
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 13, 299–314 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Behavior Model for Next Generation Test Systems

LEE A. SHOMBERT
Intermetrics, Inc., 7918 Jones Branch Drive, Suite 710, McClean, VA 22102

las@wash.inmet.com

JOHN W. SHEPPARD
ARINC, 2551 Riva Road, Annapolis, MD 21401

jsheppar@arinc.com

Received June 20, 1997; Revised August 18, 1998

Editor: W. Needham

Abstract. Defining information required by automatic test systems frequently involves a description of system
behavior. To facilitate capturing the required behavior information in the context of testing, a formal model of
behavior was developed for use by test systems. The approach taken in defining the behavior model was based
on information modeling and was derived from recent work in formal methods by the hardware and software
design communities. Specifically, an information model was developed in EXPRESS capturing the relationships
between essential entities characterizing behavior. In this paper, we provide a high level description of the behavior
information model and several examples applying the model in a test environment.

Keywords: behavior modeling, automatic test systems, test requirements, test programming

1. Introduction

Defining information required by automatic test sys-
tems frequently involves a description of system
behavior in one way or another. Behavior is a charac-
teristic of an entity that describes how that entity acts
or reacts within some context or environment. Within
the context of test systems, behavior is defined by what
is observed as a result of testing.

Recent work in defining an architecture for next gen-
eration test systems has determined that behavior de-
scriptions are relevant in at least five contexts:

1. Characterizing expected behavior by the product
2. Defining test requirements
3. Defining resource capabilities and requirements
4. Defining behavior of test strategies
5. Guiding system diagnostics.

To date, behavior has been treated using ad hoc meth-
ods or relying on simulator-specific approaches to rep-
resentation. Hardware description languages such as
VHDL and Verilog have attempted to provide “stan-
dard” approaches to capturing behavior in digital sys-
tems but are still targeted at simulating a design. Fur-
ther, existing HDLs are not specifically designed for
addressing the needs of a test engineer.

To facilitate capturing the required behavior infor-
mation in each of these contexts, we developed an
information model, defining behavior. In this paper,
we provide a high level description of the behavior
information model and several examples applying the
model in a test environment. Specifically, we focus on
applying the model to capturing test requirements and
resource capabilities.

The approach taken in defining the behavior model
is derived from recent work in formal methods by
the hardware and software design communities [1–3].

300 Shombert and Sheppard

Formal methods are mathematically based languages
used to capture essential attributes of a system being de-
signed. These methods are used, typically, to guide the
process of design verification and proof-of-correctness.
As such, most formal methods apply a “declarative” ap-
proach to specifying systems. Declarative approaches
specify systems by stating logical properties and rela-
tionships among entities within the system [4, 5]. The
process of instantiating such a design corresponds to
assigning legal values to parameters within the system
description such that the properties and relationships
defined by the description are consistent.

The approach taken in defining the behavior model
was to develop an EXPRESS information model cap-
turing the relationships between essential entities char-
acterizing behavior [6, 7]. The approach is declarative
in that, in the simplest case, the process of using the
behavior model consists of matching an implementa-
tion to a model to verify that the two correspond to one
another. The primary advantages to using a declar-
ative approach come in the ability to “reason” about
the performance of the system under test and evaluate
test requirements versus resource capabilities. Further,
such reasoning can be completed without the need to
simulate either the system or the resources explicitly.
Thus, in the case of selecting an appropriate resource
to perform a test, a model of the required behavior is
instantiated and compared with a model of the pos-
sible behaviors provided by each available resource.
The resource is selected that best matches the required
behavior.

In the following sections, we discuss a simplified
view of the EXPRESS behavior model as well as a
slightly more detailed view. This discussion is put in
the context of a trivial test program to highlight and
describe the major entities of the model. Following
this introduction, we provide several examples using
the behavior model in the context of test requirements,
test program synthesis, resource behaviors, and triggers
or events [8–10].

2. The Behavior Model

A simplified view of thebehavior modelis shown in
Fig. 1. This simplified model will be expanded later,

Fig. 1. Simplified behavior model.

but it is sufficient to explain the basic concepts. There
are five entities in this model.

1. location captures where something happens. In
the current model,location can be ports on or in
a unit under test (UUT) or cells in a UUT.

2. behavior captures when something happens.
This entity is distinct from the whole behavior
model in that it is limited to identifying a span of
time over which something occurs. This entity is
defined by itsstart andstop attributes.

3. signal captures what happens. Types ofsig-
nals include theDC SIGNAL andAC SIGNAL, as
well as standard programming data types, e.g., in-
teger, real, or Boolean.

4. constraint defines rules constraining or restrict-
ing which values may appear onsignals.

5. time exists in the model solely to support the def-
inition of thebehavior entity. It is a subtype of
theproperty entity (defined below) and is used to
“type” thestart andstop attributes ofbehav-
ior.

The behavior model can be used to describe require-
ments on a test program and capabilities of a test re-
source.

A more detailed view of the behavior information
model is shown in Fig. 2. In this figure, the five en-
tities from Fig. 1 are shown plus several additional
entities capturing constraint information. Significant
in this figure is the observation that abehavior can
be a composite of lower levelbehaviors, ultimately
containing zero or moresignals. Bothbehavior
andsignal are characterized by a set ofproperties,
each of which can be constrained in some way. Fur-
ther, in addition toconstraints being applied to
signals,constraints can also be applied tobe-
haviors. Finally, the current version of the behavior
model identifies four types ofconstraints:

• range constraints (limiting a property to lie within
some range of legal values),
• accuracy constraints (identifying the acceptable

variation of a property value from a specified refer-
ence),
• timing constraints (indicating legal ordering or

timing relationships with respect to another vari-
able),
• value constraints (indicating possible legal values,

such as discrete values).

A Behavior Model for Next Generation Test Systems 301

Fig. 2. Detailed behavior model.

Arbitrary relationship constraints can be defined in the
constraint supertype without the need to instantiate
one of the subtypes.

3. Interpreting Behavior

At first glance, it appears that the behavior model de-
scribes, for example, how a test program must execute.
This is almost, but not quite, correct. The behavior
really provides a set of criteria by which one can de-
termine if a test program executed properly. To see
why this distinction is important, consider a UUT with
two power supplies that may be used to establish power
once the ground has been established. No testing may
be done on the UUT until after the power supplies have
been established. This situation is shown in the flow
chart in Fig. 3.

Fig. 3. Flow Chart for providing power for tests.

The branches labeled “PS 1” and “PS 2” can execute
concurrently or sequentially—the only constraints are
that the branches cannot begin until “establish ground”
is complete, and that “run tests” cannot begin until both
power supply branches are complete. Now consider a
hypothetical test program. Because the test program is
sequential, it might look something like the following:

establish ground
establish PS_1
establish PS_2
run tests

If the “establish PS x” routines can be decom-
posed into a more basic set of statements (consisting,
for example, ofsetup andapply statements), then
the following version of the program is also legal.

establish ground
setup PS_1
setup PS_2
apply PS_1
apply PS_2
run tests

Many different legal execution paths may be taken by
a test program. It would be inappropriate for a behavior
specification to state that exactly one of those paths
is correct and all others incorrect. Such an approach
would improperly restrict other legal paths.1

302 Shombert and Sheppard

The behavior model describes the desired result of
a test program rather than the test program itself. The
previous example provided pseudocode for a test whose
objective was the verification of a specified behavior.
If the example was executed, real signals would be gen-
erated by the test equipment and applied to the UUT,
and real signals would be observed or measured. Ulti-
mately, the behavior model specifies requirements on
those signals.

Suppose that, following execution of a test program,
a complete record of all signals at the interface to the
UUT is available. For the sake of discussion, assume
these signals have been recorded with infinite preci-
sion. This record is called anexecution traceof the test
program. For the example above, the execution trace
would include the voltage and current at the ground and
power supply pins of the UUT. After a test program has
executed, the execution trace can be examined to see
what the voltages were at any time during the test.

(behavior-def DC_SIGNAL ((pins VoltageLocation) (voltage V))
...)

(behavior-def establish_PS_1 ()
(signal Vcc1 DC_SIGNAL (VoltageLocation Ps1_Pin Gnd_Pin))
(and (> Vcc1.voltage (V 4.75)) (< Vcc1.voltage (V 5.25))))

The behavior model only defines constraints on the
execution traces. The constraints are not applied di-
rectly to the test program—they only influence deci-
sions made in configuring and executing the test pro-
gram. The model is a “declarative” representation of
behavior and does not explicitlyprescribethe behav-
ior of the test program as might be expected from an
imperative (e.g., procedural or functional) description.
Instead, itdescribesthe behavior that is expected from
the program.

The following examples are provided using a lan-
guage designed to implement the behavior model. This
language, called the Test Requirements Model (TeRM)
is defined in [11]. The TeRM language has been in-
vented for prototype and illustration purposes and is
expected to evolve further. The language is used to
declare instances of entities from the behavior infor-
mation model. The general form of a declaration in
TeRM is:

(keyword name body)

The complexity of the body depends on the entity being
defined. Behaviors, for example, contain declarations
of behavior instances (i.e., sub-behaviors) as well as
signals, constraints, and other attributes.

Note that the following examples are generally frag-
ments of a complete TeRM description and depend on
declarations of signals and behaviors whose character-
istics should be clear in context. Ellipses are used to
indicate the presence of bodies that have been left out
for clarity.

Let us refine the elements of the behavior model for
our example. First, the use of the phrase “establish
ground” must be clarified. On a tester, this means that
the ground pins of the UUT connect to the digital, ana-
log, or system ground on the tester. Next, consider what
it means to “establish PS1.” This means that there is a
stable voltage of the proper value at the proper pins on
the UUT. This can be broken into two pieces: the dec-
laration of a voltage at the UUT pins and a constraint
on the value of the voltage:

At this point, four of the five entities in the simplified
behavior model are evident:

• There is a signal namedVcc1. The type of the signal
isDC SIGNAL, where the type is an extension to the
simplified model (as shown in Fig. 2).
• There are two locations, namedPs1 Pin and
Gnd Pin, where the signal Vcc1 occurs.
• There is a constraint that restricts thevoltage at-

tribute ofVcc1 to lie between 4.75 and 5.25 V.
• There is a behavior named “establish PS 1” that

defines the period over which the property definitions
are active.2

This behavior model states that there is a voltage be-
tween two pins on the UUT and that the voltage must lie
within the range 4.75–5.25 V. The behavior does not
provide the actual value for the voltage or even con-
strain the value to be constant for the duration of the
behavior (however, constancy is implied by the type,
dc-signal).

A Behavior Model for Next Generation Test Systems 303

Given this model, a test program can be verified
to satisfy the objectives and constraints of the model,
thereby verifying that the test program is “behaving”
as specified. Formally, the test program itself cannot
be verified. Rather, the test program can be run and the
resulting execution trace examined. From the execu-
tion trace, the voltage corresponding tosignal Vcc1
can be determined to ensure the voltage lies within the
proper range for the duration of theestablish PS 1
behavior.

Notice that notime entities are defined for the
example. In a test program, the behavioresta-
blish PS 1 begins at some time and later ends. Note
that no specific values have been assigned, nor should
they be. For this example, thestart andstop times
are identified by examining the execution trace of the
program rather than being included in the test program
to prescribe specifically when the behavior occurs.

In considering the whole test program, however, one
finds that thestart andstop timesarespecified, but
in terms of timing constraints. For example,

(behavior-def whole_test_program ()
(behavior-ref PS1 establish_PS_1)
(behavior-ref PS2 establish_PS_2)
(behavior_ref RT run_tests)
(and (<= PS1'stop RT'start) (<= PS2'stop RT'start)))

In this example, the behavior defined bywhole
test program contains three sub-behaviors (named
PS1, PS2, and RT). Behaviorwhole test pro-
gram also contains a constraint that relates thestart
andstop times of the three sub-behaviors such that the
ordering of the behaviors conforms to the flow chart in
Fig. 3. Notice that thestart andstop times, while
specified in the constraint, do not have values specified
anywhere. As described above, the actual values are
derived from the execution trace of the test program.

4. Applications of Behavior

In the following sections, we will provide several ex-
amples using the behavior model. These examples are
simplified, but they serve to further illustrate the con-
cepts introduced in the previous section.

The behavior model can be applied during test re-
quirements specification, synthesis, and verification.
A common thread through these applications is the use
of the behavior model for test program specification.
Test resource allocation is a fourth application that can

occur during test program development (i.e., static al-
location) or during test program execution (i.e., dy-
namic allocation). Other applications are expected as
the model becomes more widely used.

4.1. Test Requirements Specification

The behavior model can be used to capture test require-
ments. Test requirements, in this context, are require-
ments on the test program itself, not requirements on
the test development process [12, 13]. The behavior
model addresses test requirements such as:

• A safe-to-turn-on test must be performed before any
other test.
• Tests must be run over a range of ambient tempera-

ture.
• Frequency stability must be measured at

1.250000 MHz.

Using these requirements as examples, we will demon-
strate how to represent requirements in the behavior
model and how to use the requirements in test program
synthesis and verification.

The above test requirements are provided in English
and, although understandable to engineers, are difficult
for a computer to understand. The first step for speci-
fying requirements in a machine-understable way is to
add detail to the above statements until they can be
expressed formally.

4.1.1. Safe-to-Turn-On Test Requirement.A safe-
to-turn-on (STTO) test is defined as a behavior that
precedes all other behaviors in the test program. The
test program itself represents an enclosing behavior that
includes the STTO test and all other tests. The STTO
behavior typically tests for shorts between power and
ground with a direct resistance measurement and then
tests for excessive current when the UUT is powered.
The STTO “returns” a value that determines whether

304 Shombert and Sheppard

any further tests may be run. Specifically, the STTO
behavior can be represented as follows:3

(behavior-def safe_to_turn_on ((safe_to_test boolean))
...)

(behavior-def run_tests ()
...)

(behavior-def whole_test_program ()
(behavior-ref ST safe_to_turn_on)
(behavior-ref RT run_tests)
(if RT'execute (>= RT'start ST'stop))
(if RT'execute ST'safe_to_test))

In this model, a behavior is defined aswhole
test program that contains two sub-behaviors:
ST and RT. Behavior ST is an instance of the
safe to turn on behavior (defined above).ST has
a return parameter calledsafe to test. Behavior
RT simply encapsulates all other tests in the test pro-
gram.

The first constraint ensures that, ifRT actually exe-
cutes, thenRT follows ST. The second constraint en-
sures thatRT can only execute if behaviorST returns
TRUE for thesafe to test parameter. This con-
straint looks “backwards” because the behavior that is
supposed to occur (RT'execute) appears as the test
to theIF statement, and the behavior that is supposed
to have occurred appears in theTHEN clause of theIF.
Behavior descriptions are declarative—they do not

(behavior-def run_tests ((ambient temperature))
...)

prescribe how to execute a test program; they describe
what must be true after the test program executes.

After the test program executes, the execution
trace will have a value forRT'execute and
ST'safe to test. The only way the constraint
can be satisfied is if bothST'safe to test and

(function-def in_range () boolean
...)

(behavior-def whole_test_program ()
(behavior-ref ST safe_to_turn_on)

RT'execute aretrue, or if RT'execute isfalse.
Notice thatRT is not required to actually run. In-
stead, the requirement is thatRT not run unless the
UUT passes its safe-to-turn-on test.

4.1.2. Test Over Temperature Test Requirement.
Products typically have a temperature range over which
they are expected to operate. This normally implies that
the product must be tested at more than one ambient
temperature. Let us assume that our example product
will be tested at three temperatures: room tempera-
ture, a low temperature, and a high temperature. This
assumption can be captured by first expanding the defi-
nition of therun testsbehavior to include the notion
of ambient temperature.

Next the definition ofwhole test program is ex-
panded to require thatrun testsexecute at least once
with the temperature around room temperature, once
with the temperature near the low end of the range,
and once with the temperature near the high end of the
range.

A Behavior Model for Next Generation Test Systems 305

(behavior-ref RT_room run_tests)
(if RT_room'execute (>= RT_room'start ST'stop))
(if RT_room'execute ST.safe_to_test)
(if RT_room'execute (in_range room_range RT_room.ambient))

(behavior-ref RT_low run_tests)
(if RT_low'execute (>= RT_low'start ST'stop))
(if RT_low'execute ST.safe_to_test)
(if RT_low'execute (in_range low_range RT_low.ambient))

(behavior-ref RT_high run_tests)
(if RT_high'execute (>= RT_high'start ST'stop))
(if RT_high'execute ST.safe_to_test)
(if RT_high'execute (in_range high_range RT_high.ambient)))

The whole test program description has been
modified to include three copies ofrun tests, each
of which is constrained to run within a particu-
lar temperature range (denoted by names such as
room range, low range, and high range, that
would be defined in a full model). Note there are no se-
quencing constraints between the variousrun tests;
an implementation is free to pick whatever temperature
sequence it deems most appropriate.

Also, notice that none of therun tests are re-
quired to execute. In this particular example, the
decision about execution is left to the diagnostic con-
troller. The diagnostic controller might decide, for in-
stance, not to test at high and low temperature if the
room temperature test fails. Such a decision is entirely
consistent with the test requirements in the example
[14].

4.1.3. Frequency Stability Test Requirement.A fre-
quency stability test might verify that a UUT output
signal has a constant frequency. The term “constant”
must be qualified to mean “constant within some error.”
This test requirement can be captured by defining it in
terms of a behavior. One approach to specifying the
behavior is:

(behavior-def AC_SIGNAL
((location Hi) (location Gnd) (frequency Hz))
...)

(behavior-def frequency_stable ()
(signal Osc AC_SIGNAL (VoltageLocation Osc_Pin Gnd_Pin))
(< Freq_Error (abs (- Osc.frequency (MHz 1.25)))))

This model defines a behavior,frequency stable,
with onesignal that is of typeAC SIGNAL. There
is a single constraint that forces the frequency to be
“close to” 1.25 MHz, where “close to” is defined as
being within Freq Error. Unfortunately, this des-
cription is incorrect because one does not know if
the oscillator is really stable, nor can it be forced
to be stable. The current description demands that
the oscillator be stable and invalidates any observa-
tion of behavior for which the oscillator is not sta-
ble.

The description needs to report whether or not
the oscillator is stable rather than forcing the sta-
bility of the oscillator. Again, the focus is on
describing rather than prescribing behavior. For
example,

(behavior-def frequency_stable ()
(variable Osc_Ok boolean)

306 Shombert and Sheppard

(signal Osc AC_SIGNAL (VoltageLocation Osc_Pin Gnd_Pin))
(== Osc_Ok

(< Freq_Error (abs (- Osc.frequency (MHz 1.25))))))

This description says that theOsc Ok property is
true if the oscillator frequency is stable andfalse
otherwise. Notice thatOsc Ok is not required to
be true. It will be true for a fault-free UUT
and may befalse for a faulty UUT. The behavior
frequency stable is permitted to take on either
value, and it is reasonable to expect that diagnostics
will use Osc Ok (among others) to indicate whether
the UUT is faulty.

4.2. Test Program Synthesis

Because it is declarative, a behavior description does
not usually capture enough information to directly gen-
erate code for a test program. However, a behavior can
be used to guide test program generation [15]. In gen-
eral, the code synthesis process can follow a constraint
satisfaction process coupled with a code generator as
a side effect [16, 17]. For example, in determining
the order in which to executeRT andST, legal val-
ues (or ranges of values) need to be instantiated for the
RT'start andST'stop variables. As a side effect of
instantiating these values, a code generator can deter-
mine that functions associated withRT andSTmust be
generated that are sequenced according to these legal
values.

void whole_test_program (void) {
boolean safe_to_test;
-- Execute Safe_To_Turn_On,
-- getting the safe_to_test parameter back.
--
safe_to_turn_on (&safe_to_test);
-- Execute Run_Tests only if safe_to_test is true. --
if (safe_to_test) {

run_tests();
}

}

For illustration, consider the example from the pre-
vious section describing the STTO test. For this exam-
ple, when synthesis begins, code must be generated

to implementwhole test program. This might in-
volve including standard startup code and may include
the generation of site-specific user interfaces. The test
requirements in the behavior description are silent on
such issues, and the synthesis program is expected to
generate such details from other sources of informa-
tion. The separation of test requirements that depend
only on the UUT from information about the test equip-
ment or local test procedures is deliberate and is a
principal advantage to using the behavior model. The
remaining discussion will assume that the synthesis
program will be adding local information, and will talk
only in terms of satisfying the test requirements.

Having begunwhole test program, one must
select a component of the test program to synthesize.
There are four statements inwhole test program,
two behaviors and twoconstraints. Note that
the firstconstraintprohibits runningRTbefore run-
ningST. Also note that the second constraint cannot be
evaluated untilST executes. Therefore,ST will be
synthesized first, which is exactly what common sense
would dictate.

Now a branch that executesRT only if ST returned
true for its safe to test parameter will be syn-
thesized. When using a programming language like C,
the code forwhole test program would resemble
the following skeleton:

Note that the constraint thatST run beforeRT is
ensured by the order in which thesafe to turn on
andrun tests routines are called in the test program.

A Behavior Model for Next Generation Test Systems 307

Also, note that the C program executesrun tests
if safe to test is true, even though the test re-
quirements did not demand this. Often test programs
are more constrained than the test requirements due to
considerations such as operator convenience, test time
minimization, or other concerns not directly related to
the requirements.

(behavior-def some_voltage_test ()
(signal Vcc DC_SIGNAL (VoltageLocation Ps1_Pin Gnd_Pin))
(< (V 0.1) (abs (- (V 3.3) Vcc.voltage))))

4.3. Test Program Verification

Test program verification is the process of comparing
an existing test program with a set of test requirements
to ensure that the program satisfies the requirements
[18]. As discussed earlier, the behavior description of
the test program constrains its execution trace, and only
the execution trace truly can be verified. Note, it is
both impractical and inefficient to verify each execution
trace; therefore, the alternative is to analyze the test
program itself and predict whether or not all execution
traces that can be produced by the test program will be
correct.

Some aspects of an execution trace can be predicted
with high confidence. Gross timing relationships are a
good example. In the following example, the behavior
some test has two sub-behaviors (B1 andB2), and
B2 must occur afterB1.

(behavior-def some_test ()
(behavior-ref B1 Test_A)
(behavior-ref B2 Test_B)
(>= B2'start B1'stop))

If the corresponding test program is written in a se-
quential programming language such as C, and ifB1
andB2 are implemented as subroutines, the code for
some test might look like:

some_test (void) {
test_A(); -- behavior B1 Test_A
test_B(); -- behavior B2 Test_B

}

In this case,B2 is guaranteed to followB1 unless some
catastrophic failure occurs in the compiler or in the host
computer.

Other aspects of an execution trace can be predicted
with less certainty. For example, consider a behavior
that contains asignal whose voltage is constrained
to a small range around 3.3 V:

This behavior might be implemented by code that
programs a power supply to 3.3 V. Analysis of the test
program code would show that the power supply pro-
gramming is consistent with the behavior; however,
the execution trace would be consistent with the be-
havior only if the selected power supply had adequate
accuracy and precision and if the line loss between the
supply and the UUT was negligible. These are con-
cerns that test engineers deal with on a daily basis and
that must be considered during the analysis.

Sometimes analysis of the test program code does
not yield enough information to conclude anything
about the expected execution trace (e.g., when inter-
actions between the selected test resource and the in-
terface test adapter cannot be predicted easily). In these
cases simulation of the test program, also called “vir-
tual tests,” can generate predictions of execution traces
for the test program [19]. These predicted execution
traces can be verified with respect to some behavior,
and with enough such simulations, the test program
could be declared acceptable.

4.4. Test Resource Allocation

Test resource allocation identifies candidate resources
and then determines if the candidates are suitable for
the required task [20]. Test resource allocation is an
important function in test development, and automa-
tion of this function is important when automating the
test program generation process. Automated alloca-
tion also enables dynamic allocation of test resources,
which in turn leads to more portable test programs. A
test program will have one or more requirements that

308 Shombert and Sheppard

must be satisfied by a test resource, and a test resource
will have a set of capabilities. If the resource capa-
bilities satisfy the requirements then the resource is
functionally suitable.

The behavior model supports the test for functional
suitability by acting as a specification for both the test
requirements and the test resource capabilities. For
example, supposed the following test requirement is
applied to an amplifier with a gain of two.

(behavior-def some_test ()
(signal V1 DC_SIGNAL)
(signal Vin DC_SIGNAL (VoltageLocation In_Pin Gnd_Pin))
(signal Vout DC_SIGNAL (VoltageLocation Out_Pin Gnd_Pin))
(signal V2 DC_SIGNAL)
(variable Amp_Ok boolean)
(< (V 0.5) (abs (- (V 4) V1.voltage)))
(< (mV 2) (abs (- Vin.voltage V1.voltage)))
(< (mV 2) (abs (- V2.voltage Vout.voltage)))
(== Amp_Ok

(<= 0.001 (abs (- (/ V2.voltage V1.voltage) 2)))))

There are foursignals in this behavior:

1. V1 is the input voltage to the amplifier program, as
programmed

2. V2 is the output voltage, as reported by some instru-
ment

3. Vin is the actual input voltage to the amplifier
4. Vout is the actual output voltage of the amplifier

There are also fourconstraints in this behavior.

1. The programmed input voltage can be any value in
the range 3.5–4.5 V.

2. The actual input voltage must be within 2 mV of the
programmed voltage.

3. The reported output voltage must be within 2 mV
of the actual output voltage.

4. The Booleanproperty Amp Ok is true if the am-
plifier gain, calculated with the programmed and

(behavior-def measure_spec ()
(variable Offset Voltage)
(variable Tolerance Real)

(signal Vmeas DC_SIGNAL (VoltageLocation Input_Pin Gnd_Pin))
(signal Vread DC_SIGNAL)

reported voltages, is two, plus or minus one-tenth
of 1%.

From this description, three things aboutsome
test can be observed. First, the use ofsignals
for the programmed and reported voltages allows the
behavior model to capture accuracy requirements. The
relationship betweenVin andV1 is one accuracy con-
straint, and the relationship betweenV2 andVout

is the other. Second, while the behavior model allows
the test program to test the amplifier at any voltage
in a one-volt range (e.g., 3.5–4.5 V), the accuracy of
the overall test is required to be relatively high. This
requirement cannot be specified with a simple range on
Vin. Third, there is an implicit constraint betweenVin
andVout sinceVin is constrained relative toV1,Vout
is constrained relative toV2, and an explicit constraint
exists betweenV1 andV2. This constraint is similar in
form to the constraint betweenV1 andV2 and might
be classified as a product requirement.

A test resource is required to implement the behavior
specified by this model. To obtain the required behav-
ior, two resources will probably be required—one to
apply the input voltage and one to measure the output
voltage. For the sake of discussion, consider only the
measurement resource. The input resource would be
treated similarly. A possible behavior model describ-
ing the measurement resource is:

A Behavior Model for Next Generation Test Systems 309

(and (>= Vmeas.voltage (V -10)) (<= Vmeas.voltage (V 10)))
(< (abs (- Vmeas.voltage Vread.voltage))

(+ Offset (* Vmeas.voltage Tolerance)))
(and (>= Tolerance 0) (<= Tolerance 2e-4)))

This resource has two signals—the voltage that appears
at the input and the voltage as reported by the resource.
The behavior has four constraints. The first limits the
range of the input voltage to±10 V. The last three
constraints limit the measurement error. The first ex-
presses the resource accuracy as a linear function of
Offset andTolerance, the second limits the legal

(behavior-def some_test ((vout V))
...
(== vout Vout.voltage)
(signal Vout DC_SIGNAL (VoltageLocation Out_Pin Gnd_Pin))
...)

(behavior-def measure_spec ((vmeas V))
...
(== vmeas Vmeas.voltage)
(signal Vmeas DC_SIGNAL (VoltageLocation Input_Pin Gnd_Pin))
...)

(behavior-def some_test_using_resource ()
(behavior-ref X some_test)
(behavior-ref Y measure_spec)
(< (abs (- X.Vout.voltage Y.Vmeas.voltage) ITA_Loss)))

range ofOffset, and the third limits the legal range of
Tolerance. Notice that the behavior does not state
that theOffset, for example, is 100µV. Instead,
the behavior states that theOffset is no more than
100µV.

When interpreting this model, themeasure spec
behavior states the behavior of the resource. It gives
no information about how to control the resource. One
approach for controlling the resource is for the resource
to have a separate set of methods that provide program
control. If this was the approach taken, one would ex-
pect to find a method that returnsVread.voltage,
but no methods for returningVmeas.voltage, Off-
set, orTolerance. Further, there would be no meth-
ods for setting any of theproperties or signals.

This set of methods is entirely consistent with the con-
trol of real resources.

Assume that some process has chosen the resource
associated withmeasure spec to implement some of
the test requirements insome test. If the resource is
connected to the UUT, a new behavior will be specified
that is the union of the original behaviors:

There is an instance ofsome test and an instance of
measure spec. The sub-behaviorsX andY should
be constrained to be simultaneous, but those constraints
have been omitted for simplicity. There is an additional
constraint that couples the UUT output voltage with the
test resource input voltage, corresponding to wiring
in the interface test adapter. The constraint does not
say that the two voltages are equal. Rather, it states
that the two voltages are closer than some factor called
ITA Loss.

If the test resource is compatible with the test re-
quirements, there will be no conflicts in the constraints.
The constraints (numbered for convenience) that are
coupled by connecting the resource with the UUT
are:

310 Shombert and Sheppard

(signal V1 DC_SIGNAL)
(signal Vin DC_SIGNAL (VoltageLocation In_Pin Gnd_Pin))
(signal Vout_DC_SIGNAL (VoltageLocation Out_Pin Gnd_Pin))
(signal V2 DC_SIGNAL)

(variable Amp_Ok boolean)

1. (< (V 0.5) (abs (- V1.voltage (V 4))))
2. (< (mV 2) (abs (- Vin.voltage V1.voltage)))
3. (< (mV 2) (abs (- V2.voltage Vout.voltage)))
4. (== Amp_ok (<= 0.001 (abs (- (/ V2.voltage V1.voltage) 2))))

(variable Offset V)
(variable Tolerance Real)

(signal Vmeas DC_SIGNAL (VoltageLocation Input_Pin Gnd_Pin))
(signal Vread DC_SIGNAL)

5. (and (>= Vmeas.voltage (V -10)) (<= Vmeas.voltage (V 10)))
6. (< (abs (- Vmeas.voltage Vread.voltage))

(+ Offset (* Vmeas.voltage Tolerance)))
7. (and (>= Offset (V 0)) (<= Offset (uV 100)))
8. ((and (>= Tolerance 0) (<= Tolerance 2e-4)))
9. (< (abs (- Vout.voltage Vmeas.voltage)) ITA_Loss)

If the UUT is good, one can deduce from the model
that the output voltage may range from approximately
7 to 8 V (the output may actually range from 6.992502
to 9.008502 V as derived from constraints 1, 2, and 4).
This lies comfortably within the resource input range
given by constraint 5. Note that the range ofVoutwas
not constrained; therefore, one cannot be certain that
Vmeas will lie within the 10 V range. In the present
example, one could probably clampVout to protect
the resource input without affecting the validity of the
test program.

If the UUT is good, one can also deduce from the
model thatVread is an adequate substitute forV2, pro-
vided theITA Loss is less than 100µV. The maximum
error of the resource (given byVread with respect to
Vmeas) occurs at 9 V and is 1.9µV, as specified by
constraints 6, 7, and 8. The maximum error permitted
on V2 (given byV2 with respect toVout) is 2 µV,
as specified by constraint 3. The maximum error be-
tweenVout andVmeas is ITA Loss, as specified by
constraint 9. Therefore, ifITA Loss is no more than
100µV, Vread from the resource can be substituted
for V2 in constraint 4.

This example illustrates that analyzing the behav-
ior specifications of the test requirements and the

resource capabilities “verifies” that the resource satis-
fies the requirements and can be used in the test pro-
gram (provided the ITA loss is kept low enough). Dif-
ferent values in any of the constraints could lead to a
different conclusion.

4.5. Triggers and Events

One reasonable issue for the behavior model to ad-
dress is the representation of events, including various
triggers and timers [8–10]. The behavior model quite
readily represents these concepts but does not recog-
nize them in any special way. A trigger defines a precise
timing relationship between two actions. For example,
a trigger can establish a relationship between the rising
edge on a voltage signal and the start of an oscillator.
This is shown in Fig. 4.

Fig. 4. Trigger initiating oscillator.

A Behavior Model for Next Generation Test Systems 311

The behavior model captures the trigger as follows.
Assume several sub-behaviors foroscillator on,
oscillator off, DC low, andDC high have been
defined.

(behavior-def oscillator_trigger ()
(behavior-ref Osc_Off oscillator_off)
(behavior-ref Osc_On oscillator_on)

(== Osc_Off'start self'start)
(== Osc_On'start Osc_Off'stop)
(== Osc_On'stop self'stop)

(behavior-ref Trig_Down DC_low)
(behavior-ref Trig_Up DC_high)

(== Trig_Down'start self'start)
(== Trig_Up'start Trig_Down'stop)
(> Trig_Up'stop (+ Trig_Up'start Trig_Delay))
(== Osc_On'start (+ Trig_Up'start Trig_Delay)))

There are four sub-behaviors ofoscillator
trigger. Two govern the behavior of an oscilla-
tor and must occur sequentially (i.e.,Osc On starts
as soon asOsc Off stops). Together, these two sub-
behaviors span the entire containing behavior. Two
sub-behaviors govern the trigger signal itself. These
two sub-behaviors are also sequential, but they need
not run to the end of the containing behavior. In this
example, once the oscillator is running, the trigger sig-
nal can change without affecting the oscillator. Finally,
a constraint is imposed on the oscillator to turn on after
some delay following the rising edge of the trigger sig-
nal. This delay is namedTrig Delay in the example
and would normally be passed as a parameter to the
behavior.

Notice that oscillator trigger describes a
simple timing relationship, but there is no indication
of how the relationship is to be implemented. It could
be implemented through a trigger, through software, or
as a side effect of something else in the test program.
The behavior model only describes the constraints—
not how to satisfy the constraints.

In the real world, equality constraints are diffi-
cult to realize. For example,oscillator trigger
requires that the time difference betweenTrig
Up'start and Osc On'start be exactly Trig
Delay. The time difference would never be exactly
Trig Delay in a real test program, nor does it mat-
ter. Instead, the actual time difference (as measured in
the execution trace) should beTrig Delay, within

some error. This is captured in the following con-
straint:

(<(-(abs Osc_On'start Trig_Up'start)
Trig_Delay) Trig_Error)

The new constraint says that the difference be-
tween the actual delay (Osc On'start - Trig
Up'start) and the desired delay (Trig Delay) must
be less than some allowable error (Trig Error).
More complicated constraints can be used to capture
asymmetric tolerances (i.e., tolerances not symmetri-
cally distributed about the expected value).

Returning to the example, it is evident the behav-
ior model adequately describes the relationships im-
plemented by events and triggers. It is also evident
that the behavior model does not distinguish between
timing relationships that are implemented in hardware
(e.g., triggers) or software (e.g., software delay loops).
The primary difference between hardware triggers and
software timing is in the potential error in the triggering
delay. A test programmer selects a hardware imple-
mentation to get a precise delay but is then concerned
with issues of accessing, allocating, and controlling
the hardware to obtain the desired delay. On the other
hand, the test programmer selects a software imple-
mentation when precision is less important than ease
of programming.

A test program would not normally use a behavior
such asoscillator trigger. The trigger signal in
the example is probably an implementation detail. A

312 Shombert and Sheppard

Fig. 5. Pairing two oscillators.

Fig. 6. Implementing two paired oscillators.

more likely scenario is a behavior in which two oscil-
lators start within a fixed time of each other. This can
be illustrated as in Fig. 5 and might be implemented as
in Fig. 6. The behavior should properly describe the

(behavior-def Unconnected_Behavior ()
(signal I1 Current (VoltageLocation ConnA ConnB))
(< (abs I1.current) (uA 1)))

requirement that the oscillators begin at the same time
and not the implementation detail of referencing both
to a common rising edge.

4.6. Switches

Switches constitute an important class of test resource.
Switches in automatic test equipment can be very com-
plex, with many possible connections. Given two ports
in a switch, they are either connected or unconnected.
If they are connected, then the voltage difference be-
tween them is nominally zero, and the current flowing
into one port is equal to the current flowing out of the
other. This is expressed in the following behavior spec-
ification forConnected Behavior.

(behavior-def Connected_Behavior ()
(signal V1 Voltage (VoltageLocation ConnA ConnB))
(signal I1 Current (VoltageLocation ConnA ConnB))
(< (abs V1.voltage) (uV 100)))

Fig. 7. Simple 2× 2 matrix
switch.

If a port is unconnected, then we cannot make any
statements about the voltage on the port, but we can
assert that the current flowing through the port is zero.
This property is expressed in the behavior specification
for Unconnected Behavior.

Connected Behavior is a behavior on two ports,
butUnconnected Behavior is a behavior on a sin-
gle port.

Most of the complexity of ATE switches is a func-
tion of the possible connections that the switch can
support. For example, assume that we have a 2× 2
matrix switch as shown in Fig. 7. Ports A and B can be
connected to ports C or D, and the switch can be in one
of seven states: no connections, one of four possible
single connections, and one of two possible pairs of si-
multaneous connections. We assume the states cannot
occur simultaneously. A very simple description of the
switch simply lists the possible states:

A Behavior Model for Next Generation Test Systems 313

(behavior-def Switch_Behavior ()
(behavior-ref S0 Connections_0)
(behavior-ref S10 Connections_1 ConnA ConnC ConnB ConnD)
(behavior-ref S11 Connections_1 ConnA ConnD ConnB ConnC)
(behavior-ref S12 Connections_1 ConnB ConnC ConnA ConnD)
(behavior-ref S13 Connections_1 ConnB ConnD ConnA ConnC)
(behavior-ref S20 Connections_2 ConnA ConnC ConnB ConnD)
(behavior-ref S21 Connections_2 ConnB ConnC ConnA ConnD)
(NonOverlapping S0 S10 S11 S12 S13 S20 S21))

(behavior-def Connections_0 ()
(behavior-ref UA Unconnected_Behavior ConnA)
(behavior-ref UB Unconnected_Behavior ConnB)
(behavior-ref UC Unconnected_Behavior ConnC)
(behavior-ref UD Unconnected_Behavior ConnD))

(behavior-def Connections_1 ()
(behavior-ref X Connected_Behavior ParamA ParamB)
(behavior-ref UC Unconnected_Behavior ParamC)
(behavior-ref UD Unconnected_Behavior ParamD))

(behavior-def Connections_2 ()
(behavior-ref X Connected_Behavior ParamA ParamB)
(behavior-ref Y Connected_Behavior ParamC ParamD))

The NonOverlapping constraint is not elaborated
here, but it is implemented by relational constraints on
the behavior start and stop times. For instance, ifS0
andS10 are non-overlapping behaviors, thenS0 must
end beforeS10 starts, orS10must end beforeS0 starts.
Captured using a reusable function on two behaviors,
we might have something like:

(function-def NonOverlapping_Pair
((B1 behavior) (B2 behavior)) boolean

(or (<= B1'stop B2'start) (<= B2'stop B1'start)))

TheNonOverlapping constraint, as it is used above,
must deal with an arbitrarily long list ofbehaviors,
but this is a language issue and not a model issue.

Any switch can be described by enumerating its pos-
sible configurations, but this becomes tedious. The
model supports a variety of techniques in compressing
the model by eliminating “redundant” configurations
through a hierarchical arrangement or with reusable
functions. As a language issue, it may also be possi-
ble to incorporate a construct similar to thegenerate
statement in VHDL. Such “constructors” enable com-
pact descriptions of models that can be elaborated to
yield a full model at run time.

5. Conclusion

In this paper, we provide a description of the behavior
information model proposed for next generation test

system architectures. The focus of this work is on the
development of a formal method for specifying UUT
and resource behavior in electronic system test and is
applicable to analog, digital, or mixed-signal testing.
The information model facilitates the specification of
behaviors related to test subjects, test requirements, test
strategies, test resources, and product diagnostics using
a declarative approach. As such, the behavior model
provides a formal approach to specifying behaviors,
thereby facilitating the specification and development
of reusable and transportable test programs.

314 Shombert and Sheppard

Acknowledgments

Support for this work was provided by the U.S. Navy
through its Automatic Test System Research and De-
velopment Integrated Product Team (ARI). In partic-
ular, we would like to thank Harry McGuckin, Randy
Simpson, Kirk Thompson, Steve Fortier, Walt Bailey,
and all of the members of the ARI for their comments
and suggestions. We also thank the anonymous re-
viewers whose comments led to a stronger presenta-
tion.

Notes

1. However, there may be compelling administrative reasons to in-
sist upon a particular order, e.g., procedural reusability or test
consistency.

2. In this example, no specific duration is specified.
3. In this example, we introduce the “RT'execute” notation.

RT'execute istrue if the sub-behavior,RT, actually executes
and isfalse otherwise. However, just because a sub-behavior
is declared inside a behavior does not mean that the sub-behavior
actually executes. Additional constraints are required to ensure
that the sub-behavior executes as many or as few times as neces-
sary.

References

1. J. Cooke, “Formal Methods—Mathematics, Theory, Recipes or
What?” The Computer Journal, Vol. 35, No. 5, pp. 419–423,
1992.

2. A. Hall, “Seven Myths of Formal Methods,”IEEE Software,
pp. 11–19, Sept. 1990.

3. M. Thomas, “The Industrial Use of Formal Methods,”Micro-
processors and Microsystems, Vol. 17, No. 1, pp. 31–36, 1993.

4. S. Abramsky and C. Hankin,Abstract Interpretation of Declar-
ative Languages, Ellis Horwood, Chichester, UK, 1987.

5. C.J. Hogger,Introduction to Logic Programming, Academic
Press, London, UK, 1984.

6. ISO 10103-11:1994: Industrial Automation Systems and
Integration—Product Data Representation and Exchange—
Part 11: EXPRESS Language Reference Manual, Interna-
tional Organization on Standardization, Geneva, Switzerland,
1994.

7. D. Schenk and P. Wilson,Information Modeling: The EXPRESS
Way, Oxford University Press, New York, 1994.

8. ARINC 626-3: Standard ATLAS for Modular Test, Aeronautical
Radio, Inc., Annapolis, Maryland, 1995.

9. IEEE Std 716-1995: IEEE Standard Test Language for All
Systems—Common/Abbreviated Test Language for All Systems
(C/ATLAS), IEEE Standards Press, Piscataway, NJ, 1995.

10. IEEE Std 771-1989: IEEE Guide to the Use of the ATLAS Spec-
ification, IEEE Standards Press, Piscataway, NJ, 1989.

11. L. Shombert,Test Requirements Model Language Reference
Manual, Draft 0.1, Technical Report CAE-1998-07-01, Inter-
metrics, Vienna, VA, 1998.

12. R. Atkins and D. Rolince, “TRSL Standard Supports Current
and Future Test Processes,”Proceedings AUTOTESTCON ’94,
1994, pp. 271–279.

13. J. Nagy and J. Newberg, “Capturing Board-Level Test Require-
ments in Generic Formats,”Proceedings AUTOTESTCON ’94,
IEEE Press, New York, 1994, pp. 61–69.

14. W.R. Simpson and J.W. Sheppard,System Test and Diagnosis,
Kluwer Academic Publishers, Boston, 1994.

15. C. Papachristou and J. Carletta, “Test Synthesis in the Beha-
vioral Domain,”Proceedings of the International Test Confer-
ence, 1995, pp. 693–702.

16. R. Dechter, “Constraint Networks: A Survey,”The Encyclopedia
of Artificial Intelligence, S.C. Shapiro (Ed.), Wiley, New York,
1992.

17. P. Pearl,Probabilistic Reasoning in Intelligent Systems, Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1988.

18. P. Caunegre and C. Abraham, “Achieving Simulation-Based
Test Program Verification and Fault Simulation Capabilities for
Mixed-Signal Systems,”Proceedings of the European Design &
Test Conference, 1995, pp. 469–477.

19. M. Miegler and W. Wolz, “Development of Test Programs in a
Virtual Test Environment,”Proceedings of the 14th IEEE VLSI
Test Symposium, 1996, pp. 99–103.

20. G. Hardenburg and D. Nichols, “The IEEE ABBET Lower Lay-
ers Definition and Status,”Proceedings of AUTOTESTCON ’95,
1995, pp. 57–65.

Lee Shombertis a Principal Engineer at Intermetrics, Inc. He has
a B.S. in Engineering and Applied Science from the California Ins-
titute of Technology and M.S. and Ph.D. in Electrical Engineering
from Carnegie Mellon University. Dr. Shombert has worked on test
information standards for the last ten years, primarily under the aus-
pices of the IEEE SCC20. His interests include applying formal
methods to the design process, to improve the flow of information
from the designer to “downstream” activities.

John Sheppardis a Staff Principal Analyst for ARINC Incorporated.
He holds a B.S. in Computer Science from Southern Methodist Uni-
versity and both an M.S. and Ph.D. in Computer Science from Johns
Hopkins University. Dr. Sheppard is an internationally recognized
expert in the area of system diagnostics and has developed model-
based systems for diagnostics and diagnosability assessment. He has
over 80 publications (including two books) in the area and holds US
and European patents for an approach to diagnosis under uncertainty.
Dr. Sheppard is actively involved in IEEE, IEC, and ARINC stan-
dards activities including the IEEE SCC20 on Test and Diagnosis for
Electronic Systems and the AEEC/AMC Test Equipment Guidance
Subcommittee. Currently, Dr. Sheppard chairs the AI-ESTATE sub-
committee of SCC20 that has produced three standards on system
diagnostics and is Secretary of IEC/TC93/WG7 on system test.

