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Abstract

Nonlinear dynamical systems, which include models of the Earth’s climate, fi-
nancial markets and complex ecosystems, often undergo abrupt transitions that
lead to radically different behavior. The ability to predict such qualitative and
potentially disruptive changes is an important problem with far-reaching impli-
cations. Even with robust mathematical models, predicting such critical tran-
sitions prior to their occurence is extremely difficult. In this work we propose
a machine learning method to study the parameter space of a complex system,
where the dynamics is coarsely characterized using topological invariants. We
show that by using a nearest neighbor algorithm to sample the parameter space
in a specific manner, we are able to predict with high accuracy the locations of
critical transitions in parameter space.
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1. Introduction

Critical transitions are rapid changes in the behavior of nonlinear systems
that arise after small changes in the parameters of a system. Examples of real-
world systems that exhibit sudden shifts in their behavior include the Earth’s
climate, changes in ocean currents, collapses of plant and animal populations,
and sudden swings in financial markets [1]. For instance, data indicate that
the Earth’s climate has swung between a “snowball Earth and a “tropical”
Earth many times in its history. These swings occur relatively rapidly on a
geologic scale [2]. Also on a global scale, an abrupt change in the strength
and direction of the Gulf Stream as a result of climate change would prove
catastrophic for the European climate [3]. Evidence suggests that such a change
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was partially responsible for the three-hundred year Little Ice Age in Europe
beginning in the 17th century [4]. Ecology provides another good source of
examples of catastrophic change; for instance, eutrophication of a lake occurs
when nutrient-rich pollution reaches a critical threshold, at which point water
clarity is suddenly and greatly reduced due to a bloom of algae, which in turn
kills submerged flora [1, 5].

These systems are often modeled using systems of differential equations
whose parameters are not known precisely, but for which parameter bounds
can be inferred from the available data [6]. Critical transitions in the real world
correspond to bifurcations in the models, where a change in parameter values
results in a qualitative change in the behavior of the system.

The usual approaches used to predict critical transitions include studying
the autocorrelation of a time series produced by the system, considering the
skewness of the distribution of states, or testing whether the model “flickers”
across a transition when stochastic forcing is added [1, 5, 7]. All of these are
based on linearization analysis in a neighborhood of a generic local bifurcation,
most often a saddle-node bifurcation. However there are bifurcations where the
local information about the equilibria does not change, but the rearrangement
of the connecting orbits between equilibria, or birth of a periodic or homoclinic
orbit, can lead to a critical transition. A change in the global structure of an
invariant set is very difficult to detect computationally, and this challenge is
compounded by the need to extend this computation over multi-dimensional
parameter space.

Recent advances in theoretical and computational homology and Conley
index theory rigorously allow one to summarize the full dynamics down to a
predefined spatial scale using a combinatorial structure known as the Conley-
Morse graph (CMG). To detect critical phase transitions, we sample a subset
of the discretized parameter space and compute the CMG for each elementary
unit in this subset. We then use the k-nearest neighbor (k-NN) algorithm,
with k = 1, to cluster the regions in parameter space where the CMG’s are
isomorphic. We resolve the edges between these clusters by focusing the 1-NN
algorithm on a subset of parameters near the edges. Using the nonlinear Leslie
population model [8] as an example, we show that it is possible to sample and
compute the dynamics for less than 20 percent of the parameters while correctly
predicting the dynamics of nearly 95 percent of the remaining parameters.

We want to point out that although our methods may seem to be comput-
ing traditional bifurcation diagrams, a closer look reveals significant differences.
Bifurcation structure can be very complicated [9–11] even for low dimensional
systems: The regions of parameters where a system exhibits chaotic dynamics
can be densely interlaced with regions that exhibit stable periodic orbits. This
shows that in general it is impossible to compute a complete bifurcation dia-
gram by a finite computation. Furthermore, standard approaches to computing
bifurcation diagrams do not guarantee that the computed diagram is complete,
i.e. that there are no further bifurcation curves inside the regions away from
the computed bifurcation curves. We approach this fundamental limitation by
using the finite computation to compute information that is coarser than the bi-
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furcation diagram. However, we can guarantee that the information we compute
is complete on our predefined level of resolution. We argue that this approach
uses more effectively our fixed resource, which is the finite computation. Our
interest here is in the detection of critical transitions on a large scale; thus, such
characterization is ideal for helping us achieve this goal [12].

Furthermore, our method has a build-in robustness to changes in unmodeled
parameters. If we assume that there are additional hidden parameters then
the computed information is the same for all systems sufficiently close to the
given system in these parameters. Perturbations to which this applies include
addition of a small bounded noise. The question of whether this also covers the
addition of Gaussian (unbounded) noise is harder and is a subject of our current
investigation.

2. Conley-Morse Graphs

In the past decade, efficient computational topological methods have been
developed to study dynamical systems [13–17]. We provide here a summary
of the key points; a detailed description is beyond the scope of this paper.
Central to the work described here is Conley index theory which computes
topological invariants associated to isolated invariant sets from the index pairs
of the corresponding isolated neighborhoods [18]. The Conley index can be
applied to both continuous-time flows and maps, but since in our example we
will use a discrete map, in our overview we focus on maps.

2.1. Morse Decompositions

In this subsection we describe how the dynamics of a system give rise to
a Morse decomposition of the invariant set. This structure, together with the
Conley index of the isolated invariant sets that form the Morse decomposition,
is encoded in a Conley-Morse graph (CMG).

Let f : X → X be a map on a locally compact metric space X. That is, f
is a continuous function, and for any given initial condition x0 ∈ X, there is a
unique trajectory {xn} where xn = fn(x0), n ∈ N or Z and fn := f ◦ · · · ◦ f
iterated n times. For the remainder of this section we assume that f is invertible
so that n ∈ Z. We follow the exposition in Mischaikow and Mrozek [19] of Morse
decomposition and Conley index. For more detail the reader is referred to the
original paper. We begin with a few definitions that are basic to the rest of the
section.

Definition 2.1. A subset S ⊂ X is invariant under the map f if for all x ∈ S,
f(x) ∈ S.

Let N be a compact subset of X. The maximal invariant set of N is the set
of points that never leave N in forward or backward time,

Inv(N, f) = {x ∈ N | fn(x) ∈ N, ∀n ∈ Z}.
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We abuse notation and refer to Inv(N, f) (or Inv(N) when f is fixed) as the
invariant set of N , as opposed the the maximal invariant set. While invariant
sets are in general not computable, isolated invariant sets, which we define next,
are computable.

Definition 2.2. Let N ⊂ X, then

i. N is an isolating neighborhood if

Inv(N) = Inv(N, f) ⊂ int(N);

ii. whenever S = Inv(N, f) and N is an isolating neighborhood, we say that
S is an isolated invariant set,

where int(·) denotes the interior of a set.

With the definition of an isolated invariant set in hand, we proceed by defin-
ing the related notion of attractors and repellers [20]. First, consider the long-
term behavior of points under the action of f . The forward orbit of a point x0,
γ+(x) = {fn(x0) |n > 0}, is the set of all iterates of x in forward time. For
invertible f the backward orbit γ−(x) is defined analogously with n < 0.

Definition 2.3. Let x0 ∈ X.

i. The point y is in the omega-limit set of x0, denoted ω(x0), if there exists
a subsequence {nk}k∈N of iterates in the forward orbit of f such that
limk→∞ fnk(x0) = y. In other words,

ω(x0) = ω(x0, f) =
⋂
n∈N
{fk(x0) | k ≥ n}

where the bar signifies set closure.

ii. When f is invertible, the alpha limit set of x0 is

α(x0) = α(x0, f) = ω(x0, f
−1).

The following Proposition is a direct result of the compactness of X.

Proposition 2.1 (Hale and Koçak [20]). If X is compact, then α(x) and ω(x)
are nonempty, compact, and invariant for every x ∈ X.

Using Definition 2.3, we define the long-term behavior of points in the in-
variant set S.

Definition 2.4. For a compact, invariant set S, the subset A ⊂ S is an attractor
in S iff for each open neighborhood U ⊃ A,

ω(U ∩ S) = A.

Given the attractor A, the dual repeller R in S is

R := {x ∈ S | ω(x) ∩A = ∅}.
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With these definitions we can decompose S into

S = A ∪R ∪ C(R,A), (1)

where C(R,A) is the set of connecting orbits in S. That is, C(R,A) is composed
of points x ∈ S such that ω(x) ∈ A or α(x) ∈ R. The set (A,R) is called an
attractor-repeller pair. Note that A and R are themselves isolated invariant sets.

Example 2.1. Consider the simple one-parameter system,

ẋ = λ+ x2 (2)

ẏ = −y.

When λ < 0 there are two equilibria (±c, 0), where c =
√
|λ|. A saddle-node

bifurcation occurs at λ = 0, at which point the two equilibria merge into a single
equilibrium. For λ > 0, the system has no equilibria.

Fix λ < 0. Both equilibria lie in the interval I = [−c − 1, c + 1]. Then for
κ = c+1, N = [−κ, κ]× [−κ, κ] is an isolating neighborhood for I. The isolated
invariant set is the line segment S = Inv(N) = [−c, c]. Decomposing S into
its attractor-repeller pair we have S = A ∪ R ∪ C(R,A), where A = (−c, 0),
R = (c, 0), and C(R,A) is the line segment between (−c, 0) and (c, 0).

The attractor-repeller decomposition can be generalized to a decomposition
of the invariant set into a collection of partially ordered invariant sets. Let I be
an index set and define I = (I,>) be a partially-ordered set (a poset) with the
partial order >. We now define the Morse decomposition.

Definition 2.5. Consider a finite collection of disjoint, invariant subsets of S,

M(S) = {M(p) | p ∈ I}, (3)

where for M(p),M(q) ⊂ S we have that M(p)∩M(q) = ∅ whenever p 6= q. We
say thatM(S) is a Morse decomposition of S if there exists a poset I such that

∀x ∈ S \
⋃
p∈I

M(p)

there exist p, q ∈ I, with p > q, for which ω(x) ∈M(q) and α(x) ∈M(p).

Example 2.2. The attractor-repeller decomposition for (2) is also a Morse
decomposition,

M(S) = {M(i) | i = 0, 1; 1 > 0},

where M(0) = (−c, 0) and M(1) = (c, 0). This is the attractor-repeller pair
decomposition of S with M(1) = R and M(0) = A. This is often represented as
a graph. The elements ofM(S) form the nodes, and the partial order amongst
the nodes M(p) determine the directed edges of the graph.
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2.2. Conley Index

In the previous subsection we defined a partial order on a collection of disjoint
isolated invariant sets by saying that M(p) is “higher” than M(q) if there is a
solution that converges to M(p) as n→ −∞ and converges to M(q) as n→∞.

Computationally, one can compute isolating neighborhoods of the Morse
sets and these admit the same partial order [12, 19]. An important related
quality of isolating neighborhoods is that they continue. Suppose that we have
a continuous parameterization of a map,

fµ : X → X, µ ∈ [µ0, µ1],

where µ0 < 0 < µ1, and that we also have an isolating neighborhood N for f0.
Then there exists δ > 0 for which N serves as an isolating neighborhood for fµ
whenever |µ| < δ. Thus, N is robust to perturbations. It follows that attractor-
repeller pairs and Morse decompositions share the continuation property [19].

The Conley index of an isolated invariant set S is computed from an index
pair (N,L) which is a pair of compact sets with L ⊂ N . Typically, but not
always, the set N is an isolating neighborhood S [13, 19].

Definition 2.6. Let S be an isolated invariant set. The pair of compact sets
(N,L), L ⊂ N , forms an index pair for S under the following conditions:

i. S = Inv(N \ L) and S ⊂ int(N \ L).

ii. L is positively invariant in N : If x ∈ L and fk(x) ∈ N , then fk(x) ∈ L
for all k = 0, 1, . . . , n.

iii. Trajectories exit through L: Given x ∈ N , if there exists a time K such
that fK(x) /∈ N , then there is a value n0 ∈ {0, 1, . . . ,K − 1} such that
fn0(x) ∈ L.

Theorem 2.1 (Mischaikow and Mrozek [19]). Any isolated invariant set admits
an index pair.

Example 2.3. Consider the system in Example 2.1 for a fixed λ < 0, and
the associated attractor-repeller pair (A,R) = ((−c, 0), (c, 0)). An isolating
neighborhood for R is NR = [δ, c+ 1]× [−κ, κ], where 0 < δ < c. Let

LR = ({δ} × [−κ, κ]) ∪ ({c+ 1} × [−κ, κ]) .

Then (NR, LR) is an index pair. For A, an isolating neighborhood is NA =
[−c−1,−δ]× [−κ, κ]. Since there is no exit set, the index pair is (NA, LA) with
LA = ∅.

Definition 2.7. Let (N,L) be an index pair. The map f : X → X induces a
continuous map f(N,L) on the quotient space f(N,L) : N/L→ N/L, defined by

f(N,L)(x) =

{
f(x) if f(x) ∈ N
[L] otherwise,
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where [L] denotes the equivalence class of points in L for which the following
equivalence relation holds: x ∼ y iff x = y or x, y ∈ L. This map in turn
induces a homomorphism f∗ : H∗(N,L)→ H∗(N,L) on homology. The homol-
ogy Conley index of an isolated invariant set is given by the shift equivalence
class [13, 19, 21] of the pairs (H∗(N,L), f∗).

Example 2.4. The homology Conley index for the invariant set SR = R in
Example 2.3 is an equivalence class that contains

Hk(NR, LR) ≡

{
Z if k = 1

0 otherwise.

with f∗ = id the identity map on the first homology group.

(a) Original Parameter Space Clusters (b) Recomputed Clustering

Figure 1: (a) The parameter space partitioned according to CMG graph classes deter-
mined using brute force methods. There are thirteen classes, including the uncolored
grid elements. Image taken from [14]. (b) Coarser partitioning of the parameter space
computed using Morse graphs extracted from the data in [14]. Each color corresponds
to identical Morse graphs and represents a distinct class for purposes of machine
learning. There are eight classes in (b). Our algorithm compares its results to the
classifications recorded in this image.

The Conley index information of the Morse sets along with the partial order
induced by the Morse decomposition comprises a global description of a dy-
namical system (at a specific parameter) called the Conley-Morse graph. The
oriented edges of the graph encode the partial order induced by Morse decom-
position, while the vertices of the CMG correspond to Morse sets with the
associated Conley index.
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2.3. Advantage of Using the Conley Index

Observe that the invariant sets forming a Morse decomposition are isolated,
and the corresponding isolating neighborhoods, index pairs, homology of the
index pairs and the induced map on homology f∗ are all computable. The
only part of the Conley index that has not been algorithmically characterized
is the shift equivalence class that forms the Conley index. Instead, one can
compute the set of nonzero eigenvalues of the index map, which is an invariant
of the shift equivalence (and thus the Conley index). This is not a complete
invariant: if two matrices are shift equivalent, they have the same set of nonzero
eigenvalues; the converse implication is not necessarily true. The key point
is that the eigenvalue information is readily computable and can be used to
conclude that equilibria, periodic orbits, even chaotic dynamics exist inside of a
Morse set [22–24]. There are also results concerning the existence of connecting
orbits and global bifurcations based on the behavior of the Conley index over
sets of parameters [25, 26].

The further advantage of using the CMG to characterize the global dynamics
is the robustness of its construction in the parameter space, which is a conse-
quence of the continuation property of the isolating neighborhoods. Choosing
a spatial scale for both the parameter space and the phase space, the com-
puted CMG is valid for each parameter value within the elementary unit of
the discretized parameter space. Furthermore, if the CMG for overlapping grid
elements of the parameter space are the same, and the corresponding isolating
neighborhoods in the phase space pairwise intersect, one can conclude that the
Morse decomposition over the union of the grid elements continues. This prop-
erty have been used in [12] to construct continuation classes of CMG’s over a
parameter space.

Since we do not want to search the parameter space exhaustively, and thus
will not sample overlapping grid elements of the parameter space, we will not
use the pairwise intersection property to assign continuation classes. Rather,
we will assign two grid elements to the same class if there exists a directed
graph isomorphism between their corresponding CMG’s. We take a moment to
define the concept of a graph isomorphism. For a graph G, denote by V (G) the
vertices, and E(G) the edges, of G. A directed edge is defined by (u, v) ∈ E(G),
where the order of the tuple implies an edge beginning at u and ending at v.

Definition 2.8. Let G and H be directed graphs. A directed graph isomorphism
between G and H is a bijection f that maps V (G) to V (H) and E(G) to E(H)
such that each (u, v) ∈ E(G) is mapped to (f(u), f(v)) ∈ E(H).

We have made the decision to ignore the Conley index eigenvalue informa-
tion, since including this information would be computationally intensive and,
in most important phase transitions the change in eigenvalue information is ac-
companied by a change in graph structure as well. Since we do not fully take into
account Conley index information, our classes are coarser than the continuation
classes and, consequently, we only detect the most significant phase transitions.
As we explain in more detail in the next section, Figures 1(a) and 1(b) compare
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the resulting classifications of parameter space using the Conley index eigenvalue
information with the coarser clustering computed using only the graph.

0: 1
H = (0, Z, 0)

Map 1:
#1 = 1

Eigenvalues 1:
(1).

1: 55986
H = (Z, 0, 0)

Map 0:
#1 = 1

Eigenvalues 0:
(1).

(a)

0: 1
H = (0, Z, 0)

Map 1:
#1 = 1

Eigenvalues 1:
(1).

1: 103278
H = (0, Z^3, 0)

Map 1:
#1 = 2

#2 = -2 + 3
#3 = -2

Eigenvalues 1:
(-0.5-0.866i, -0.5+0.866i).

2: 6317
H = (Z^3, 0, 0)

Map 0:
#1 = 3
#2 = 1
#3 = 2

Eigenvalues 0:
(-0.5-0.866i, -0.5+0.866i, 1).

(b)

Figure 2: (Color online.) Two non-isomorphic CMG’s are seen above. The CMG in (a)
indicates that there is one repeller (top) and one attractor (bottom) in the system. The
CMG in (b) indicates that the system has two repellors and one attractor (bottom).
The eigenvalue information about the Morse sets, which we do not use in this paper,
is encoded inside the nodes. (Recomputed from data in [14].)

A finite precision in both phase and parameter space constrain the con-
clusions that can be made about the underlying dynamics: When two CMG’s
computed on a fixed spatial scale are identical, we cannot conclude that their
dynamics are homeomorphic, since bifurcations and changes in dynamics may
happen on a spatial scale below the resolution of the calculation. However, it is
our philosophy that such small perturbations are indistinguishable from noise.

2.4. Interpreting the Conley Index

We finish Section 2 by describing how one can use Conley index information
to interpret the type of the phase transition, even though we are not using
this information to find the phase transitions. To illustrate this procedure we
examine Conley index information presented in Figures 2(a) and 2(b). These
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represent two parameter values in different regions in Figure 1, which we explain
in the next section.

On the graph in Figure 2(a) the upper square represents the repeller whose
homology H1 is nontrivial (Z in the second slot of the vector). The induced
map on the first homology is the identity with unique eigenvalue 1. Thus it has
the same index as a fixed point with a one-dimensional unstable manifold [23].
The bottom square represents the attractor and the homology of the isolating
neighborhood is nontrivial on level 0. This Morse decomposition is consistent
with Example 2.3, but since we work on a fixed resolution in the phase space,
we cannot be sure that both the attractor and repeller consist of a single equi-
librium.

In Figure 2(b) the Morse decomposition has three sets. The top set contains
the same information as the the top set in Figure 2(a). The middle set has
three generators on first homology and the eigenvalues of the induced maps are

− 1
2 ±

√
3
2 i. This represents a rotation by 120 deg and shows that the induced

map on homology permutes the three generators in a circular fashion. The
bottom set in the Morse decomposition has three permuting generators on the
zeroth homology level. We interpret the phase transition between Figure 2(a)
and Figure 2(b) as a bifurcation where a period three attractor and a period
three repeller emerge from a saddle node bifurcation. The eigenvalue 1 on the
zeroth level of the bottom set shows that the attractor in Figure 2(a) persists
to Figure 2(b), and the new pair of period three points is responsible for the

complex pair of eigenvalues − 1
2 ±

√
3
2 i.

3. Problem Studied

We illustrate our method on a nonlinear Leslie population model [8]. In
addition, the partition of parameter space described, while relatively coarse, is
well suited to situations in which the knowledge of parameter values is sparse;
or where computation involving a family of high-dimensional parameters is ex-
pensive.

In the Leslie model, the population is partitioned into d generations, each
with population x1, . . . , xd, and a reproduction rate is associated to each gener-
ation. The nonlinearity comes from the assumption that the fertility decreases
exponentially with the total size of the population. This situation is described
by the map g : Rd → Rd which is defined by

xn1
xn2
...
xnd

 7→


(θ1x
n
1 + · · ·+ θdx

n
d )eα(x

n
1 +···+x

n
d )

p1x
n
1

...
pd−1x

n
d−1

 , (4)

where θj is the reproduction rate of generation j (j = 1, 2, . . . , d) and pi is the
proportion of individuals from generation i that survive into generation i + 1
(i = 1, 2, . . . , d − 1). Superscripts refer to the iteration of the map. Nonlinear
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models such as this have become increasingly important. For instance, the best
linear models showed serious shortcomings after the 2000 US Census [8]. When
using a more complicated nonlinear model, it becomes crucial to understand the
bifurcations that arise in the 2d-dimensional parameter space.

In this paper we report the results of testing our method on a two-generation
nonlinear Leslie population model over two-dimensional parameter space, which
has been studied in [12]. As explained in the previous section, we sample
the coarsened parameter space, compute CMG at these parameter values, and
classify CMG’s into clusters with identical CMG graphs. The boundaries be-
tween these clusters in the parameter space are predictions of phase transitions.
Since [12] has performed an exhaustive search of a subset of the parameter space,
we compare our classifier with the “ground truth” provided by their work. We
have reproduced their results in Figure 1(a). Following [12], we define the map
g : R2 → R2 by

g(x1, x2; θ1, θ2) =

(
(θ1x1 + θ2x2)e−0.1(x1+x2)

0.7x1

)
where (θ1, θ2) are the reproduction rate parameters. The probability of inter-
generational transfer and the exponential rate of fertility decay are fixed at
p = 0.7 and α = −0.1, respectively. This system exhibits a wide range of be-
haviors depending on parameters and therefore is an ideal candidate for our
purposes [8].

Complicated structure of the parameter space is evident in both (a) and (b)
of Figure 1. As detailed in [12], we consider a region [8, 37]×[3, 50] of the (θ1, θ2)-
parameter space that has been discretized into a 50 × 50 grid. For each box a
CMG, which is valid for all parameter values in that box, has been computed.
Grid elements of a single color indicate that their CMG’s are identical. As men-
tioned above, the case where computation is performed for every grid element
and the Conley index eigenvalue information utilized is referred to as the brute-
force method, the results of which are shown in Figure 1(a). The case in which
only the graph portion of the CMG is utilized to classify the dynamics is shown
in Figure 1(b). Grid elements of the same color between Figures 1(a) and 1(b)
indicate identical graph structure of the CMG at the particular parameter value
where the element is located. Since we do not utilize the eigenvalue information
our recomputed clustering of the parameter space is necessarily coarser. We test
the machine learning classification algorithm on this latter parameter space by
comparing its predictions to this version of the brute-force classification. Accu-
racy of our algorithm is measured by the proportion of misclassified points in
the test set.

4. Algorithmic Methods

The k-nearest neighbor (k-NN) algorithm is a method of pattern recognition
and is a fundamental tool used in cluster analysis. The k-NN algorithm is
especially useful when the distribution of the data is unknown [27]. In the
parlance of supervised machine learning we define the following two terms:
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Definition 4.1. A training set is a collection of vectors in a multidimensional
space for which a “label” or “classification” is known for each vector.

Definition 4.2. A test set is a collection of vectors in the same space, each of
whose classifications is treated as unknown.

Given an element u in the test set, the k-NN algorithm queries the training
set for the k closest neighbors of u and assigns to u the class occuring most
frequently amongst these neighbors. In the situation where k = 1, this implies
that the space will be divided into Voronoi cells based on the training data, and
the test data will be assign the identity of the center of the Voronoi cell to which
they belong. We determine the nearest neighbors using the Euclidean distance
metric.

Following Arai, et al. [12] we define a grid on P ⊂ Rd.

Definition 4.3. A grid Q on a as a collection of nonempty, compact subsets of
P such that

(i) P =
⋃
Y ∈Q

Y

(ii) Y = int(Y ), ∀Y ∈ Q
(iii) Y ∩ int(Y ′) = ∅, ∀Y, Y ′ ∈ Q
(iv) For a compact set K ∈ P , the set {Y ∈ Q |Y ∩K 6= ∅} is finite,

For an equivalent definition see Mrozek [28]. The rectangular grid scale is
given by the side length of each rectangle; see Section 3 and Figure 1. Note that

(a) (b)

Figure 3: (a) An initial 250 points are classified, with the remainder of classifications
being assigned using the 1-NN algorithm. The mean classification error is slightly
above 13.5 percent in this image. (b) The effect of ten edge enhancements, starting
with the initial classification in (a). The mean classification error has been more than
halved to approximately 6.8 percent. The total of all edge enhancements utilized only
241 additional examples. Colors correspond to the same classification of CMG’s in
Figure 1(b).
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since P is compact the cardinality of Q, denoted #Q, is finite. We consider the
parameter space P = [8, 37]× [3, 50] described in Section 3.

Let T be a training set containing M grid elements sampled from Q, where
M ∈ N and 0 < M < #Q. For each grid elementA ∈ Q we define CMG(A) to be
the function that assigns to A its CMG. From the machine learning perspective
CMG(A) classifies A. For instance, Figure 2 shows the distinct output of the
CMG(·) function for two grid elements in Q.

Define the test set as R = Q \ T . Applying the 1-NN algorithm to R and
T , we obtain the classification set of R which we call CR. We define CR as

CR := {CMG(A) | A ∈ R}.

The parameter space Q is clustered into Voronoi cells determined by the
locations of the vectors in T and their classes. We summarize this in the proce-
dure KNN Partition. On line 4, we call a 1-NN subroutine, KNN. Note that
any function that performs nearest neighbor clustering can be used for KNN 4.

KNN Partiton(Q, n)

1 T ← {x1, . . . , xn} ∈ Q � Training set
2 CT ← CMG(T ) � Compute the CMG for each grid element in T
3 R ← Q \ T � Form test set
4 CR ← KNN(T , CT ,R) � Cluster elements of R
5 P ← CT ∪ CR � Partition of parameter space
6 return P

Figure 3(a) shows an example of this classifications for a training set of 250
examples selected uniformly at random, which is 10% of the total number of
grid elements.

4.1. Edges

In order to find a better classification we perform a refinement of an initial
classification. This involves determining the edges of the Voronoi cells and
adding a portion of the grid elements along the edges the training set. A grid
element in Q resides on an edge if it does not share the same class with at
least one of its four neighbors on each side. (We ignore elements that fall on
the boundary of Q, since an edge will be detected by an interior neighbor.) We
form the edge set from the subset of all grid elements in R for which at least one
neighbor is found to be of a different class. The set of grid elements constituting
the edges between Voronoi cells is likely large. Therefore, in practice, since we
want to maintain as small of a training set as possible we sample only a portion
(10%) of the set of grid elements along the edges. This relatively small number
of additional training instances we denote by E .

In the procedure Zoom, we summarize the edge enhancement algorithm.
The edge detection step is handled by the subroutine Interfaces on line 2.
The sampling along edges can be accomplished in different ways. For instance,
one may wish to be careful to avoid choosing two grid elements opposite one
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another on either side of a boundary. Similarly one could enforce a sampling
rule dictating that chosen elements be at least a certain distance apart. We are
currently investigating these and other more refined methods of sampling. In
this paper, we consider the boundary regions with no constraints on the samples.
The principle goal at this stage of our investigation is to confirm that the 1-NN
algorithm is a viable tool for the study of critical transitions in complex systems.

After the sample of edge elements, E , has been identified, we form a new,
more refined training set,

T ′ = T ∪ E .

In addition, the classifications CMG(A), for A ∈ E , are appended to the set of
calssifications for T ′. We must also remove E from the initial test set to obtain
the modified test set R′ = R \ E . Finally, the 1-NN algorithm is applied to the
vectors in R′ using the new training set T ′. This produces a new clustering of
the parameter space. (See lines 3- 7 in Zoom.) The procedure can be iterated
until a desired level of error is reached, T ′ reaches a predetermined maximum
size, or a predetermined number of edge enhancements has been performed. For
simplicity, we assume the latter in the Zoom algorithm.

The effect on accuracy is apparent between the classifications after one ap-
plication of 1-NN algorithms in Figure 3(a), and the clustering seen after ten
applications of the edge enhancement procedure in Figure 3(b). Notice that
it is possible to detect additional classes when classifying E . (Compare the
results in Figure 3 to the “baseline” in Figure 1(b).) We show in Section 5
that the numerical accuracy of the classification more than doubles using edge
enhancements.

Zoom(P,Q, n, nz)
1 for i← 1 to nz � Perform nz edge enhancements

do
2 E ← Interfaces(P ) � Find a subset of edge elements in P
3 T ← T ∪ E � Append E to training set
4 R ← R \ E � Remove E from set of test elements
5 CT ← CT ∪ CMG(E) � Update classifications
6 CR ← KNN(T , CT ,R)
7 P ← CT ∪ CR � Update partition

8 Return P

5. Experimental Results

We describe the results of two distinct phases in our experiments. The
first serves to establish a baseline. It involves simple clustering with a 1-NN
algorithm. The second improves upon the first by resolving edges discovered in
the first experiment as summarized in Section 4.
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5.1. Sampling Without Edge Enhancement

As described above, for each trial we begin forming T . Let

M ∈ S = {50, 100, 150, 200, 250},

and let T be composed of M elements in Q chosen uniformly at random, which
are then labeled. The remaining 2500−M grid elements determine R = Q\T .
The vectors in R are then classified using the 1-NN algorithm to obtain CR.
The prediction error ε for CR is defined to be the proportion of elements in R
that are misclassified,

ε(R) =
1

#R
∑
A∈R

∆[CMG(A), CR(A)],

where CR(A) is the predicted class of A and CMG(A) is the true class of A. We
use ∆ to indicate when the predicted and true class do not match by defining
it as

∆(x, y) =

{
1 if x 6= y

0 otherwise.

Recall that CMG(A) is determined from the “ground truth” classifications,
shown in Figure 1(b). Given M ∈ S, we perform an ensemble of 1000 trials
using training sets of size M . We then compute the mean prediction error over
the ensemble of trials.

5.2. Zooming

The experiment described in 5.1 serves as a foundation for the edge resolution
enhancement, or zooming, procedure. Following an initial clustering using the
training set T , we form an edge set as described in Subsection 4.1, which is a
prediction of the location of the bifurcations (edges) in parameter space. As
mentioned above, we now sample the grid elements defining these edges to form
the set E . The elements in E are classified and we obtain updated training and
test sets, T ′ and R′, respectively. We now apply the 1-NN algorithm to R′. A
more refined clustering of Q is obtained and the prediction error is computed.

5.3. Results

Based on the probabilistic nature of the problem, it is clear that by sam-
pling more initial training points, the 1-NN classifier will better predict the
bifurcations in the parameter space P . The numerical results presented below
confirm this and describe the effects of edge enhancement on classification. For
ensembles of 1000 trials beginning with training sets of initial size in M ∈ S
for each trial, one would expect a decrease in the mean misclassification rate as
the sample size increases. What is not clear, at first, is whether starting with
training sets of different sizes and enhancing edges will continue to produce bet-
ter predictions with lower misclassification rates. It could happen that there
is a threshold M ′ such that given an initial training set of M ′ grid elements,
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Figure 4: (a) Mean classification error rates over 1000 trials for ten recursive edge
enhancements. Initial sample sizes are in {50, 100, 150, 200, 250}. In all cases the
variance was less than 0.0004. (b) Comparison of mean classification error for trials
with initial samples in 50, 100, 150, 200 with respect to the mean error observed for
training sets starting with 250 points. Markers denote the mean error for each zoom.

the edges are already near optimal and little additional knowledge about the
locations of bifurcations is gained by zooming in along the edges. We show that
for the range of training set sizes used this is not the case. Figure 4(a) shows
the behavior of the mean classification error for the 1-NN algorithm over ten
edge enhancements (“Zoom” in Figure 4(a)) for each of the initial training set
sizes. Indeed, there is still much room for improvement with 250 initial training
examples. Note that after zooming ten times the mean classification error is
still decreasing for all ensembles.

The comparison in Figure 4(b) illustrates the most important aspect of zoom-
ing in on edges: After only five edge enhancements the mean classification error
for trials starting with 50 training examples reaches the accuracy of initially
choosing 250 training examples. This accuracy is reached after training on a
total of only 153 examples (50 initial training vectors plus 103 chosen over five
edge enhancements). In Figure 4(b) we emphasize the point at which an initial
training set of 50 elements, plus zooming, reaches the initial accuracy of 250
training examples. Similar results hold for trials beginning with 100, 150, and
200 training examples. We conclude that the edge enhancement portion of the
algorithm is able to compensate for a lower number of initial training examples
and provide significant prediction improvement for all sample sizes.

We stopped the edge enhancement algorithm at ten iterations because of
diminishing returns with respect to the number of training examples chosen.
While further accuracy can be gained, the goal is to balance accuracy with min-
imal computational burden which we accomplish by choosing training samples
judiciously. Returning to the specific example shown in Figure 3, it is impor-
tant to note that the increased accuracy seen from 3(a) to 3(b) results from
ten edge enhancements that use less than twice the original number of training
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examples. The classification error for the intial prediction in Figure 3(a) is 13.5
percent using 250 training examples. The prediction in Figure 3(b) uses only
a total of 491 training points–less than 1/5 of the available grid elements. The
classification error is 6.8 percent, or rather 93.2 percent of points are classified
correctly. Zooming in on probable bifurcations given by an initial sampling is a
crucial step towards increasing accuracy while decreasing computational work-
load. Also of importance is that when starting with only six classes we are able
to identify the remaining two during the edge enhancement.

In this work determining the edges (boundaries between the regions) is a
relatively easy task since P is subset of R2. In a higher dimensional parameter
space this task could prove more difficult. However, for high dimensional param-
eter spaces, where a brute force approach to bifurcation analysis is prohibitive
or impossible, detecting boundaries between the regions carries a comparatively
small computational burden.

6. Conclusions

The prediction of bifurcations in dynamical systems that model complex real
world systems is a critical area of study. For many real world systems including
the climate, ecosystems and financial markets the ability to predict a sudden
change in behavior is crucial.

In this paper we presented an approach which couples machine learning
and Conley-Morse graphs to solve bifurcation prediction problems. A coarse,
global characterization of the dynamics is valid over each elementary unit of a
gridded parameter space and, by employing a straightforward nearest neighbor
algorithm, we resolved the classification around potential bifurcations. In doing
so, we showed that we can obtain between 90 and 94 percent accuracy of the
global dynamics of a complex system using only a fraction of the grid elements
in the discretized parameter space.

This work serves primarily as a “proof of concept” for the ideas described
in the Introduction and Sections 3 and 4. We are currently in the process of
extending our investigation along a number of paths, with the goal being an
accurate method for bifurcation prediction in d-dimensional parameter spaces.

While effective in decreasing the misclassification, the edge enhancement
used in the current implementation is not well suited to higher-dimensional pa-
rameter spaces. The continuation property of the Conley index can be used
to aid in the choice of training elements. We are currently trying to use adap-
tive sampling techniques to improve our refinement around the interfaces. Si-
multaneously, we are working on extending our methods to the 3-dimensional
parameter space [14].

Many classification techniques exist in machine learning. One of the most
straight forward to implement is the nearest neighbor algorithm. It is also well-
suited to our specific partition problem. In conjunction with increasing the
dimension of the parameter space, as well as the refinement of the sampling
technique mentioned above, we are exploring the effects of k nearest neighbor
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clustering, along with other methods of classification that may be better-suited
to higher-dimensional problems.

From a dynamical systems perspective, we also are pursuing the investigation
of additional dynamical systems with complex parameter spaces. The main
conceptual challenge is the application of the above techniques to real world
problems where the state of the system is known only from a time series. Even
a model may be missing, yet the classification of the behavior of an observed
complex system is possible. While the first steps toward this goal fall within our
framework, more needs to be done. Mischaikow, et al [29, 30], use time series
data to reconstruct the Conley index of an invariant set and its structure. The
reconstruction of the entire Morse decomposition will likely require compilation
of data from several time series samplings using different initial conditions and
is subject to ongoing research.
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