discuss a framework for
supporting a C3/C4 analyst in information operations. To
understand where such a capability will benefit the
analyst, we review the concept of the command and
control decision and execution cycle, also known as the
“OODA Loop.” The OODA loop consists of four distinct
phases corresponding, respectively, to observe, orient,
decide, and act (Figure 1).

The first phase of the OODA loop is the
observation phase. At this point, the analyst or command
collects information about the battlespace (i.e.,
environment) within which information operations will
occur. Typically, observation is constrained to data
collection from sensors and any processing necessary to
support the assessment of the information in the next
phase. The second phase is orientation. In this phase, the

Observe Orient

Act Decide

View of Environment

Situation Assessment

Command Orders

Action in Battlespace

Sense Infer

DecideExecute

Figure 1. OODA Loop of Command and Control.

analyst or command interprets the information for
situation assessment. At this point, inferences are drawn
from the information that has been inferred to predict
additional attributes about the situation (e.g., risk and
strategy). In the third phase, decision, the commander
evaluates the results of situation assessment and decides
on an appropriate course of action. The resulting orders
are passed to those who will execute the orders in the
fourth phase, action.

Tools supporting the IO process must work
within the decision and execution cycle, as shown in the
OODA Loop. Specifically, through the intelligence
process, data and information is collected about the target
system and the processes that use that system. The
intelligence process is responsible for collecting
information both in support of planning and real-time
execution. Therefore, the information to be observed must
be stored in a database or made available as collected.
Next, the tool needs to be able to query relevant
information related to the current state and infer situation
attributes as describe above. Several techniques exist for
performing such inference, and we will suggest a
particular approach later in this paper. Given the inferred
situation, the tools must be capable of assessing the
available options in the light of the intended goal, the
confidence in the current view of the environment, and
the expected utility of executing any of the options.
Finally, resulting actions must be reflected in the view of
the environment, either through prediction of impact or
through the collection of additional information (or both).

To ensure accurate representation and analysis of
opponent capabilities in supporting the IO decision
process, the opponent’s corresponding decision process
should be included. This can be represented as an
interaction of two OODA loops (Figure 2). Since both

cycles affect the environment, the friendly decision
process should take into account the enemy’s decision
cycle to predict expected outcome. This results in the
interacting decision cycles being represented as a “game,”
and techniques from game analysis need to be
incorporated into the decision aid.

Observe Orient

Act Decide

View of Environment

Situation Assessment

Command Orders

Action in Battlespace

Orient Observe

Decide Act

View of Environment

Command Orders

Situation Assessment

Enemy Friendly

Figure 2. Interacting Decision and Execution Cycles.

In a game, three major processes take place that
coincide with the OOD phases of the OODA Loop
(Figure 3). First, data and information are collected from
the environment about the target or opponent. This data is
used to capture a current “state” of the game and is
combined with previously collected data and information
to characterize the entire environment. Such
characterization may consist of drawing inferences from
known information to estimate or predict unknown
attributes of the environment. The combination of known
and inferred information defines the current “belief state”
of the game. The belief state is used, in combination with
a specific objective, to select a course of action for
achieving the objective. Once the action is taken, the state
of the environment changes, and the process repeats.

The architecture will allow analyst-in-the-loop
reasoning to be conducted during the inference process.
The intelligence analyst’s experience and estimates
concerning system architectures, topologies, and
configurations, about which little data about the actual
target may be available, will be captured and used to build
appropriate portions of the Bayesian network. The analyst
can then examine the results, query the system for
explanations of why certain conclusions were reached,
and modify the initial estimates, if necessary. The
capability for performing sensitivity analysis will guide
the intelligence analyst in determining which parameters
are most important for further refinement and research.

A Control-Theory View of Information
Operations

In general, the information operations (and the
OODA loop) can be viewed as a special form of feedback
(or closed loop) control where desired network states are
obtained by modifying control variables given the current
state (Atekson, et al., 1997). Typically, control systems
are modeled in one of two ways—through forward
models or through inverse models. A forward model uses
the current state and the actions that can be applied in that
state to predict the results of the actions (i.e., the next
state). Typically, this is represented as s(t+1) = f(s(t),a).
An inverse model, on the other hand, provides an action
given the current state and the desired “outcome,” which
may be the next state. Thus, the inverse model can be
represented as a = f(s(t),s(t+1)).

Alternatively, rather than using the next state as
an explicit parameter in the model, an expected payoff, ρ,
(e.g., percent denial) can be used in the models. Then the
forward model becomes ρ = f(s(t),a) and the inverse
model becomes a = f(s(t),ρ). Using this alternative form,
the feedback control problem can be posed as the problem
of optimizing the expected payoff for the controller.

The controller contains a “model” of the process
being controlled. This may be an explicit model (e.g., a
set of differential equations) or an implicit model (e.g., a
neural network or lookup table matching features to
actions). In the context of intelligent control, it is
expected that the controller will process and modify an
implicit model since such a model is both computationally

efficient and relatively easy to modify based on past
experience.

Decide

Orient
Observe

Data
Collection Control

Environment

DB DB…

Environment
Model

Decision
Model

Information Model

Act

Inference

Figure 3. Intelligent IO Process Flow

 Once the controller determines the proper action
to take (based on a control policy that is either stored or
computed), the action is translated into appropriate
commands or signals for the actuators that interact with
the environment. In the following sections, we will
discuss one possible framework using neural networks for
implementing this architecture.

Markov Decision Processes

 The most common form of representation for the
types of decision problems as outlined above are Markov
Decision Processes (Barto, et al., 1995). A Markov
decision process (MDP) is defined by a set of states, S, a
set of actions, A, a set of transitions between states, T,
associated with a particular action, and a set of discrete
probability distributions, P, over the set S. Thus

PAST →×: . Associated with each action while in a
given state is a cost (or reward), c(s,a). Given a Markov
decision process, the goal is to determine a policy, π(s),
(i.e., a set of actions to be applied from a given state) to
minimize total expected discounted cost. Figure 4
provides a graphical view of an MDP.
 Let)(i represent the total expected
discounted infinite horizon cost under policy π from state
s

sf π

i. Let γ (0 ≤ γ ≤ 1) be a discount factor, which has the
effect of controlling the influence of future cost on π.
Then,

 ⎥
⎦

⎤
⎢
⎣

⎡
== ∑

∞

=0
0|))(,()(

t
itt

t
i sssscEsf πγπ

π

where Eπ[•] is the expectation given policy π, and c(s,a)
is the cost of applying action a in state s. Note we can
estimate for some)(isf π asi =)(π as follows:

∑
∈

+=≈
Sjs

jijii
f

i sfasspascasQsf)(),|(),()()(γπ

From this, we are able to establish a policy, π, based on
the current estimate Qf; namely, select asi =)(π such
that,

 .),(min))(,(asQssQ i

f

aii
f i

A∈
=π

This equation is in the form of the Bellman optimality
equation which can be solved for f(sj) using several
techniques such as dynamic programming (Bellman,
1957).
 With the combined OODA loop as depicted in
Figure 2, we can generalize the development of a policy
within the context of Markov games (Sheppard, 1997;
Sheppard, 1998). A Markov game is an extension of the
MDP in which decisions by multiple players must be
considered, and these decisions generally conflict. Under
the restriction of two-person games, we define S to be a
set of states, A1 and A2 to be sets of actions for players 1
and 2 respectively, T to be a set of transitions similar to
the MBP such that . Associated with
each player is a cost (or reward) function, c

PAAST →×× 21:
1(s,a1,a2) and

c2(s,a1,a2). From the context of IO, the objective is to find
a policy π1(s) that maximizes total expected discoutned
reward in the presence of an opposing policy π2(s). Value
functions for each player analogous to the MDP case can
be determined. For alternating games (which is unlikely),
policies can be determined for each player given their

value functions using minimax. In the event simultaneous
games are being played, mixed strategies may be
required. For zero-sum games, policies at individual states
can be determined using linear programming. For non-
zero-sum games (which would result when the value
functions for the two players are not complementary), a
linear complementarity problem can be constructed and
solved using various numeric techniques such as the
Lemke-Howson algorithm (von Stengel, 1998). si

a1

an

sm

s1p1

pm
.
.
.

.

.

.

Figure 4. Markov decision process.

Given the large state space of the IO scenario, it
is likely that a traditional approach using dynamic
programming to solve these MDPs will be infeasible. As a
result, some form of function approximation will be
required for generalizing from representative state-action
pairs to the full range of state-action possibilities. One of
the more common approaches to function approximation
is the use of feed-forward neural networks.

The traditional feed-forward neural network
calculates the output of a given node, Oj as

, where n is the number of inputs to the
current node. Learning consists of modifying the weights,
w

∑ =
=

n

i ijij xwO
1

ji in such a way to reduce the network error (calculated
as 2

2
1)(OzE −= , where z is the expected network output

and O is the actual network output). This weight update
(called backpropagation) is accomplished by determining
the gradient of this error surface and modifying the
weights in the direction of the gradient. Specifically, the
weight update rule for backpropagation can be
represented as OOzw wji ∇−=∆)(α (Rumelhart et al.,
1986).

The standard backpropagation algorithm, while
performing well on classification tasks, has been shown to
have difficulties solving highly dynamic problems such as
control problems. In response to these difficulties, work in
reinforcement learning and neural networks resulted in
the development of a class of algorithms capable of
solving specific types of control problems. In particular,
temporal difference algorithms have been shown to solve
highly complex control problems that are posed as MDPs.

Rich Sutton developed an algorithm for training
feed-forward neural networks to solve control tasks that
can be modeled as an MDP (Sutton, 1988). Sutton’s
temporal difference method focuses on the problem of
predicting expected discounted payoff from a given state.
This method is applied in “multi-step prediction
problems” where payoff is not awarded until several steps
after a prediction for payoff is made. At each step, the
controller predicts what its future payoff will be, based on
several available actions, and chooses its action based on
that prediction. However, the ramifications for taking the
sequence of actions are not revealed until (typically) the
end of the process.

According to Sutton, the temporal difference
method is an extension of the prototypical supervised

learning rule that is based on gradient descent (as
described above). If we assume a prediction depends upon
a vector of modifiable weights w, and a vector of state
variables s, then supervised learning uses a set of paired
state vectors and actual outcomes to modify the weights
to reduce the error between the predictions and the known
outcomes.

The standard, supervised learning method works
best for single-step prediction problems. For multi-step
prediction, the vector w cannot be updated until the end of
the sequence, and all observations and predictions must
be remembered until the end of the sequence. Sutton’s
temporal difference method permits incremental update
and is based on the observation that

 ∑
=

+ −=−
m

tk
kkt PPPz)(1

where Pt is the predicted payoff at time t, m is the number
of steps in the sequence, and Pm+1 = z. In this case, the
supervised learning rule becomes

 . ∑
=

+ ∇−=∆
t

k
kwtt

t
ji PPPw

1
1)(α

This update can be computed incrementally because it
depends only on a pair of successive predictions (Pt and
Pt+1) and on the sum of past values for ∇wPt.

Sutton goes on to describe a family of temporal
difference methods based on the influence past updates
have on the current update of the weight vector. These
methods are based on a parameter, λ ∈ [0,1], which
specifies a discount factor in the prediction equation.
Sutton refers to this family of equations as the TD(λ)
family. When λ = 0, past updates have no influence on the
current update. When λ = 1, all past predictions receive
equal weight. Assuming it is desirable for the update
procedure to be more sensitive to recent predictions than
to distant predictions, the changes are weighted according
to λk. Thus the update equation becomes

 . ∑
=

−
+ ∇−=∆

t

k
kw

kt
tt

t
ji PPPw

1
1)(λα

Note this equation (and the original gradient

descent equation) assumes a single linear combination of
weights. This means that for a function to be learned, that
function must itself be linear in the inputs (i.e., underlying
concepts must be linearly separable). We will address this
limitation in the next section and provide a method, based
on the “generalized delta-rule (Rumelhart et al., 1986),”
for removing this limitation from the proposed approach.

Learning an Optimal Policy

There are two significant questions that must be
answered to apply the TD(λ) approach to train a neural
network-based controller. First, what is the architecture of
the network? Second, given the problem to be solved is
likely to be highly non-linear, thus forcing the
architecture to be multi-layer, how must the TD(λ)
algorithm be modified to work with multi-layer networks?

As indicated in the previous section, a single
layer of linear weights feeding an output layer is
insufficient to approximate non-linearly separable
functions. The most prevalent approach to overcoming
this limitation is to permit multiple layers of nodes in the
network. Further, multi-layer networks typically apply a
transfer function other than a simple weighted sum of the
inputs. Specifically, the most commonly used transfer
function is a sigmoid function such as the logistic
function:

 ∑
+

=
−

i
ii xw

e
y

1

1 .

When such a function is used, the derivative with respect
to the weights, w

y
∂
∂ , is simply . Thus, at the output

level, the weight update rule becomes
)1(yy −

 jiiiiji xOOOzw)1()(−−=∆ α

where Oi is the output of node i, and xji is the jth input to
node i. If we decide not to use a sigmoid transfer function,
then the update rule becomes

 jiiji xOzw)(−=∆ α .

Updating the weights of the connections to
internal nodes (also called “hidden” nodes) requires one
to consider the relative contribution of error from
successor nodes. At a hidden node, the update rule is
determined as follows. First let

 . ∑

∈

−=
)(

)1(
jDownstreamk

kkjjj wOO δδ

Then jijji xw αδ=∆ . For the base case (i.e., when needing
to determine δ for an output node), set

))(1(jjjj OzOO −−=δ .
We are now prepared to derive the actual

temporal difference learning rule to be applied to a neural
network representing the information operations problem.
At the output layer, we recall from section 2 that we can
modify the weights as

 . ∑
=

−
+ ∇−=∆

t

k
kw

kt
tt

t
ji PPPw

1
1)(λα

This is readily implemented as

 twttt

t
ji PPPrw ∇−+=∆ +)(1λα

where is the immediate payoff received at time t for
applying the given action in the current state. Note in this
equation, P

tr

t corresponds to the current prediction (i.e., the
prediction at time t), and rt + λPt+1 corresponds to the
prediction at the next time step (i.e., the prediction at time
t + 1). If the outputs are linear, the gradient is simply the
input value, so the weight update rule reduces to

 jittt

t
ji xPPrw)(1 −+=∆ +λα

If one wishes to use a sigmoid activation function at the
output, then the weight update rule becomes

 . jittttt

t
ji xPPPPrw)1()(1 −−+=∆ +λα

For the hidden nodes, we still have sigmoid units. Further,
the discount factor is not needed since it has been
incorporated directly into the error measure at the output.
Thus, the weight update rule for the hidden layers remains
unchanged from the standard backpropagation learning
rule.

Bayesian Networks

 Given a neural network for computing a value
function, we need a method of representing the state of
the control problem being solved. For the IO problem, we
suggest using a Bayesian network to capture the current
belief in the state of the network under attack. A Bayesian
network is a network where the nodes correspond to
random variables and directed edges correspond to
dependence (i.e., causal) relationships between the
random variables (Pearl, 1988).
 Within the context of IO, a node in the network
will correspond to some attribute of the network (e.g.,
number and types of radios in a particular subnet, location
of the subnet, and type of transmission scheme). Expected
values for these attributes are derived from known
attributes of the network (obtained through intelligence
sources) and conditional probabilities of other values
given certain known values within the network. Using
basic operations from probability theory, given a
Bayesian network and certain known data, probabilities
can be propagated through the network to derive
expectations for unknown attributes of the network.

 Bayesian networks are constructed such that the
“roots” of the network (defined to be those nodes that are
conditioned on no other random variables) have “prior”
probabilities associated with them. Interior nodes of the
network have conditional probability tables associated
with them indicating the probability of the variable taking
on some value given a value of the ancestor nodes. In
addition, the networks are constructed to be “acyclic”
(i.e., no path exists through the network from a node back
to the same node).

Combining Bayesian Networks and
Decision Theory

 Key to determining a policy that solves a
particular MDP is the proper representation of the state of
the process. The IO scenario assumes the decision process
corresponds to controlling the state of the environment
until it reaches some desired state maximizing a particular
objective function. Figure 5 provides a graphical view of
the approach.
 From this figure, we see that we are using the
Bayesian network to capture the state of the network.
From the beginning of the attack scenario, we establish a
“baseline” state using intelligence data, likely network
topologies, and likely mission scenarios. Key attributes
will be derived from the Bayesian network to form the
actual state description for the Markov decision process.
Note that this state need not represent the state of the
entire network. Such a state representation would be too
massive to be able to process efficiently. Rather, the state
representation will focus on the area of the network of
interest to the attacker (e.g., the local subnet and the
portion of the internet to be disrupted or accessed).
 From the Bayesian network, an estimate of the
current state will be formulated. Based on that state and a
set of objectives to be achieved, feasible actions will be

si …

a1

an

…
sm

s1

…

Belief
Net B

Belief
Net A

p1

pm

Figure 5. Using Bayesian networks with POMDPs.

considered. The action selected will be one to maximize
the ability to achieve the desired objective. Taking this
action will alter the state of the network. In the simplest
case, the state change will correspond to a modification of
the beliefs associated with the random variables within
the Bayesian net. In more extreme cases, the change in
state of the network may force a change in the structure of
the Bayesian net, thus requiring recomputation of the
beliefs. Either way, the resulting state is used to select the
next action, and the process continues iteratively.

Modeling Partial Observability with
Bayesian Networks

 Due to the large state space and the probabilistic
view on whether or not certain features hold for a given
scenario, the decision problem posed by information
operations corresponds to a partially observable MDP
(POMDP). A POMDP is defined by a set of states S, a set
of actions, A, a set of transitions between states associated
with a particular actions, T, a set of probability
distributions, P, over the set S, a cost function c(s,a), a set
of observations, Z, and a set of probability distributions,
O over the set Z. The probability distributions, P,
determine the probability of transitioning from state s to
state s′, given action a. The probability distributions, O,
determine the probability of observing z in state s′ after
taking action a.
 In the context of IO, since the current state is
captured by value assignments for known random
variables and probabilities associated with possible value
assignments for unknown random variables, the
underlying decision process is partially observable. Key
to addressing partial observability is the concept of a
belief state (Kaelbling, Littman, & Cassandra 1998). A
belief state is defined to be a probability distribution over
the set of states, S. Letting b(s) denote the probability
assigned to world state s by belief state b, the belief state
can be updated using a model of the world (as defined by
the POMDP) as follows:

),|Pr(

)(),,(),,(
),|Pr(

),|Pr(),,|Pr(),|Pr(
),|Pr(

),|Pr(),,|Pr(
),,|Pr()(

baz

sbsasPzasO
baz

bassbasasz
baz

basbasz
bazssb

s

s

∑

∑

∈

∈

′′
=

′′
=

′′
=

′=′′

S

S

where Pr(z | a, b) can be treated as a normalizer. Note, in
the case where the state estimation is given by a Bayesian
network, the belief update process will correspond to

propagating evidence through the network to revise the
specific beliefs of the random variables.
 Given a representation for a belief state, the
POMDP can be cast as a continuous state-space MDP as
follows. Define this “belief” MDP to have a set of belief
states, B, a set of actions, A (as before), a cost function,

∑ ∈
=

Ss
ascsbab),()(),(χ , and a set of transition

probabilities defined by

 ∑
∈

′=

′=′

Zz

bazzbab

babbab

),|Pr(),,|Pr(

),|Pr(),,(τ

where

⎩
⎨
⎧ ′=

=′
otherwise ; 0

),,BN(if ; 1
),,|Pr(

bzab
zabb

for the belief net represented by BN(b, a, z). Since the
belief captures all information known about the state so
far, even if the underlying decision process is non-
Markovian, the modified decision process utilizing these
belief states is Markovian. Consequently, any technique
for solving continuous state-space MDPs can now be
applied (such as the temporal difference approach
described earlier).
 At this point, the major issue becomes
representation of the belief state. Specifically, two issues
must be addressed: the dimensionality of the state space
and the continuous nature of the belief space. Considering
the dimensionality problem, a naïve approach would
involve directly mapping the random variables and the
associated probabilities of their values to a belief state
vector. For example, consider the simple Bayesian
network given in Figure 6. In this figure, we see five
random variables. For simplicity, assume each variable is
a Boolean variable (i.e., either true or false). Assume we
have knowledge about nodes A and B that enable us to
derive probabilities for C, D, and E. Then the belief state
could be represented in one of three ways.

C

D

A

E

B

Figure 6. Simple Bayesian network.

1. {Pr(A), Pr(B), Pr(C), Pr(¬C), Pr(D),
Pr(¬D), Pr(E), Pr(¬E)}

2. {arg max{Pr(A)}, arg max{Pr(B)}, arg
max{Pr(C)}, arg max{Pr(D)}, arg
max{Pr(E)}}

3. {〈arg max{Pr(A)}, Pr(A)〉, 〈arg max{Pr(B)},
Pr(B)〉, 〈arg max{Pr(C)}, Pr(C)〉, 〈arg
max{Pr(D)}, Pr(D)〉, 〈arg max{Pr(E)},
Pr(E)〉}

The first form simply represents the probabilities of each
of the values for each of the random variables. The
second assigns a vector based on the Bayes decision
criterion (i.e, select the value with the maximum
probability). The third is the same as the second except
that it also includes the probabilities.
 Note that the first representation is the most
explicit and, thereby, the most complex. The second
representation is much simpler in that it is no longer
infinite; however, a significant amount of information is
lost by discarding the probabilities. The third
representation provides a compromise between the first
and second; however, this representation does not
simplify the state space. It seems clear that some form of
compaction is required such as the feature selection
methods discussed in the previous section.
 The second issue focuses on the problem of a
continuous state space. Kaelbling, Littman, and Cassandra
(1998) address this issue using their “witness” algorithm
to construct policy trees based on dominance properties of
the underlying policies. Unfortunately, even with clever
approaches to pruning the space of policy trees, the
approach still requires time exponential in the size of the
observation space. Another approach involves
constructing a Bayesian network between belief states and
representing the conditional probability tables and reward
functions using decision trees (Boutilier and Poole 1996).
Value iteration is then applied to the decision trees to
learn the optimal value functions and is, again,
computationally intractable.

The reason for the computational complexity is
that both of these approaches focus on computing an
exact solution to the POMDP. Substantial savings can
occur, however, when settling for an approximate
solution. As already discussed, one of the most successful
approximate solution methods for MDPs in high-
dimensional state spaces is the temporal difference neural
network (Tesauro 1992).

Generality of the Framework

Learning approaches such as those described in
the reinforcement learning community are called “model-
free” because they require no specific model of the
underlying Markov decision process. In some ways, this

leads to added complexity in that the model must be
learned from experience. On the other hand, this
assumption provides tremendous power in the ability to
adapt the process if network components, sensors, or
attack tactics change. Specifically, the details of the
control elements are abstracted out of the control model;
therefore, it is a simple matter to replace the controller
(i.e., the network) with a new controller should the
problem change. A neural network can be represented
entirely by data (as a set of matrices of weights). Thus no
software modification would be required except in
mapping inputs and outputs to the appropriate nodes in
the network.

Suppose the environment changes but the inputs
and outputs remain the same. The only difference to the
controller will be the feedback signal (i.e., the payoff)
from the environment. Presumably, the new environment
will not yield significantly different signals unless there is
either a radical change in the task to be performed. In any
event, the temporal difference method will accept the new
feedback signal and begin to modify its model of the
environment immediately.

Adaptation becomes more complicated if the
inputs or the outputs change. Since the impact is similar,
we will treat both of these situations together. When using
a neural network, both the input data and the control data
being recommended are represented by numerical
input/output in the network. Changes mean that the
inputs/outputs must be modified either through inserting a
new node, deleting an existing node, or changing a node.
Note that changing a node is analogous to a deletion
followed by an insertion. If a change is of a similar type,
it might make sense to use the original weights as a
starting point; otherwise, the weights can be reinitialized
for the new node. In all cases, it is probably prudent to
retrain the network in the simulated environment before
hosting in the controller. The advantage to this iterative
approach is that it can bootstrap off of previously learned
information.

Conclusion

Overall, the framework described in this paper is
very flexible and powerful. It is flexible in its ability to
abstract needed information from the environment and in
its ability to be encapsulated from the environment. It is
powerful in that it supports a wide variety of capabilities
including feature extraction, function approximation, and
adaptive control. In this paper, we discussed several
different algorithms for each of these. The algorithms are
not the only ones possible and are offered as
representative examples rather than design decisions. In
the end, however, it is felt that adaptive approaches such
as those offered above will offer superior power and
flexibility over scripting or static rule-based reasoning.

References

Barto, A., Bradtke, S., and Singh, S. 1995.
“Learning to Act Using Real-Time Dynamic
Programming,” Artificial Intelligence, Special Volume:
Computational Research on Interaction and Agency,
72(1): 81–138.

Bellman, R. 1957. Dynamic Programming,
Princeton, NJ: Princeton University Press.

Boutilier, C., and Poole, D. 1996. “Computing
Optimal Policies for Partially Observable Decision
Processes Using Compact Representations,” Proceedings
of the 13th National Conference on Artificial Intelligence,
AAAI Press, pp. 1168–1175.

Kaelbling, L., Littman, M., and Cassandra, A.
1998. “Planning and Acting in Partially Observable
Stochastic Domains,” Artificial Intelligence, to appear.

Pearl, J. 1988. Probabilistic Reasoning in
Intelligent Systems, San Mateo, CA: Morgan Kaufmann.

Rumelhart, D., Hinton, G., and Williams, R.
1986. “Learning Internal Representations by Error
Propagation,” Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, Vol. 1,

D Rumelhart and J. McClelland (Eds.), Cambridge, MA:
The MIT Press, pp. 318–362.

Sheppard, J. 1997. Multi-Agent Reinforcement
Learning in Markov Games, Ph.D. Dissertation,
Department of Computer Science, The Johns Hopkins
University, Baltimore, MD.

Sheppard, J. 1998. “Co-Learning in Differential
Games,” Machine Learning, special issue on multi-agent
learning, Vol. 33, No. 2/3, pp. 201–233.

Sutton, R. 1988. “Learning to Predict by
Methods of Temporal Differences,” Machine Learning,
3:9–44.

Tesauro, G. 1992. “Practical Issues in Temporal
Difference Learning,” Machine Learning, Vol. 8, pp.
257–277.

Von Stengel, B. 1998. “Computing Equilibria for
Two-Person Games,” Handbook of Game Theory, R.
Aumann and S. Hart (eds.) Vol. 3, North-Holland,
Amsterdam.

Wettschereck, D., Aha, D., and Mohri, T. 1997.
“A Review and Empirical Evaluation of Feature
Weighting Methods for a Class of Learning Algorithms,”
Artificial Intelligence Review, Vol. 11, pp. 273–314.

