
Quality Diversity Genetic Programming for
Learning Decision Tree Ensembles

Stephen Boisvert1 and John W. Sheppard2

1 Johns Hopkins University, sboisve2@jhu.edu
2 Montana State University, john.sheppard@montana.edu

Abstract. Quality Diversity (QD) algorithms are a class of population-
based evolutionary algorithms designed to generate sets of solutions that
are both fit and diverse. In this paper, we describe a strategy for apply-
ing QD concepts to the generation of decision tree ensembles by op-
timizing collections of trees for both individually accurate and collec-
tively diverse predictive behavior. We compare three variants of this QD
strategy with two existing ensemble generation strategies over several
classification data sets. We then briefly highlight the effect of the evolu-
tionary algorithm at the core of the strategy. The examined algorithms
generate ensembles with distinct predictive behaviors as measured by
classification accuracy and intrinsic diversity. The plotted behaviors hint
at highly data-dependent relationships between these metrics. QD-based
strategies are suggested as a means to optimize classifier ensembles along
this performance curve along with other suggestions for future work.

Keywords: Genetic Programming · Decision Tree Ensemble · Quality
Diversity.

1 Introduction

Decision tree induction is a supervised learning strategy in which labels for data
points are predicted through a series of decisions modeled as nodes of a tree.
That is, given a data point m consisting of a set of feature and value pairs,
a tree τ attempts to predict label(m), which is a value associated with m but
unknown to the model. In order to perform the prediction p(τ,m), the model
recursively applies tests to m, beginning at the root of the tree. Each test results
in a decision that maps one or more input feature values to a choice of adjacent
nodes. The corresponding branch is then traversed, and the process repeats until
a leaf node is reached. The value of the ending leaf node then outputs p(τ,m).

At the cost of some simplicity, decision tree ensembles (or forests) can be
formed in which the output labels of multiple decision trees are considered col-
lectively in order to make a final prediction. That is, the ensemble prediction
p(T,m) combines p(τ,m),∀τ ∈ T to predict the value of label(m). Using an en-
semble necessarily implies some amount of dissimilarity of individual trees within
the forest. Otherwise, the output of the complete ensemble would be equal to

2 Stephen Boisvert and John W. Sheppard

the output of any subset of that ensemble. Thus, there must be diversity within
the ensemble population in order for the ensemble strategy to be effective.

Quality-Diversity (QD) algorithms are a class of population-based optimiza-
tion algorithms that aim to output a collection of quantifiably high performing
and diverse solutions [20]. While diversity is a common theme in evolutionary
computation, the explicit diversity considered by QD algorithms is distinct from
strategies that promote population diversity implicitly by increasing the use
of stochastic methods. QD algorithms measure diversity by comparing the be-
havioral characterizations of individual solutions. Groups of similar individuals,
called niches, are then identified, and a high performing representative for each
behavioral niche is returned in the solution.

The concept of diversity and the application of decision tree formation are
common subjects in the field of genetic programming [8] [4]. In this paper, we
examine the qualities of decision tree ensembles formed from the output of a QD
optimization algorithm. Specifically, we formulate a QD algorithm such that in-
dividuals in the population are complete decision trees with fitness and diversity
calculated from prediction behavior over the training data. We then compare
the accuracy and diversity of the resulting QD ensembles to the corresponding
metrics of ensembles formed by alternative means under the hypothesis that the
QD-generated ensembles will outperform the other studied algorithms in terms
of both accuracy and diversity.

The remainder of the paper is organized as follows. In the following section,
we review concepts in the areas of decision trees, ensemble classifiers, and QD
algorithms. In Section 3, we present the specific algorithms used in this paper in
detail. In Section 4 we describe the experimental configurations, analyzing the
results in Section 5. Finally, in Section 6 we summarize our conclusions and then
suggest future work.

2 Background

2.1 Decision Tree Diversity

Decision tree ensembles require some amount of diversity in order to behave
differently than a single tree. Breiman shows a particular relationship between
the misprediction probability or generalization error (PE∗) of an ensemble, the
strength (s) of the ensemble, and prediction correlation (ρ̄) between individuals
within that ensemble [6]. Specifically, while introducing the well-known “Random
Forest” algorithm, it is shown that:

PE∗ ≤ ρ̄(1− s2)/s2,

where −1 ≤ s ≤ 1 is defined as the expectation of the margin function, which
describes the confidence of the ensemble in predicting correct classification labels,
and ρ̄ is described as the mean value of the correlation in raw margin function
between individual classifiers in the ensemble. The full proof will not be discussed
here, though Breiman finally suggests a ratio of ρ̄/s2 such that “the smaller it is,

QD-GP for Learning Decision Tree Ensembles 3

the better.” That this, both higher strength and lower correlation of individuals
will reduce the theoretical bound on this error. In this way, concepts of both
fitness and diversity are shown to be reasonable objectives for selecting members
of a classifier ensemble.

Given this formulation, a natural way to describe the diversity of a popula-
tion of decision trees is to describe the correlation of their outputs for a given
input set. Several strategies have been proposed for this purpose, including the
averaged Q statistic [15], a Kappa statistic [11], classification overlap [7], ensem-
ble ambiguity [14], and the percentage correct diversity measure (PCDM) [2].
While the latest is perhaps unique in being proposed specifically for the purpose
of thinning decision tree forests, all of these strategies attempt to measure forest
diversity by comparing the outputs of individual trees.

The value used to determine whether the predictions of given trees are equal
is a key distinguishing characteristic of the listed metrics. Some, such as the
Kappa statistic, compare the direct outputs of the trees. That is, they compare
praw(τ,m) values, each of which is a predicted output label for a data point
m using a decision tree τ . Others first convert the tree predictions to binary
values, indicating whether each prediction was correct or incorrect. That is,
they compare pcorrect(τ,m) where

pcorrect(τ,m) =

{
1, praw(τ,m) = label(m)
0, praw(τ,m) 6= label(m)

}
(1)

In this paper, we use praw for diversity calculations using a simple count of
the data points in a sample that result in different outputs between two trees.
That is, the diversity metric ∆raw between two trees τ1, τ2 over the points m in
a data sample M is calculated as the sum of:

δraw(τ1, τ2,m) =

{
0, praw(τ1,m) = praw(τ2,m)
1, praw(τ1,m) 6= praw(τ2,m)

}
such that:

∆raw(τ1, τ2,M) =
∑
m∈M

δraw(τ1, τ2,m) (2)

The diversity of a decision tree ensemble T is then computed as the average
pairwise ∆raw between individuals in the ensemble. That is:

∆̄raw(T,M) =

∑
(τ1,τ2)∈T×T,(τ1 6=τ2)∆raw(τ1, τ2,M)

size(T)× (size(T)− 1)
(3)

This formulation provides a relatively simple way to interpret a reported diversity
measure as a distance metric but does not attempt to account for differences in
population size or other properties of M such as label representation. Therefore,
it is important to not compare the reported ∆̄ measures between data sets or
experimental configurations.

4 Stephen Boisvert and John W. Sheppard

2.2 Decision Tree Induction

Common strategies for forming decision trees implement a greedy heuristic ap-
proach for determining the test to apply at each node. The tree is formed root-
to-leaf in a way that recursively maximizes a quantifiable split criterion over the
training data. This split criterion measures the predictive power of that node in
isolation. Examples of the split criterion include information gain, Gini impu-
rity, and prediction accuracy, though studies suggest that the difference between
these criteria often have minimal effect on the resulting trees [21].

The chosen decision is then applied to the training data, and the children
at the branches of the tree are trained using their respective data subsets. This
continues until some stopping condition is met, typically a level of accuracy
or a data sample size. Alternatively post-pruning can be applied to prevent
overfitting. Note that, for a given input M and a list of possible decisions, this
algorithm is deterministic and will produce identical trees. Thus, some additional
stochastic elements are needed when forming diverse decision tree ensembles.

One option for diversity injection is through the training data input to the
greedy tree formation algorithm. One popular and effective method, called boot-
strap aggregating or bagging [5], forms separate data sets for training different
trees by sampling data points at random (with replacement) from the original
training set [3]. That is, to form a training set Mτ1 used to train a tree τ1,
random data points are selected from the original M until |Mτ1 | = |M |.

A related strategy called boosting provides weights to the selection options
such that inaccurately classified points are more likely to be added to new train-
ing sets. A comparison suggests that bagging and boosting can each be more
effective than the other, depending on the amount of noise in the data set [11].

Alternatively, the structures of the trees can be built in a stochastic manner.
One option is to generate random trees without using information from the
training data. That is, a tree is generated where each test is selected as a random
feature and test value. Labels for leaf nodes are determined later by feeding in
the training data to the randomized decisions and examining the distributions at
the leaves [13]. This approach may result in unreachable nodes, however, which
can either be removed or saved for online learning.

Also, unreachable nodes can be prevented by partially using the training data
when forming decisions in the tree. One option is to select randomly from the
best n discovered decisions according to the split heuristic [11]. Another option
is to select a random set of attributes with a decision threshold chosen as the
half-way point between two randomly selected training points [17]. A particular
configuration of such trees are called a Max-diverse Ensemble.

2.3 Evolutionary Decision Tree Induction

Evolutionary computation has also been applied extensively to the stochastic
formation of decision trees [4]. In particular, genetic programming approaches
fit naturally to the tree structure of the decision tree classifiers. Also, more
traditional evolutionary algorithms have been applied to relatively rigid tree

QD-GP for Learning Decision Tree Ensembles 5

structures. While discussing the full range and taxonomy of population-based
implementations is outside the scope of this paper, we present the following
information as relevant to the evolutionary component of our QD algorithm
implementation.

When restricting the tree structure to binary trees of a maximum depth,
each tree-encoding chromosome can be described with a fixed number of genes,
where each gene represents a single node in the tree [1]. That is, the number of
genes G to represent an individual is given by:

G = 2depth+1 − 1

where each gene can represent either a leaf-node or a sub-tree.
In our experiments, we share the gene encoding used by [22] with node =

〈t, label, P, L,R,C, size〉, where t is an identifying node number, P is a pointer
to the parent node, L and R are pointers to the left and right children, size
indicates the height of the contained sub-tree, and C is a set of registers. If the
node is an internal node, C[0] represents the feature index used in the branching
decision at that node while C[1] represents the threshold of the decision. That
is, the decision nodes use tests in the form of

featureC[0] < C[1]

for real-valued features, or

featureC[0] = C[1]

for discrete-valued features. If the node is a leaf node, C will contain an array
of values representing the weighted labels of training data that reach the node.
This information is then used to predict labels of testing data.

Using such a representation, the crossover operator can be implemented
such that one random gene (and corresponding sub-tree) from two parents are
swapped as used by the “standard GP” [22]. Note that in our implementation,
we limit the selected genes to ensure they are of the same height so as to maintain
the complete structure of the trees.

The mutation operator can be implemented by modifying the C[0] and C[1]
registers for decision nodes according to some fixed rate. In this paper, the
mutation operator chooses a random element for C[0]. For the test targets, mu-
tation either adds a random value from the normal distribution to C[1] or selects
uniformly from the set of discrete values. With these encodings and operators
defined, we can use our tree representation in any standard population-based
genetic framework.

2.4 QD Algorithms

Quality Diversity algorithms aim to produce populations containing locally-
optimal representatives of regions in a behavioral characterization (BC) space.

6 Stephen Boisvert and John W. Sheppard

The BC space is a problem-specific description of possible solutions that pro-
vides a mechanism for calculating the similarity between solutions. For example,
in [10], a set of BCs represent the final position of the end of a robotic arm after
applying a series of angular rotations to joints in the arm. Thus, it is expected
that many possible solutions may result in similar or perhaps identical BCs.

A foundational example of a QD algorithm is the Novelty Search with Local
Competition (NSLC) algorithm, which uses a “Pareto-based multi-objective”
strategy to optimize explicitly for both novelty and quality during search [16].
This algorithm was applied to evolve a set of virtual creatures in a simulated
robotic environment. The creatures were evolved to have diverse properties with
local competition, ensuring that each returned representative showed relative
success in achieving the goal of movement.

Another exemplary QD algorithm is Multi-dimensional Archive of Pheno-
typic Elites (MAP-Elites), which seeks to divide the behavior space into a grid,
then “illuminate” the quality of the regions through high performing, represen-
tative individuals [19]. It is also noted that this strategy can be used as an opti-
mizer by returning the overall highest performing individual while maintaining
the benefits of diversity during the search process.

These algorithms share a common goal of producing populations containing
locally-optimal representatives of behavioral niches. However, their structures
have distinct characteristics. For example, MAP-Elites divides the behavioral
feature space into a grid with a representative for each space, while NSLC allows
for a more flexible archive where acceptance into the collection is determined by
comparison to nearest neighbors. Work to unify these examples into a common
framework has abstracted these differences into types of container operators [10].

Additionally, the selection of individuals to insert into future generations has
been abstracted as a selection operator [10]. Examples of selection operators
include uniform random selection and score-proportionate selection. A typical
example of the latter is to establish a score for each individual proportional
to its fitness or diversity, where a higher score increases the chance of being
selected. A suggested type of score called the curiosity score provides higher
values to individuals that produce new offspring that are added successfully to
the container [10].

In this paper, we use the predictive behavior over the training set as the
behavioral characterization of each tree. This metric is related to the label purity
at leaf nodes. Distances to nearest neighbors in the behavioral space are then
calculated as the defined ∆raw metric from Equation 2. Trees are added to an
archive container with a minimum distance requirement between all individuals
in the population. Newly generated trees can replace existing members of the
container if they are sufficiently high-performing.

2.5 Ensemble Prediction

The final prediction of an ensemble is a combination of the predictions of the
individual classifiers within that ensemble. The strategy chosen for this combina-
tion is critical to the effectiveness of the ensemble. Perhaps the simplest strategy

QD-GP for Learning Decision Tree Ensembles 7

is to apply a voting technique where the most frequent output among individ-
uals is selected as the overall output [18]. These votes can also be weighted or
ranked according to confidence of the prediction for one or more outputs [23].
More complex strategies, such as stacked generalization or meta-learning, apply
a learning process to the combination [9].

For this paper, we use only the sum rule strategy for calculating ensemble
output. In this strategy, each decision tree provides a confidence value for each
possible output. For each decision, the confidence value is calculated as the per-
centage of the training label purity of the deciding leaf node. All confidence
values are added over all trees in the ensemble, and the choice with the highest
sum is chosen as the ensemble output [23]. However, we suspect that more inten-
tionally complementary combination strategies could increase the effectiveness
of any ensemble generation algorithm.

3 Implementation

3.1 Structure Restrictions

Our implemented algorithms all require the decisions within each internal tree
node to be Boolean. That is, each test will either result in an evaluation of either
true or false. If the test evaluates to true, the tree will return the prediction of its
left subtree; otherwise, it will return the right subtree’s prediction. In the case of
real-valued features, each test will determine whether the value of a given feature
in the input data point is below some threshold. For discrete-valued features, the
test will determine whether the input feature value is equal to some test value.

3.2 Bagging

Our bagging implementation follows the description in Section 2.2 using a stan-
dard greedy algorithm. That is, to generate an ensemble Tbagging of n binary
decision trees {τ1, τ2, ..., τn}, the algorithm first generates a set of n training sets
{M1,M2, ...,Mn}, each of which contains elements selected randomly from the
original training set M with replacement until |Mi| = |M |. Then:

τi = GreedyHeuristic(Mi),∀i ∈ {1, 2, ..., n}

The split criterion for each rule choice is calculated as the accuracy of pre-
dicting the labels of the elements in the Mleft and Mright sub-groups as the
majority label in each respective group. This essentially calculates the accuracy
of treating each sub-group as a leaf, functioning as a measure of label purity. Re-
call from Section 2.2 that we would expect replacing accuracy with information
gain or Gini impurity to have similar results. The greedy formulation terminates
when the size of the input to GreedyHeuristic is below a percentage of |Mi|.

8 Stephen Boisvert and John W. Sheppard

3.3 Random Trees

The structures of the random trees examined in this paper are formed as com-
plete, binary decision trees. To form each individual τrnd in an ensemble Trnd,
the algorithm picks a series of 2depth − 1 randomly generated training data fea-
tures on which to base decisions for internal tree nodes. The threshold for each
node is then determined root-to-leaf by calculating the mean value of the cor-
responding feature from two randomly chosen (with replacement) data points
that traverse that node. For discrete-valued features, the corresponding feature
value from a randomly chosen point is used for the equality condition. Up to
2depth leaf nodes are labeled by feeding the training data M into the established
trees and keeping a record of which m ∈M reach each node. Any decision nodes
that are reachable by a number of points less than an established percentage of
|M | are converted into leaf nodes with their children nodes truncated. Note that
such pruned trees will no longer be complete.

3.4 QD Trees

Our implementation of the QD algorithm for decision tree generation uses an
archive container A where the pairwise distance between tree elements τi, τj ∈ A
is calculated as the diversity measure ∆raw(τi, τj ,M) from Section 2.1, Equation
2. Given a minimum distance threshold ∆min, this container will allow the addi-
tion of a new element τnew based on its comparison to its nearest two neighbors
τfirst and τsecond where:

τfirst = arg min{∆raw(τnew, τi,M),∀τi ∈ A}

and:

τsecond = arg min{∆raw(τnew, τi,M),∀τi ∈ A \ {τfirst}}

Given this, τnew will be added to A without affecting other members if its nearest
neighbor is farther away than the minimum threshold. If both of the two nearest
neighbors of τnew are closer than the minimum threshold, τnew will not be added
to the container. However, if the nearest neighbor is closer than the threshold
while the second nearest neighbor is farther, τnew may replace its nearest neigh-
bor if its fitness is higher, where fitness is measured as accuracy in predicting
the labels of the training data set. Note this has a similar effect as our greedy
tree formation such that trees with higher label purity in leaf nodes will have
higher fitness. This is shown more precisely in Algorithm 1.

The container is initialized by generating a fixed number of τrnd trees and
adding them to the container in order, as long as the diversity conditions are
met as described above. Note that the first two decision trees are always added
successfully to the container. Next ∆min is tuned to ensure that the container
capacity |A| does not increase above a given size during initialization. This helps
to ensure that the nearest neighbor calculations remain in an achievable range
of computational complexity during the algorithm’s execution.

QD-GP for Learning Decision Tree Ensembles 9

Algorithm 1 Conditional Archive Addition

1: procedure AddTreeToArchive(τnew)
2: globals : Archive A, Data M, Constant ∆min

3: τfirst ← τ1
4: τsecond ← τ1
5: for τi in A do
6: if ∆raw(τnew, τi,M) < ∆raw(τnew, τfirst,M) then
7: τsecond ← τfirst
8: τfirst ← τi
9: else if ∆raw(τnew, τi,M) < ∆raw(τnew, τsecond,M) then

10: τsecond ← τi
11: if ∆raw(τnew, τfirst,M) < ∆min then
12: A← A+ τnew

13: else if ∆raw(τnew, τsecond,M) < ∆min then
14: if fitness(τnew) > fitness(τfirst) then
15: A← A+ τnew

16: A← A \ τfirst

The algorithm then executes for a specified number of generations. At each
generation, two parent trees are selected from the container (with replacement),
where the selection probability for each tree is proportional to its current curios-
ity score. Recall that the curiosity score indicates how successful the offspring
of that tree have been in recent history. Crossover is then applied to the parent
trees as described in Section 2.3. Specifically, randomly selected sub-trees from
each parent tree at the same height are swapped. Note that the crossover opera-
tion results in two children. Each child undergoes mutation where each decision
node may have its tested feature modified and its threshold reinitialized accord-
ing to some probability. Failing this, a sample from the normal distribution is
added to real-valued thresholds while discrete-valued thresholds are modified to
an alternate value according to a second sampling from mutation probability.

The mutated children are then tested to determine if they should be added
to the container. If the addition is successful, the curiosity scores of the parents
are increased by 1. Otherwise, the curiosity scores of the parents are decreased
by 0.5. For instance, the successful addition of one child and the failed addition
of the other will result in a net curiosity score gain of 0.5 for each parent. After
the set number of generations, the container is returned.

Finally, a decision tree ensemble TQD of a fixed size n must be generated from
the resulting container. Here, we test three different strategies. The accuracy
strategy (QD Accuracy) chooses the n decision trees in the container with the
highest fitness. The diversity strategy (QD Diverse) chooses n random trees
from the container. The hybrid strategy (QD Hybrid) chooses n

2 trees with the
highest fitness, then chooses the remaining trees randomly. Once chosen, each
tree is pruned such that decisions reachable by a number of training samples less
than a specified percentage of |M | are replaced by leaf nodes. This is done to
ensure sufficient data at the leaves to make a statistically reasonable prediction.

10 Stephen Boisvert and John W. Sheppard

Table 1. Data Set Attributes

Data Set # Used Points # Used Features # Classes Missing Data?

Balance 626 4 3 No

Breast Cancer 699 9 2 Yes

Dermatology 366 34 6 Yes

Flags 194 28 8 No

Glass 214 9 6 No

Heart 270 12 3 No

Hayes-Roth 132 4 3 No

Ionosphere 351 34 2 No

Iris 150 4 3 No

4 Experiments

For our experiments, we execute the previously described algorithms and mea-
sure their classification performance over nine data sets selected from the UCI
Machine Learning Repository [12]. Specifically, we compare the results of the QD
Hybrid, QD Accuracy, and QD Diverse algorithms against those of the Bagging
and Random algorithm baselines.

The data sets were selected for manageable data sizes, few missing attribute
values and varying numbers of features (Table 1). For all used data sets, any
missing attribute values are handled by removing the affected data points from
consideration. Uniquely identifying attributes such as IDs and names are also
removed from the data. Note that for this experiment, we predict the “religion”
field of the Flags data set based on the other attributes.

All presented diversity and accuracy results are determined using 10-fold
cross validation. That is, each point graphed in Figure 1 is a result of this val-
idation, and 10 such results are used in our statistical test. Note that the cross
validation folds are stratified by class, ensuring proportionate representation of
all classes within each division. Note that these diversity and accuracy metrics
are the same metrics used in the construction of the ensembles with the QD vari-
ants. The use of alternative metrics for additional insights into the effectiveness
of the classifiers is an opportunity for future work.

Each of the algorithms includes a pre-pruning hyperparameter that specifies
the percentage of training points that much be reachable by every decision used
in the tree. For these experiments, that setting is kept at a constant 1%. Addi-
tionally, each algorithm is configured to generate ensembles such that |T | = 50.
The depth-limit of the randomly-generated and QD-generated trees is kept at 4.

Each QD algorithm variant is executed for 10,000 generations unless stated
otherwise. Note that two children are created in each generation. For most ex-
periments, ∆min is chosen at initialization such that no more than 350 of 3,000
randomly initialized trees are added successfully to the container. If the container
size goes above this threshold during initialization, the algorithm restarts with a
higher ∆min. Note that reported diversity measures use the pairwise averaged ∆̄

QD-GP for Learning Decision Tree Ensembles 11

Table 2. Median algorithm accuracy and diversity. Bold indicates p < 0.05

Data Set
Bagging Random QD Acc QD Div QD Hybrid

Acc Div Acc Div Acc Div Acc Div Acc Div

Balance 0.842 16.68 0.887 20.71 0.871 17.38 0.888 20.17 0.883 18.63

Breast Cancer 0.958 3.08 0.965 9.54 0.972 4.80 0.963 9.63 0.968 7.40

Dermatology 0.966 2.26 0.775 19.80 0.949 16.21 0.863 20.45 0.942 18.92

Flags 0.478 10.31 0.419 11.12 0.599 11.40 0.481 11.90 0.587 11.88

Glass 0.621 7.92 0.658 10.80 0.690 9.11 0.621 12.27 0.689 10.17

Heart 0.652 7.82 0.668 8.95 0.680 8.37 0.674 9.34 0.677 9.05

Hayes-Roth 0.781 4.86 0.669 6.95 0.749 6.28 0.674 7.07 0.736 6.69

Ionosphere 0.923 2.80 0.832 9.50 0.891 8.38 0.849 10.25 0.886 9.33

Iris 0.963 0.44 0.953 3.43 0.953 1.05 0.947 4.06 0.953 2.72

value (Equation 3), indicating the average number of data points in the testing
set that have different predicted labels between two trees in the ensemble.

The mutation rate is set to 2%. Note that for discrete valued features, the
sampling for the mutation may occur twice where a second sampling for modify-
ing the threshold value will occur if the sampling for modifying the feature fails.
For real valued features, the threshold is always modified by adding a sample
from the normal distribution, N (0, 0.1).

5 Results

5.1 Algorithm Comparisons

Figure 1 plots the diversity and quality of the algorithms over the indicated data
sets. Table 2 shows median accuracy and diversity metrics. Entries shown in bold
are not significantly lower than the maximum value in the row according to the
Wilcoxon Signed-Rank Test at the 95% confidence level.

5.2 Evolutionary Algorithm

Much of the niching behavior of the QD strategy can be attributed to the con-
tainer, which enforces a level of diversity while allowing for quality improvements.
Here, we investigate the change in algorithm behavior when the evolutionary
components of the algorithm are replaced by the random tree generation strat-
egy. Specifically, we examine the size of the container over time, the number of
times an existing member of the container was replaced by a newly generated
tree, and the average accuracy of the members of the container over the training
data. As in other fitness metrics, the training data accuracy indicates a measure
of the purity of the labels at the leaves of the decision trees. In this experiment,
the number of generations is increased to 100,000, and ∆min is increased by
25%. We show the results on the Glass data as a representative in Figure 2.

12 Stephen Boisvert and John W. Sheppard

Fig. 1. Algorithm accuracy versus diversity for each of the nine data sets

QD-GP for Learning Decision Tree Ensembles 13

Fig. 2. Behavior of the QD algorithms vs. random generation on the Glass dataset

5.3 Binary Diversity

We examined the effect on performance of using the more common pcorrect
(Equation 1) to calculate ∆correct rather than ∆raw (Equation 2) for the QD-
hybrid algorithm, keeping all other settings constant. We found that the differ-
ence in accuracy was not statistically significant for the Glass, Ionosphere and
Balance data sets tested. We consider these data sets to be representative of
the accuracy/diversity relationship trends and label quantities of our data sets.
Further experimentation with alternative diversity metrics, especially those less-
directly tied to fitness, may prove interesting.

5.4 Ensemble Size

Finally, in Figure 3, we briefly examine the change in behavior of ensemble
classifiers of varying sizes. As an example, we replot the diversity and accuracy of
class predictions on the Glass data set from ensembles consisting of 50, 25, 10 and
2 individual trees. All other parameters are held constant for this experiment.

6 Analysis

The effectiveness of the QD strategy is shown to be highly data-dependent, as
is the correlation between ensemble diversity and accuracy. Data sets such as
Breast Cancer, Flags, Glass, and Heart demonstrate a mid-range of diversity

14 Stephen Boisvert and John W. Sheppard

Fig. 3. Change in performance by ensemble size.

where accuracy tends to be higher. The Dermatology, Hayes-Roth, Ionosphere,
and Iris data sets show a trend for less diverse ensembles to be more accurate.
The Balance data set shows the reverse trend where more diverse ensembles
tend to have higher accuracy. The QD-Diversity algorithm shows particularly
promising results in creating diverse ensembles, shown here to be significantly
less diverse than the top performer in only one data set. The QD-Hybrid variant
demonstrates the possibility of tuning the behavior of the ensemble by more
carefully selecting the individuals from the container output.

There are several cases where the local optimization of the QD algorithm is
apparent from the plots. For example, in the Dermatology graph in Figure 1, we
see the QD-Diverse ensemble outperform the Random ensemble, despite similar
measures of diversity. Similar patterns are observed between QD-Hybrid and
Random in the Ionosphere data set and between QD-Accurate and Random on
the Flags data set. Indeed, Figure 2 suggests that a primary effect of combining
the QD container with the evolutionary algorithm versus random generation is
to optimize existing members of the container locally, thus increasing accuracy.

Figure 3 demonstrates a trend for behavioral variance of the algorithms to
decrease as ensemble size increases while maintaining distinct average behaviors.
This suggests a substantial difference in the properties of the ensembles based
on varying tree generation and selection methods.

QD-GP for Learning Decision Tree Ensembles 15

7 Conclusion

We have presented a new application of QD algorithms in generating decision
tree ensembles containing trees that are both fit and behaviorally diverse. Our
experiments show that the benefit of diversity in such an ensemble is highly
dependent on the data set. For data sets with very defined rules, aiming for
more diverse ensembles may be counterproductive. However, for other data sets,
the QD generation methods appear to offer effective strategies for tuning the
performance of resulting ensembles. Furthermore, we have demonstrated that
while the container plays an important role in the QD formulation by enforcing
a degree of diversity, the evolutionary algorithm component also plays a key role
by promoting local optimization to a greater degree than simple random tree
generation. The QD strategies offer a promising method for exploring a locally
optimized relationship between ensemble accuracy and diversity.

The parameters used in our experiments have been highly controlled in order
to demonstrate the differences between the algorithms in generating ensemble
members. Performance may be improved further by allowing for more complex
and deeper tree structures. Further study of these algorithms at their respective
peaks of performance may give more insight into the practical utility of QD-
generated ensembles. More flexible genetic programming implementations may
also promote quicker ensemble generation, allowing more opportunities to opti-
mize container contents. Similarly, we have restricted the ensemble integration
mechanism to highlight the difference between ensemble compositions. Using
more advanced combination techniques could improve the performance of these
ensembles by allowing for diverse “specializations.” Long computation times led
to using relatively simple data sets for our experiments. Though we demonstrate
varying relationships between accuracy and diversity even among these data sets,
using more complicated data may reveal additional insights. Finally, we have fo-
cused on using decision tree ensembles, but the concepts used in this paper may
apply in a straightforward way to other types of classifiers. For example, it would
be possible to replace the tree models with neural networks given appropriate
crossover and mutation operators.

References

1. Bandar, Z., Al-Attar, H., McLean, D.: Genetic algorithm based multiple decision
tree induction. In: Proc. 6th International Conference on Neural Information Pro-
cessing (ICONIP). vol. 2, pp. 429–434 (1999)

2. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble
diversity measure applied to thinning ensembles. In: International Workshop on
Multiple Classifier Systems. pp. 306–316. Springer (2003)

3. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A comparison of
decision tree ensemble creation techniques. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29(1), 173–180 (2006)

4. Barros, R.C., Basgalupp, M.P., De Carvalho, A.C., Freitas, A.A.: A survey of
evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42(3), 291–312 (2011)

16 Stephen Boisvert and John W. Sheppard

5. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
7. Brodley, C.E.: Recursive automatic bias selection for classifier construction. Ma-

chine Learning 20(1-2), 63–94 (1995)
8. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An

analysis of measures and correlation with fitness. IEEE Transactions on Evolu-
tionary Computation 8(1), 47–62 (2004)

9. Chan, P.K., Stolfo, S.J.: On the accuracy of meta-learning for scalable data mining.
Journal of Intelligent Information Systems 8(1), 5–28 (1997)

10. Cully, A., Demiris, Y.: Quality and diversity optimization: A unifying modu-
lar framework. IEEE Transactions on Evolutionary Computation 22(2), 245–259
(2017)

11. Dietterich, T.G.: An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization. Machine Learn-
ing 40(2), 139–157 (2000)

12. Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

13. Fan, W., Wang, H., Yu, P.S., Ma, S.: Is random model better? on its accuracy and
efficiency. In: Third International Conference on Data Mining. pp. 51–58. IEEE
(2003)

14. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. In: Advances in Neural Information Processing Systems. pp. 231–238
(1995)

15. Kuncheva, L.I., Whitaker, C.J., Shipp, C.A., Duin, R.P.: Is independence good for
combining classifiers? In: International Conference on Pattern Recognition. vol. 2,
pp. 168–171. IEEE (2000)

16. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation (GECCO). pp. 211–218. ACM (2011)

17. Liu, F.T., Ting, K.M., Fan, W.: Maximizing tree diversity by building complete-
random decision trees. In: Pacific-Asia Conference on Knowledge Discovery and
Data Mining. pp. 605–610. Springer (2005)

18. Merz, C.J.: Dynamical selection of learning algorithms. In: Learning from Data,
pp. 281–290. Springer (1996)

19. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 (2015)

20. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: A new frontier for evo-
lutionary computation. Frontiers in Robotics and AI 3, 40 (2016)

21. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the gini index and
information gain criteria. Annals of Mathematics and Artificial Intelligence 41(1),
77–93 (2004)

22. Tanigawa, T., Zhao, Q.: A study on efficient generation of decision trees using
genetic programming. In: Proceedings of the 2nd Annual Conference on Genetic
and Evolutionary Computation (GECCO). pp. 1047–1052. ACM (2000)

23. Van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting
methods for pattern recognition. In: Proceedings Eighth International Workshop
on Frontiers in Handwriting Recognition. pp. 195–200. IEEE (2002)

