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Sensitivity Analysis of Continuous Time Bayesian Network Reliability Models

Liessman Sturlaugson® and John W. Sheppard*

Abstract. We show how to perform sensitivity analysis on continuous time Bayesian networks (CTBNs) as
applied specifically to reliability models. Sensitivity analysis of these models can be used, for exam-
ple, to measure how uncertainty in the failure rates impact the reliability of the modeled system.
The CTBN can be thought of as a type of factored Markov process that separates a system into a
set of interdependent subsystems. The factorization allows CTBNs to model more complex systems
than single Markov processes. However, the state-space of the CTBN is exponential in the num-
ber of subsystems. Therefore, existing methods for sensitivity analysis of Markov processes, when
applied directly to the CTBN, become intractable. Sensitivity analysis of CTBNs, while borrowing
from techniques for Markov processes, must be adapted to take advantage of the factored nature
of the network if it is to remain feasible. To address this, we show how to extend the perturbation
realization method for Markov processes to the CTBN. We show how to exploit the conditional
independence structure of the CTBN to perform perturbation realization separately for different
subnetworks, making the technique able to handle larger networks. This in turn allows the CTBN
to model more complex systems while keeping sensitivity analysis of the model tractable.
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1. Introduction. Sensitivity analysis looks at how variations in the input to a model affect
the model’s output and is useful in several contexts. In modeling, for example, sensitivity
analysis can aid in model design, validation, and calibration. It can also be used to measure
the robustness of model inference, the extent to which noise and uncertainty in the input
affects model output, or to run hypothetical scenarios.

Research has been done on sensitivity analysis for many probabilistic networks, such as
Bayesian networks [11, 12|, Markov chains [4, 7, 10], Markov processes [5, 6, 9, 8, 22], and
queuing networks [14, 20, 34]. To the authors’ knowledge, methods for sensitivity analysis
have not yet been researched specifically for the continuous time Bayesian network (CTBN)
model.

CTBNs have found applications in various dynamic domains. They have been used to
reason about users’ presence and activities in computer applications [25], to model social net-
work dynamics [17], to detect both network and host intrusions in computer systems [35], and
to diagnose cardiogenic heart failure [18]. Recently, the CTBN has been leveraged specifically
for systems reliability modeling [3].

Extending sensitivity analysis to CTBNs enables one to test how changes to the network
parameters affect the expected cost/reward per unit time of the modeled system. Reliability
measures, such as mean time between failures (MTBF) and availability, can be attached to
states of the CTBN, and sensitivity analysis can then be performed on these measures.
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Figure 1. Exzample two-node BN.

2. Model Background. The CTBN borrows ideas from the Bayesian network model while
functioning as a Markov process. In this section we introduce the background necessary for
understanding the CTBN model. First, we define the Bayesian network. Second, we describe
a temporal version of the BN model called the dynamic Bayesian network. Third, we describe
the Markov process formulation upon which CTBNs are built. With this background in both
Bayesian networks and Markov processes, we can define and describe the CTBN. We conclude
the section by differentiating the CTBN from the DBN.

2.1. Bayesian Networks. A Bayesian network (BN) B is a probabilistic graphical model
that uses nodes and arcs in a directed acyclic graph to represent a joint probability distribu-
tion over a set of random variables [21]. Let P(X) be a joint probability distribution over n
variables X1, ..., X,, € X. Each variable X is represented by a node in the graph. Pa(X;) de-
notes the parents of X; in the graph. The structure of the network factors the joint probability
distribution as:

n
P(X) = [[ P(Xi/Pa(Xy).
i=1
The motivation of a BN is to simplify the joint probability distribution of multiple random
variables into a smaller set of conditional dependencies that can be represented and reasoned
over efficiently. Figure 1 shows an example two-node BN. As denoted by the arc and the
conditional probability table, the probability distribution of ABC' is conditionally dependent
on the state of XY.

2.2. Dynamic Bayesian Network. The dynamic Bayesian network (DBN) is a special
type of BN for temporal modeling and reasoning. The DBN contains a sequence of time-slices,
each of which contains a copy of a regular BN X(¢), as formulated above, but now indexed
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Figure 2. Ezample two-node DBN.

by time t. The probability distribution of a variable at each time-slice can be conditionally
dependent on variables throughout any number of previous time-slices. In first-order DBNS,
the nodes in each time-slice are not conditionally dependent on any nodes further back than
the immediately previous time-slice. Therefore, the joint probability distribution for a first-
order DBN factors as:

k—1
P(X(0),...,X(k)) = P(X(0)) [ ] P(X(t+ 1)|X(t)).
t=0

The conditional probability tables of the DBN can be made compact by defining a prior
network X(0) and a single temporal network X(¢). The temporal network X(¢) is then “un-
rolled” into X(1),X(2),...,X(k) for k time-slices. Figure 2 shows the example BN from
Figure 1 extended as a DBN. The nodes in each time-slice are conditionally dependent on the
nodes of the previous time-slice, allowing the probability distributions to evolve through time.

2.3. Markov Processes. Although there are variations and extensions of the Markov
process model, the CTBN model uses the formulation defined in this section. A finite-state,
continuous-time, homogeneous Markov process X with a state space of size n indexed by
o=1{1,2,...,n} is defined by:

e An initial probability distribution P)O( over the n states.
e An n x n transition intensity matrix Ax, in which each entry a;; > 0, ¢ # j gives
the transition intensity of the process moving from state i to state j, and each entry
a;; < 0 controls the amount of time the process remains in state <.
With the diagonal entries constrained to be negative, the probability density function for the
process remaining in state ¢ is given by |a; ;| exp(a;;t), with ¢ being the amount of time spent
in state ¢, making the probability of remaining in a state decrease exponentially with respect
to time. The expected sojourn time for state ¢ is 1/ |a;;|. Each row is constrained to sum to
zero, » ; @ij = 0V 4, meaning that the transition probabilities from state ¢ can be calculated
as a; j/ |aiil ¥V j, i # j. Figure 3 shows an example three-state Markov process.
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Figure 3. Exzample three-state Markov process.

2.4. Continuous Time Bayesian Networks. The CTBN was first presented in [27] and
further defined in [24]. The CTBN uses a set of conditional Markov processes and is structured
like a BN, in which the topology of the network encodes conditional independence/dependence
relationships among the nodes. However, instead of discrete or continuous random variables,
each node is a Markov process. Furthermore, child nodes are conditional Markov processes, a
type of non-homogeneous Markov process whose transition intensities vary, not as a function
of time, but based on the current states of the node’s parents in the network.

Let X be a set of Markov processes { X1, Xa, ..., X, }, where each process X; has a finite
number of states. Formally, a continuous time Bayesian network C over X consists of two
components. The first is an initial distribution denoted P)O( over X, which can be specified as a
Bayesian network B. This distribution P)O( is used for determining the probability distributions
for the initial states of the process. The second is a continuous-time transition model, which
describes the evolution of the process from its initial distribution, specified as:

e A directed graph G with nodes X1, Xo, ..., X,,, where Pa(X;) denotes the parents of
X; in G (likewise Ch(X;) denotes the children of X;),

e A set of conditional intensity matrices A x|pa(x) associated with X for each possible
state instantiation of Pa(X).

Figure 4 shows an example two-node CTBN. The child node ABC has two intensity
matrices, one for each state instantiation of its parent XY.

2.5. CTBN vs. DBN. Similar to the BN/DBN, the conditional dependencies in a CTBN
allow a more compact representation for the model. Like a BN, the local conditionally de-
pendent probability tables can be combined to form the full joint probability distribution.
In the case of the CTBN, this is called the full joint intensity matrix, which describes the
evolution of the entire process. However, just as in the DBN, in which the number of entries
in the full joint probability distribution grows exponentially in the number of variables, so too
the number of states in the full joint intensity matrix grows exponentially in the number of
nodes for the CTBN. Thus, for both the DBN and the CTBN, tractable reasoning over the
models requires approaches that can overcome this problem, such as reasoning over smaller
subnetworks and combining the results.

Despite the similarities in motivation and representation, the CTBN model is fundamen-
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Figure 4. Example two-node CTBN.

tally different than the DBN model. Although the network topologies for both models encode
conditional independence, the models are differentiated by what the nodes represent. Whereas
the nodes in a DBN are random variables, the nodes in a CTBN are conditional Markov pro-
cesses. As a result, CTBNs can be queried about the state probabilities for any real-valued
time. A DBN, unrolled for a discrete number of timesteps, can only be queried for state prob-
abilities at these timesteps but not in-between adjacent timesteps. While the time interval
between timesteps can be set with finer granularity, doing so multiplies the number of nodes
needed to span the same amount of time as the original unrolled DBN and will still not be
continuous with respect to time. In fact, a DBN can become asymptotically equivalent to a
CTBN only as the interval of time between time-slices approaches zero [13].

2.6. CTBNs for Reliability Modeling. Markov chains and Markov processes have often
been used as reliability models. As a factored Markov process, the CTBN is a natural next
step for reliability modeling, able to represent more complex systems. As a relatively new
model, the CTBN is only recently starting to be explored in the context of reliability analysis.

The research of [3] shows how the CTBN can be specialized for reliability modeling.
In particular, it is shown how the CTBN is able to encode Dynamic Fault Trees (DFTs),
including intensity matrices to represent gates for AND, OR, warm spare (WSP), sequence
enforcing (SEQ), probabilistic dependency (PDEP), and priority AND (PAND). Furthermore,
the CTBN is able to represent multi-state interaction, whereas the DFT cannot. In that
work, the CTBN models for three use cases are presented, showing different repair policies
and showing how inference over the CTBN is able to perform reliability analysis.

The research presented in this paper shows how to perform such reliability analysis more
efficiently, taking advantage of the factored nature of the network and calculating what are
called potentials, which can be re-used for further queries. Instead of running inference over
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the whole network all at once and for each variation of parameters (e.g., uncertainty in the
failure rates), the method presented here is able to divide a network into subnetworks and
only update the potentials when necessary.

3. Sensitivity Analysis Background. While the CTBN factors its state-space in much
the same way as a BN, it functions as one large Markov process. Thus, sensitivity analy-
sis algorithms for Markov processes can be applied to CTBNs. Although there are several
methods for sensitivity analysis of Markov process, the research presented here builds upon
perturbation realization, explained in the following section.

3.1. Perturbation Realization. Perturbation analysis using a single sample path S of an
ergodic Markov process is discussed by Cao and Chen in [5], where they study the sensitivity of
the steady-state performance of a Markov process with respect to its intensity matrix. Because
they are interested in the steady-state performance, regardless of the Markov process’s initial
state, they only need to use a single sample path, provided the path is long enough to converge
to within some desired precision. The ergodic assumption assures that each state is reachable
throughout the process and that the process will never reach an absorbing state, which would
come to dominate the estimate the longer the process is run.

3.1.1. Performance Measure. Let f : 0 — R (mapping the state space of the Markov
process to the real numbers) be a performance function of the process. This function is used
to calculate the performance measure, defined as the function’s expected value,

(3.1) n=3"mf(i) ==t

1€0
where 7 = (71,79, ..., 7,) is the row vector representing the steady-state distribution of A x
and £ = (f(1), f(2),...,f(n))T is a column vector and each entry is a state’s performance

function value. By themselves, the transition intensities of a Markov process do not encode
state values, only transition probabilities. The performance function f, on the other hand,
allows us to attach cost/reward values to the states [31]. The performance measure represents
the expected cost/reward per unit time of running the process. Furthermore, the performance
measure gives direction for performing sensitivity analysis, because now we can measure how
changes to the intensity matrix affect performance. Although the performance function is more
general than the application of this paper, it can be used to represent reliability measures. For
example, by setting the performance value of the failed state to 1, the performance measure
matches the steady-state probability of the failed state, which represents system unavailability.
Sensitivity analysis can then be used to measure the sensitivity of availability on other network
parameters, such as individual component failure/repair rates.

3.1.2. Partial Derivatives. The method of perturbation realization uses the idea of par-
tial derivatives of the Markov process’s performance measure with respect to changes in the
process’s intensity matrix. Suppose that the intensity matrix A of a process changed to
A, = A + €Q with € being an arbitrarily small positive number and with Q being an n x n
matrix (referred to as the QQ matrix) such that A, is also a valid intensity matrix (rows sum to
zero, etc.). In other words, Q perturbs the values of A to A.. Let X, be the Markov process
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with the perturbed intensity matrix A.. The performance measure of X, can be decomposed
as 1. = n + An. The derivative of n with respect to Q is then defined as

. Ne—TM
(3.2) Q- lgl{l} —
As a derivative, Equation (3.2) can be thought of as the sensitivity of 7 with respect to the
changes in A, i.e., in the direction of Q.

Perturbation realization calculates what are called performance potentials for each state of
the process, forming the potential vector g = (g1, g2,...,9n). A potential can be thought of as
the expected cost/reward over a set period of time having started from each state. While the
performance function gives the cost/reward per unit time of being in each state, the potentials
go further by capturing the expected performance gains/losses that are reachable from that
state as well. Thus, some states might be assigned zero value from the performance function,
but they still might have non-zero performance potential because the system has a probability
of transitioning to a cost/reward state from that state. The potential vector gives a quantity
by which we can calculate the derivative of the performance measure [5],

In
3.3 — = .
(3:3) e) Qg
The benefit of perturbation realization, as revealed by Equation (3.3), is that once 7w and g
are computed from a single sample path, é% can be calculated for any number of user-defined

Q matrices by simple matrix multiplications.

3.1.3. Algorithms for Single Sample Path. The perturbation matrix Q of Equation
(3.3) is supplied by the user, but the other quantities must be calculated to determine 8%.
Algorithms for computing 7w and g based on a single sample path, summarized below, are
provided in [6].

Let Tj be the kth transition epoch of X; (the time of the kth transition), Sy be its kth
sojourn time (the time it remains in the kth state), and X}, be its state after the kth transition.
The indicator function I;(X}) is 1 if X}, = i for state ¢ and 0 otherwise. Then the steady-state
probability m; and potential g; of each state ¢ can be estimated from a single sample path of
N transitions as:

N—

1
IZ(Xk)Sk> and

1
N\ k=0

o () [T pxar)
- ivzo Iz(Xk) .

(3.5) gi

Equation (3.4) sums the amount of time spent in a state and divides by the total running
time of the process, giving the steady-state probability of that state, which becomes the
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expected value within the limit. Equation (3.5) averages the performance gain from the visits
to each state across the sample path, giving the potential for that state within the limit.
The parameter T is a properly chosen positive value controlling the amount of time used to
estimate the potentials. We found that our heuristic of setting T" equal to the longest sojourn
time in the sample path gave consistently accurate results across the different networks and
sample paths.

Note that closed-form solutions exist for calculating v without having to estimate it from
the sample path using Equation (3.4). We found that the accuracy of the 8% estimates
were improved by calculating 7w'Qg where 7’ is the steady-state distribution of the perturbed
intensity matrix rather than the original intensity matrix. The closed-form solution for the
perturbed steady-state distribution is found by calculating the normalized left eigenvector of
A corresponding to the zero eigenvalue [33],

(3.6) A, = 0.

3.2. Other Methods for Sensitivity Analysis. In addition to perturbation realization,
there are two other approaches to performing sensitivity analysis on Markov processes, namely,
the likelihood ratio method and the reduced augmented chain method.

3.2.1. Likelihood Ratio Method. The likelihood ratio (LR) method [29, 23, 19] takes the
ratio of the likelihood of a sample path from the original process with the likelihood of one
that incorporates small changes into the transition rates. After this ratio is simplified and
differentiated, it can be estimated using the number of transitions between states and the state
sojourn times, as taken from a sample path. This estimate is then used with the performance
function to estimate the expected performance measure derivative. The LR method faces an
inherent trade-off between variance in the estimator and bias in the estimate of the steady-
state probabilities depending on the length of the sample path that the estimator is given. One
benefit of using LR, however, is that the process yields confidence intervals on the performance
measure derivatives without extra effort.

3.2.2. Reduced Augmented Chain Method. The reduced augmented chain (RAC) method
[8, 10] also uses a single sample path, but instead of simulating the nominal process by itself, it
first creates a combined process of both the nominal and the perturbed process, representing a
superposition of nominal and perturbed states. Depending on the number of states that have
been perturbed, this could represent a substantial increase in the number of states that must
be simulated. On the other hand, the method does not rely on knowing the intensity matrix
values, working instead with direct observation of the nominal system, and can be used for
on-line estimation of the steady-state probability sensitivities.

There is another important feature trade-off between the RAC method and perturbation
realization. For perturbation realization, multiple perturbations can be tested for a given
sample path while the performance function remains fixed (otherwise the performance poten-
tials would need to be re-estimated). With the RAC method, the performance function can
be varied for a given reduced augmented chain. After varying the parameter perturbations,
however, a new reduced augmented chain must be created and sampled.
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Figure 5. Example CTBN representing reliability of a simple system.

Note that LR and RAC could also be incorporated into the following approach. Even so,
we chose perturbation realization for use in the experiments. Our goal is efficient sensitivity
analysis of CTBNs, and perturbation realization’s ability to calculate and retain potentials
for different subnetworks is directly applicable to that end.

4. Perturbation Realization on CTBNSs. Because a CTBN represents a Markov process
(although in compact, factored form), the sample path method of perturbation realization for
Markov processes is a natural candidate for CTBN sensitivity analysis. However, a straight-
forward application of perturbation realization to CTBNs would result in simply flattening
the entire network into one large Markov process, with the states being the Cartesian product
of all the nodes’ states. But this fails to take advantage of the factored nature of CTBNs,
which attempts to reduce complex state-spaces into more compact representations that model
conditional dependencies instead of the full joint distributions. The naive approach to sensi-
tivity analysis requires working with the full joint intensity matrix, ignoring the very reason
for having the factored representation in the first place. Generating sample paths becomes ex-
ponentially expensive, and perturbation realization becomes infeasible. The factored nature of
the networks enables sensitivity analysis to work on smaller subnetworks. These subnetworks
can be sampled, the performance potentials calculated, and multiple Q matrices tested—all
separately.

For a CTBN sensitivity analysis example, consider the example network shown in Figure
5. Suppose that a performance function is attached to the two states of the System node,
which denote the failed and non-failed states of the system. Instead of amalgamating all of
the nodes into one large Markov process, we would like to divide the system into smaller
subnetworks. Smaller subnetworks limit the state-space size of any one subnetwork and allow
for more tractable evaluation of Equation 3.3 for calculating the change in performance for
given perturbations. Our method for creating subnetworks, as with perturbation realization,
follows a sample path approach.

4.1. Forward Sampling. Algorithm 1, adapted from [16], shows the pseudocode for cre-
ating a sample path from a CTBN. The algorithm accepts a CTBN from which to sample
and returns a sequence of state transitions and their corresponding transition times. Lines
3-6 choose the starting states of the sample path and initialize the variables. Lines 7-23 are
repeated until the sample path is of desired length, which could be the total time of the sample
path or the total number of transitions. Lines 8-14 ensure that all variables have a proposed
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Algorithm 1 Sample(C) // Create sample path of CTBN [16]

1: Input: C as CTBN

2: OQutput: sample path S as sequence of pairs of states and arrival times
3: for each X € C

4: choose X (0) by sampling from B

5. end for

6: 10,8« 0

7: repeat until termination

8: for each X €C

9: if time(X) # null then continue end if

10: AX “— AX|Pa(X)
11: i<+ X(t)
12: At ~ Exponential(a; ;) // recall a;; is entry 4,7 of Ax

13: time(X) <t + At

14: end for

15: X' <= argmin . (time(X))
16:  t <« time(X')

17: X (t) ~ Multinomial(A x/, X (¢))
18:  append (X (t),1) to S

19:  time(X') = null

20: for each Y € Ch(X")

21: time(Y') = null

22:  end for

23: end repeat

24: return S

sojourn time, drawn from an exponential distribution whose parameter depends on the current
states of the parents of each variable. Line 15 selects the variable with the soonest proposed
transition time, and line 16 updates the current time of the sample path. Line 17 chooses
the next state for the transitioning variable, according to a multinomial distribution whose
parameters are derived from the current row of the variable’s conditional intensity matrix.
The state transition and time of the transition are recorded in the sample path. Finally, lines
19-22 reset the proposed sojourn times for that variable and all its children so that they will
be re-sampled. The proposed sojourn times of the variable’s children are reset because their
conditional intensity matrices changed when their parent transitioned to a new state.

This sample path is used in Equation 3.5 to estimate the potential vector. We can also
use a sample path to estimate an unconditional intensity matrix for any node in the network,
as shown in the next section.

4.2. Subnetwork Isolation. For a node with parents in the network, the node will have
conditional intensity matrices for every possible state instantiation of its parents. Isolating a
subnetwork entails projecting a node’s conditional intensity matrices onto a single uncondi-
tional intensity matrix, thereby removing the conditional dependence of a node on its parents.
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This is analogous to marginalizing out variables in a Bayesian network.

We note that expectation propagation (EP) [26] or belief propagation (BP) [15] for CTBNs
could also be used to calculate an unconditional intensity matrix for a CTBN node, provided
the size of the window over which these methods integrate is sufficiently large to capture the
long-term behavior of the node being isolated. Each of these methods is projecting onto a
single unconditional Markov process but in different ways. Whereas EP and BP are given an
interval of time over which to calculate the moments of an unconditional Markov process, node
isolation is given a sample path. The length of the sample path is not interchangeable with
the size of the interval. Using this sample-based method has an advantage in our application,
because we are already computing sample paths from which to derive performance potentials.
As we iterate over the sample path to estimate g, we can easily and simultaneously estimate
unconditional intensity matrices, instead of also performing numerical integration for EP or
BP.

Our novel method approximates the unconditional intensity matrix from a sample path,
aggregating the average sojourn times and transition counts between subsystems. While
combinations of nodes in a CTBN are able to model more complex behavior, this sampling
approach approximates the behavior of a subsystem with a single node. While some accuracy
is lost from this approximation, in many cases, the exponential distribution is sufficient to
approximate the behavior of the subsystem while reducing the network complexity. Even
in the simplest case, in which a two-state node can be removed from the network, this still
reduces the state-space over the entire network in half.

Algorithm 2 shows the pseudocode for how node isolation can be accomplished for an
arbitrary node in the network. The algorithm accepts a sample path, as generated from
Algorithm 1, and the node to be isolated and returns the unconditional intensity matrix of
the isolated node. First, lines 3-5 of the algorithm initialize the variables. Although the states
of ancestor nodes may be changing throughout the sample path, lines 6-13 are concerned only
with state changes of the node to isolate. Specifically, line 8 calculates the total amount of time
spent in each state of the node, line 9 counts how many times the system has transitioned
between each state of the node, and line 10 counts the total number of transitions that
have occurred between states of the node. Next, lines 14-24 transform these statistics into
an unconditional intensity matrix. Line 15 calculates the average sojourn time (amount of
time spent per visit) for each state of the node, which is taken as the expected sojourn
time. Therefore, line 16 takes the negative reciprocal for use in the exponentially decreasing
probability function. The relative number of transitions from a state to the remaining states
represent the transition probabilities, which lines 17-23 normalize in accordance with the
intensity matrix row constraints. In summary Algorithm 2 computes the maximum likelihood
estimate of the parameters for X as an unconditional Markov process. Lines 6-13 gather
the sufficient statistics for an unconditional intensity matrix, while lines 14-24 transform the
sufficient statistics into the maximum likelihood estimates of A x.

4.3. Sufficient Conditions for CTBN Ergodicity. We need to ensure continued ergodic-
ity when dividing the network into different subnetworks, as assumed by the algorithms for
perturbation realization. The CTBN, although in factored form, still represents a single pro-
cess. Therefore, we would like to show that if each of the nodes (as a subprocess) is ergodic,
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Algorithm 2 IsolateNode(S, X) // Estimate unconditional intensity matrix of CTBN node

1: Input: S as sample path, X as node in S to isolate
2: Output: Ax as unconditional intensity matrix of X with entries a; ;
3: Ax+0,v+<0

4: (X (t),t) < initial state of X in S
5.1« X(t)

6: for each transition (X (¢),t') of X in S
. j+— X(t)

8: i < Qi+ (t/ — 1)

9: Qi < a; 5 + 1

10: v; <— v + 1

11 i+ X(t)

122 t+t

13: end for

14: for each state i of X

15: Qi < Qi / V;

16: QG5 < —(1/@2‘,1')

17: z+0

18:  for each state j # ¢ of X

19: Z4— 2+ aq;
20:  end for
21:  for each state j # i of X
22: Qi j < Q45 - (|ai,i|/z)

23: end for
24: end for
25: return Ax

then the process represented by larger sets of nodes in the CTBN (including the network as
a whole) is also ergodic. If this is the case, then perturbation realization can be applied to
trajectories generated from subsets of nodes as well.

Suppose we have two nodes with the most general case that both A — B and A «+ B.
If |A| denotes the number of states of A, then the number of states in the amalgamated
supernode AB is |A||B|. Assume that A and B are each ergodic. In other words, A and B
are each irreducible and positive recurrent, defined formally as follows.

Definition 4.1 (Irreducible).Let x; and x; be any two states of X. X is irreducible if, for all
t, there exist t' >t such that

P(X(t") = x| X(t) = x;) > 0 and P(X(t') = j| X (t) = z;) > 0.

That is, there is a non-zero probability of transitioning from x; to x; and from x; to x;.
Definition 4.2 (Positive Recurrent).A node X is positive recurrent if, for all x € X,

/Ooo P(X(t) = 33|X(0) = :EaX((O,t)) - :L‘) di =1
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That is, the probability of starting in state x, transiting out of x, and then returning to state
x after some finite amount of time is 1.

Let ai;|br, denote the entry at 4, j of the conditional intensity matrix A|b,. (Note that if A
or B have additional parents, the following procedure applies individually to each conditional
intensity matrix conditioned on the parents’ states.) Each entry (a;jbg;) in the combined
intensity matrix of A and B is calculated by the following:

aij]bk ifi;«éjandk:l
brila; ifi=4jand k #1

(4.1) (aijbr) = il Y 7
a;ij|by + bigla; ifi=jand k=1
0 otherwise

Lemma 4.3. Let each conditional intensity matriz of A and B be irreducible. Then each
conditional intensity matriz of the amalgamated supernode AB is irreducible.

Proof. Because of the factorization of AB into A and B, the state of AB cannot change
in both A and B simultaneously, represented by the zero value of the 4th case. We note that
if both A and B are irreducible, then AB is also irreducible, as every state is reachable in at
most 2 steps. The worst case would require a state change in both A and B individually (the
state of A changes, then the state of B changes, or vice-versa), which is possible because of
the non-zero transition values of the 1st and 2nd cases. In other words, for any state a;bk, we
have a non-zero probability of transitioning to (a;b;), because (a;jb;) and (a;by;) are non-zero
and (a;bg;) and (a;jb;) are non-zero. In other words, there exists ¢ > t such that

P(AB(¥') = (a;b)|AB(t) = (a;by)) > 0 and P(AB(t)) = (a;by)|AB(t) = (a;by)) > 0.

|
Lemma 4.4. Let each conditional intensity matrix of A and B be positive recurrent. Then
each conditional intensity matriz of the amalgamated supernode AB is positive recurrent.
Proof. Because A is ergodic, there is a non-zero probability of transitioning to any of its
states during that time.

| P = al4©) = i A0.0) £ 0t = 1.

Similarly, because B is ergodic, there is a non-zero probability of transitioning to any of its
states during that time.

/0 " P(B(t) = bl B(O) = by, B((0, 1)) # by) dt = 1.

Now consider the conditional intensity matrices of AB. The negative values along the diago-
nals, controlling state sojourn times, only add with other diagonals as shown in the 3rd case
of Equation 4.1, meaning that these values will never go to zero, which would result in an
absorbing state. There is a non-zero probability of transitioning from (a;b;) to (a;b;) and
from (a;bi) to (a;by) for all states in a;,a; € A and by, b, € B. This implies that

| OB = @h)IABO) = (0. AB(0.1) # (b)) di =1
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Therefore, each conditional intensity matrix of the amalgamated supernode AB is positive
recurrent. H

Theorem 4.5.1f each conditional intensity matrix of a CTBN is ergodic, then the conditional
intensity matrices from the amalgamation of any sets of nodes is also ergodic.

Proof. From lemma 4.3 and lemma 4.4, amalgamation of two nodes with ergodic condi-
tional intensity matrices will produce another node with ergodic conditional intensity matrices.
Therefore, by induction this process can be repeated to amalgamate any number of nodes in
the CTBN and the resulting nodes will still have ergodic conditional intensity matrices. W

4.4. Estimating CTBN Performance Derivative. Using perturbation realization and the
method for isolating subnetworks (having ensured continued ergodicity), we can describe a
generalized method for performing sensitivity analysis on CTBNs. The primary obstacle to
overcome is that the state-space size is exponential in the number and cardinality of the CTBN
nodes. For complex CTBNSs, even relatively long sample paths may never reach all possible
states. Because of these unvisited states, perturbation realization has no information on the
state’s performance potential and the value returned from Equation (3.3) becomes inaccurate.
Thus, being able to create and analyze sample paths from smaller subnetworks, and then being
able to combine the results, becomes essential.

Algorithm 3 shows the pseudocode for performing sensitivity analysis. The algorithm ac-
cepts a CTBN and a set of Q matrices for the nodes of the CTBN that represent changes to the
nodes’ intensity matrices. The algorithm returns an estimate of the change in performance per
unit time given the perturbations in the intensity matrices. It calls four helper methods in ad-
dition to Algorithms 1 and 2. CollapseCycles detects cycles in G, amalgamates each cycle’s in-
tensity matrices, and replaces each cycle with a single node. AmalgamatelntensityMatrices(C)
expands the full joint intensity matrix of the CTBN C by repeatedly combining pairs of nodes
as per Equation (4.1). CalculateSteadyStateProbabilities(A x) calculates the steady-state
probabilities 7r of the intensity matrix A x by calculating the normalized eigenvector of corre-
sponding with the zero eigenvalue as per Equation (3.6). CalculatePotentialVector(S) parses
the sample path S and calculates the potential vector g as per Equation (3.5).

First, line 3 collapses the cycles of the CTBN. This is necessary before the top-down
isolation begins, because node isolation requires a sample path with all of the node’s ancestors
and every node in a cycle is an ancestor to every other node in the cycle. This turns the network
into a directed acyclic graph. Line 4 initializes the performance measure derivative estimate,
which will be incrementally updated during the top-down isolation process. Lines 5-29 repeat
until the condition of line 7 is satisfied, that is, when every node has been isolated. Line 6
finds the roots of the network, those without any parents. Lines 8-10 apply any perturbations
to those root nodes. Line 11 finds all the immediate children of root nodes, i.e., all the second-
level nodes. These will be isolated and become the new root nodes. Lines 12-28 iterate over the
children. Line 13 creates a sample path for the child node, while line 14 uses that sample path
to isolate it. Line 15 applies any perturbations to the child’s conditional intensity matrices,
and lines 16-17 isolate the perturbed child node. Line 18 adds the difference between the
unconditional intensity matrices to the child perturbations. Lines 19-20 calculate the steady-
state probabilities of the child node and its parents. Line 21 calculates the Q matrix for the
child node and its parents. Line 22 calculates the potential vector from the perturbed sample
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Algorithm 3 EstimateDerivative(C, Q)
Input: C as CTBN, Q as set of Q matrices for the nodes of C
Output: 9n/0Q as performance measure derivative
G' + CollapseCycles(G)
on/oQ < 0
repeat until termination
X + U X where Pa(X) = null

Xeg’
if X = null then terminate end if

8 for X € X do

9: Ax +— Ax+Qx

10:  end for

11: Y+ | J Ch(X) where Pa(Ch(X)) € X

XeX
12: for Y €Y do

13: S < Sample(Y UPa(Y))

14: Y’ < IsolateNode(S,Y)

15: Ay pay) < Aylpay) T Qy|Paiy)

16: S’ <~ Sample(Y U Pa(Y))

17: Y" + IsolateNode(S',Y')

18: Qy + Qy + (Ay// — Ay/)

19: Ay + AmalgamatelntensityMatrices(Y U Pa(Y"))

20: 7 < CalculateSteadyStateProbabilities(Ay-)
21: Q <+ AmalgamatelntensityMatrices(Qy U Qpa(y))
22: g + CalculatePotential Vector(S")

23: on/oQ <+ dn/oQ + wQg
24: for X € Pa(Y) do

25: remove edge (X,Y) in G’
26: end for
27: replace Y with Y’ in G’

28:  end for
29: end repeat
30: return 0n/0Q

path. Line 23 calculates the performance measure derivative for the subnetwork consisting
of the child and its parents. Lines 24-27 finishes the isolation of the child, removing the arcs
from its parents and replacing the conditional intensity matrices with the single unconditional
intensity matrix calculated in line 14. After reaching the leaves of the CTBN, the aggregated
performance measure derivative is returned in line 30.

Algorithm 3 avoids handling the whole CTBN at once. Sample paths only have to be
created for a node and its parents. Thus, the complexity of the algorithm is driven by the size
of the cycles that have to be collapsed into single nodes and the number of parents of each
node (reminiscent of tree width in clique tree inference on Bayesian networks). However, the
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algorithm is able to take advantage of the network factorization and only deal with smaller
subnetworks at any one time. If dealing with an entire cycle is intractable, the node isolation
can still be used following an iterative approach like the one described in [27], in which nodes
are successively marginalized around the cycle until convergence.

4.5. CTBN Reliability Measures. While our approach for sensitivity analysis applies to
general CTBNs and general performance functions [31], we now present how CTBNs can
model reliability measures such that our algorithm can be used to perform sensitivity analysis
with respect to those measures.

4.5.1. Mean Time Between Failures. The measure for MTBF does not actually rely on
the performance function but is a value derived from the network parameters themselves. The
MTBF can be computed as a direct result of node isolation. Isolation of the performance nodes
yields their unconditional intensity matrices. The diagonal parameters of these unconditional
intensity matrices give the expected sojourn times in the failed and non-failed states, from
which can be derived the MTBF. Take a two-state node in which the non-failed state is 0 and
the failed state is 1. After finding the node’s single unconditional intensity matrix, the MTBF
can be estimated as:

1

4.2 —
(4.2) 20|

In fact, our algorithm for sensitivity analysis provides the MTBF as a direct result of its
top-down isolation of the nodes. Perturbations applied to ancestors in the network are carried
down in the node isolation in parallel with the node isolation of the original network. Thus,
the algorithm gives the MTBF for the original network and the new MTBF as a result of the
perturbations. The change in MTBF is the difference between the MTBF results of these two
unconditional intensity matrices.

4.5.2. Point Availability. The availability measure makes use of the performance function.
In this case, a unit cost is associated with the network’s failed state. As the performance
function represents cost per unit time, a performance function value with unit cost gives the
proportion of time that the system remains in the failed state, from which we can derive the
point availability of the system. Take an n-state node in which the failed state is n — 1. The
performance function is:

0 otherwise

(4.3 f<z'>={1 S

The performance measure 7 is the proportion of time that the system is in the failed state.
The point availability is therefore:

(4.4) 1—1.

Sensitivity analysis allows us to measure how perturbations in the ancestors will be ex-
pected to impact availability.



SENSITIVITY ANALYSIS OF CONTINUOUS TIME BAYESIAN NETWORK RELIABILITY MODELS 17

Availability

State 2

Figure 6. Availability and MTBF estimates from pairs of perturbations on simple network.

5. Experiments. We demonstrate the algorithms for CTBN sensitivity analysis on three
networks. The first is a small, synthetic network in which the exact answers can be computed
easily. The second is a DF'T encoded as a CTBN. The third is a model of a milling machine
as learned from run-to-failure data.

For each network, the point availability and MTBF are calculated using our algorithms for
sensitivity analysis and compared to the ground truth, taken as either the exact solutions for
the synthetic network or estimated from brute-force sampling over the whole network for the
two real-world networks. We measure relative error between our algorithm and the ground
truth, as well as measure complexity by comparing state-space sizes of different subnetworks
and total number of transitions generated in the samples.

5.1. Simple Network. The simple network for the first set of experiments is shown in
Figure 5. Each node has 2 or 3 states, for a total state-space size of 72 over the entire
network. This network is simple enough that the exact solutions can be computed easily
using Equation 3.1.

The System node has two states, representing failed and non-failed states. Suppose that
we want to observe how the parameters of Component 2 affect system reliability. The naive
way would be to flatten the entire CTBN into a single Markov process and apply perturbation
realization directly. For this simple network, this is possible, but ignores the advantages of
having the factored representation. Using the approach presented here, we can perform top-
down isolation of the levels in the network and avoid ever having to deal with the entire
network all at once. We tested all combinations of perturbations A = {—1,-2,...,—10} to
the two states of the Component 2 node when Component 1 is in state 1. We computed the
exact availability and MTBF for each perturbation and compared to the estimates returned
by Algorithm 3.

Before the perturbations are applied, the closed-form solution yields an availability of
94.30%, and an MTBF of 16.55 time units. Now we apply our sensitivity analysis algorithm
to the network, performing top-down isolation of each level and cascading the perturbations
down to each unconditional intensity matrix. For each isolation, we generate sample paths of
100,000 transitions in the node to isolate. The minimum and maximum availability resulting
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from the perturbations was 93.0% and 95.5%, respectively, and the minimum and maximum
MTBF was 13.3 and 21.5, respectively. The MTBF and point availability estimates for all
perturbations are shown in Figure 6. For all perturbations, the sensitivity analysis method
yielded less than 1% relative error.

Although this network is small enough that we can work with the full joint intensity matrix
directly, we also compare our sensitivity analysis approach with the brute-force approach over
the whole network. When we sampled over the whole network all at once, it took almost
12.3 million transitions to be generated before we reached 100,000 transitions in the System
node. By isolating each level separately, we reached 100,000 transitions in all of the isolated
nodes with around 2.6 million total transitions generated across all levels. Our sensitivity
analysis algorithm restricted the largest state-space size of any subnetwork to only 18 states
(the Usage-Environment-Component 1 subnetwork). The brute-force approach was 4 times
as large, sampling from the whole network with 72 states. Furthermore, the brute-force
method with 12.3 million transitions estimated the impact of a single perturbation. The
brute-force method would need to have been run a total of 100 times to try all combinations
of perturbations in A. By reusing the potentials, the sensitivity analysis method could test
any number of perturbations with few extra calculations.

For this simple network, the reliability measures could be computed exactly. However,
we note that as the networks become more complex, some form of approximate solution,
such as the brute-force or node isolation sampling methods, is required to keep inference
tractable. For this network, we showed that node isolation can be more efficient than the
brute-force approach without a loss in accuracy. With node isolation, sampling can be targeted
to specific subnetworks. The brute-force approach is more susceptible to over-sampling and
under-sampling different parts of the network.

5.2. Cardiac Assist System. Specially constructed CTBNs have been used to represent
dynamic fault trees specifically for reliability modeling, in which each of the gates of a DFT
can be mapped onto CTBN nodes [3]. In this experiment, we use the CTBN representation
of a DFT for a cardiac assist system (CAS) as given in [3]. This DFT is broadly used in the
literature and based on a real-world system [2, 28]. The network is shown in Figure 7. Of the
various repair policies evaluated in [3], we use the repair rate of p = 0.1 for all components.

The network is divided into three subsystems: the CPU, pump, and motor. Here, we can
see the advantage of the CTBN’s factored representation by how it can model the different
subsystems as different subnetworks. We can test how different combinations of perturbations
to the different subsystems affect the reliability of the system as a whole.

Before we apply our sensitivity analysis technique, we use the brute-force approach of
generating samples from the entire network. We generate samples over the entire network until
we have one million instances of failure of the entire system. From these samples, we estimate
the MTBF to be 2688 hours and the point availability to be 99.43%. For our sensitivity
analysis, we test all combinations of the following perturbations: Acg = {0, —0.0001, —0.0002},
Ams = {0,—0.001, —0.002}, and Aps = {0,—0.01,—0.02}.

Using our sensitivity analysis technique, we can isolate the three nodes for the different
subsystems: CPU, Pump, and Motor. The brute-force approach is sampling from a state-space
size of over 6.6 million over the whole network. When isolating individual subsystems, the
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Figure 7. Cardiac assist system model.

state-space sizes are 144, 144, and 160 for the CPU, pump, and motor subsystems, respectively.
Once isolated, the three subsystems are combined into the lower four-node subnetwork of only
16 states. Furthermore, by saving the potentials and the unconditional intensity matrices of
the three subsystem nodes, we can apply the different perturbations to different subnetworks,
compute the perturbations on the unconditional intensity matrices of the three subsystem
nodes, and update the reliability estimates without ever having to generate samples from the
entire network all at once every time. All of the perturbations tested decreases in system
reliability. The minimum availability resulting from the perturbations was 99.41%, and the
minimum MTBF was 1799 hours. For all perturbations, the sensitivity analysis method
yielded less than 1% relative error with respect to the brute-force approach estimates.

The brute-force approach had to generate more than 9 billion transitions in order to gener-
ate 27 million transitions in the System node (1 million transitions for each of the 27 different
combinations of the perturbations). The sensitivity analysis method can take advantage of the
fact that perturbations in subnetworks are reused multiple times between these combinations.
Around 10 million transitions were generated for each perturbation of a subnetwork, for a
total of around 90 million transitions (3 perturbations for the 3 subnetworks with 10 million
transitions each). Another 10 million transitions were generated to estimate the potentials for
the lower network. In other words, the brute-force approach scaled exponentially with respect
to the number of perturbation combinations, while the sensitivity analysis method scaled
linearly because it could work with each subnetwork separately as enabled by the CTBN
representation of the system.

5.3. Milling Machine. For this experiment, the CTBN was learned from run-to-failure
data. The data were collected from 16 cases of a milling machine under various operating
conditions measuring the flank wear of the cutting tool [1]. The data consisted of over 1.5
million timestamped records. Intervals for equal-frequency discretization were computed from
100,000 samples drawn uniformly at random from these records. All variables were discretized
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Figure 8. Milling machine model.

into 3 bins, except for the flank wear, which was discretized into 2 bins, representing failed
and non-failed states. All records were then discretized, and the CTBN structure was learned
using the Continuous Time Bayesian Network Reasoning and Learning Engine (CTBN-RLE)
[30]. The edges were pruned and oriented to balance network complexity and place flank wear
(VB) as a descendant of the other variables. The network is shown in Figure 8. Parameter
estimation was then performed, also using the CTBN-RLE. Each of the 16 cases described
one run-to-failure of the cutting tool but did not include tool replacement. Therefore, a repair
rate of 1 hour was added to the conditional intensity matrices of VB.

First, we perform reliability analysis without any perturbations. From the brute-force
approach generating 100,000 transitions in VB using the entire network, we have an estimated
MTBF of 55.5 minutes and an estimated point availability of 47.9%. Now suppose we apply
perturbations to the intensity matrix of smcAC as shown in Table 1. Using the brute-force
approach, the new estimated MTBF changes at ¢ = 1.0 to 55.2 minutes while the estimated
point availability changes to 47.7%.

Using our sensitivity analysis technique, we can divide the network in half by first isolat-
ing AFE_table with and without the perturbations applied to smcAC. Running perturbation
realization on the lower half of the network, we can estimate the MTBF and the point avail-
ability. The relative error of the point availability estimates were less than 1% for all cases.
The relative error of the MTBF estimates were roughly between 1% and 2%. The MTBF
estimates and relative error of our sensitivity analysis approach are shown in Figure 9.

Again, perturbations in the upper half of the network can be included in the perturbations
of the unconditional intensity matrix of AFE _table, and the potentials can be re-used from the
lower subnetwork. By dividing the network into upper and lower subnetworks, the size of
the state-space for sampling is 81 and 54 states, respectively, instead of 1458 states when
sampling over the entire network. The sizes of the QQ matrices and system of equations for
the steady-state probabilities are reduced from 1458 x 1458 to 54 x 54. Any perturbations in
the upper network can be included in the Q matrix for AFE_table after generating a relatively
small numbers of samples. Thus, our method for sensitivity analysis in CTBNs combines the
advantages of both perturbation realization and the factored nature of the networks in order
to manage complexity.

The brute-force approach had to generate 4.8 billion transitions on average in order to get
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Table 1
Intensity Matriz (left) for smcAC and Q Matrices (right) for i = {0.0,0.1,0.2,...,1.0}

-0.134 | 0.132 | 0.002 -i1/2]1/2

0.134 | -0.267 | 0.133 0.0 1 0.0 0.0

0.002 | 0.131 | -0.133 0.0 10.0]0.0
55.5 2.2%

55.45 "\ 2.0%
55.4

55.35 \ 1 6% /\ / \ /
55.3 / ¥
55.25 \ 1.4% \.\/ \j

55.2 \ 1.2% 4
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Figure 9. MTBF estimates (left) and relative error (right) for perturbations on milling machine network.

100,000 transitions in VB for each perturbation. The sensitivity analysis approach generated
less than 2.8 million transitions on average to isolate AF_table and then around 3.6 billion
transitions to get 100,000 transitions in VB. Each perturbation of smcAC entails recalculating
the unconditional intensity matrix for AE _table and then reusing the potentials of the lower
network. Therefore, to test the 10 perturbations, the sensitivity analysis needed to generate
less than 4 billion transitions, while the brute-force approach needed to generate around 48
billions transitions.

6. Discussion. For each of these three experiments, we have shown an advantage of our
approach over the brute-force approach. The advantage becomes especially apparent when the
user wants to evaluate multiple perturbations, as is common with sensitivity analysis. Even
with a single Q matrix, our approach allows for more control over the sampling of different
subnetworks. Our approach allows sensitivity analysis to be performed on larger networks
instead of single Markov processes, in which exact solutions cannot be computed due to the
exponential state-space size of CTBNs.

For the simple network, we were able to use top-down node isolation to more efficiently
estimate the change in reliability resulting from multiple perturbations. Even for a single
perturbation, the total number of transitions generated by the sensitivity analysis method
was fewer than the brute-force approach by a factor of 4 with the same level of accuracy as
compared to the exact solution.

For the CAS network, we were able to reuse potentials between the three different sub-
systems to test out combinations of perturbations much more efficiently than the brute-force
approach. Furthermore, the brute-force approach had to sample from the entire network all at
once, even though the three subsystems were evolving at different rates. This meant the brute-
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force approach was disproportionately sampling from different subsystems. The brute-force
approach scaled exponentially with respect to the number of combinations of perturbations be-
tween the three subsystems. By isolating each subnetwork separately, our sensitivity analysis
method scaled linearly.

For the milling machine network, we were able to focus on perturbations of the upper
network and cascade the effect of these changes down to the lower subnetwork. Sampling
from the upper subnetwork alone and reusing the potentials from the lower subnetwork was
an order of magnitude more efficient than sampling from the entire network. In this case,
the relative error increased as the magnitude of the perturbations increased, even with longer
sample paths. Also, even without perturbations, the node isolation introduced a bias into
the estimate. This illustrates the fact that a set of conditional intensity matrix can only be
approximated by a single unconditional intensity matrix.

While our method has relatively high accuracy for these choices of networks, there is no
guarantee for all cases. Inference in arbitrary CTBNs has been shown to be NP-hard [32], and
this result also applies to the sensitivity analysis presented here. Thus, we cannot guarantee
the performance of the sensitivity method on arbitrary networks. The node isolation method
approximates a multiple-node subnetwork with a single node, but for some subnetworks this
single-node approximation may not be accurate enough (EP and BP face the same problem).
However, we have shown that the sensitivity analysis method can be applied successfully to
real-world networks for which the exact solution is intractable and the brute-force approach
is inefficient.

7. Conclusion. We have demonstrated how sensitivity analysis can take advantage of the
factored nature of CTBN models to perform efficiently. Specifically, we have devised a method
that is able to exploit the conditional independence of the CTBN to analyze subnetworks
independently. For large, complex networks, the subnetwork isolation method can be used to
counteract the exponential blow-up in the size of the state-space while simultaneously yielding
sample paths for re-usable performance potential estimates. Node isolation also provides
a mechanism for more selectively sampling different parts of the network so that different
subnetworks are neither over-sampled nor under-sampled. Furthermore, this is the first time
a method for sensitivity analysis has been developed specifically for CTBNs.

One direction for future work is to find constrained networks which admit guaranteed
tractable inference. For perturbation realization, the relationship between the length of the
sample paths (computational complexity) and the accuracy of the estimates, both of the
performance measure derivatives and the unconditional intensity matrices, is also an area
future work.
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