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Abstract. Evolutionary algorithms often struggle when there exists a
high degree of interdependence between the variables (epistasis), non-
separability, discontinuity, high dimensionality, and sparsity. These com-
plexities can lead to hitchhiking, where poor parameters are associated
with good schemata, and “two steps forward and one step back” where
near-optimal parameters are lost in favor of lower-quality parameters
that immediately improve fitness; phenomena that contribute to prema-
ture convergence. Overlapping Swarm Intelligence (OSI) has been intro-
duced as a cooperative coevolutionary algorithm that utilizes overlap
of variables between subswarms to encourage sharing and competing
among variables across the subswarms. OSI has shown success in han-
dling epistasis, however it can still suffer from premature convergence
when subswarms get stuck in “pseudo-optima,” i.e., when a subset of
variables is at a minimum with respect to the reduced search space but
not the entire space. We investigate convergence on memetic variations
of OSI, CPSO (OSI with no overlap), and Particle Swarm Optimization
using block coordinate descent applied to the CEC2010 Benchmark prob-
lems. The memetic algorithms show some success in assisting subpopu-
lations in finding more optimal solutions compared to their non-memetic
counterparts. We also use the Gini coefficient on a solution’s derivative
to estimate the proportion of variables stuck in pseudo-optima to help
understand what contributes to premature convergence.

Keywords: Overlapping Swarm Intelligence · Cooperative
co-evolution · pseudo-optima · Block coordinate descent

1 Introduction

Evolutionary Algorithms (EAs) are frequently used in solving complex optimiza-
tion problems in lieu of other methods when the search space is particularly
difficult to navigate. Multiple characteristics can contribute to the difficulty
of this task: high dimensionality and the relatively sparse and uninformative
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points within the search space; complexity such as non-linearity or non-convexity
of the objective functions or constraints; and or non-separable and discontinuous
regions within the search space. EAs are often selected to navigate these types
of space due to their stochastic nature.

Commonly used algorithms such as Genetic Algorithm (GA), Differential
Evolution (DE), and Particle Swarm Optimization (PSO) all have different
approaches in exploring and exploiting the search space. Although this gen-
eral class of algorithms has shown great success, it is well known these issues are
exacerbated in higher dimensions [28], and when the relationship between vari-
ables become highly interdependent (epistasis) [5,14]. Interdependent variables
and complex search-spaces can contribute to hitchhiking, where poor parame-
ters are associated with good schemata [21], and “two steps forward and one
step back,” where near-optimal values are lost in favor of lower-quality values
that immediately appear to have better fitness [1].

1.1 Cooperative Coevolutionary Algorithms

To address these issues, a class of EAs called Cooperative Coevolutionary Evo-
lutionary Algorithms (CCEAs) emerged to deal with issues caused by epista-
sis, hitchhiking, “two steps forward and one step back,” and non-separability
[20]. These algorithms divide the population into subpopulations or “subspecies”
so that each evolves and optimizes over a disjoint subset of the variables. By par-
titioning the set of variables, CCEAs have been shown to be able to navigate
high-dimensional search spaces more effectively [1,20]. For most CCEAs, a global
“context” vector is maintained to represent the best total solution seen so far
and updated based on the performance of the individual subpopulation.

1.2 Factored Evolutionary Algorithms

Strasser et al. introduced Factored Evolutionary Algorithms (FEA) in [25] as
a new class of CCEAs, but instead of variables being subdivided into disjoint
factors, FEA allows subpopulations to optimize over overlapping factors. Rather
than treating each subpopulation as independent, FEA takes into account that
there may exist interaction between subpopulations and allows each overlapping
subpopulation to independently solve over the factor overlap. It was shown in [26]
that FEA is able to outperform CCEA in settings where there was a high degree
of epistasis between the variables. Overlapping Swarm Intelligence (OSI) in [19]
was the earliest known implementation of FEA, which used PSO to optimize on
overlapping subswarms. It was then in [25] that OSI was generalized to FEA by
allowing any stochastic search algorithm to optimize over the subpopulations,
not only PSO. Throughout this paper, we focus on the OSI instance of FEA.

1.3 Convergence in CCEAs and FEAs

Throughout this work, we refer to the structure of the set of subswarms in OSI
as a factor architecture. Previous works [24,25] validated that factor architecture
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matters in FEA/OSI and CCEA across problems. In their work, for example, in
the Bayesian network inference setting, an architecture of factors based on each
variable’s Markov blanket performed significantly better than other architec-
tures, and a “neighborhood architecture” in the NK Landscapes outperformed
other architectures.

Van den Bergh and Engelbrecht were likely the first to realize one conver-
gence issue was caused by factors or variables getting caught in pseudominima.
If a subpopulation was in a pseudominimum with respect to its own factor, it
could not improve because it was effectively in a local optimum for that fac-
tor. Although it was generally shown OSI (FEA+PSO) outperformed CPSO
(CCEA+PSO) in multiple settings, including under random architectures, both
algorithms remained susceptible getting stuck in pseudominima.

In this work, motivated to prevent premature convergence issues and improve
performance of CPSO and OSI, we will investigate the relationship between
“pseudominima” and convergence by incorporating memetic additions into the
OSI algorithm. Memetic algorithms are a class of algorithms that incorporate an
additional heuristic process into the search on top of the underlying optimization
algorithm. We incorporate two variations of gradient descent into OSI, CPSO,
and PSO: full gradient descent (FGD) on the context vector (global solution),
and block coordinate descent (BCD) on every individual in each subpopulation.

Previous works have successfully incorporated local search methods, includ-
ing gradient descent, into EAs to improve optimization [4,17,18]. It is hypoth-
esized that, like previous works, incorporating gradient descent into FEA will
help avoid premature convergence by preventing subpopulations getting stuck in
pseudominima or assisting subpopulations to escape their pseudominima via the
variables that overlap between subpopulations. It is further hypothesized that
the memetic variations applied to the underlying algorithms will help improve
the convergence rate of these algorithms while also enabling a comparison of
“pseudominima” and convergence across algorithms.

2 Background

2.1 Factored Evolutionary Algorithms

In this work, we make use of a specialization of Factored Evolutionary Algorithms
[25] called Overlapping Swarm Intelligence (OSI) [19]. As background on OSI, we
focus on the more general FEA approach, emphasizing that the only difference
is the use of PSO as the underlying optimizer.

In Cooperative Coevolutionary Algorithms (CCEAs), the set of variables X
is subdivided into partitions S = {Si}Fi=1 such that Si ⊂ X and Si ∩ Sj = ∅

for all i, j ∈ [1, F ], where i �= j. In contrast to CCEAs, the class of Factored
Evolutionary Algorithms (FEAs) allow for the possibility of one more Si over-
lapping, i.e., Si ∩ Sj �= ∅. Note that CCEA can be regarded as a special case of
FEA where there is no such overlap. In the FEA context, these subsets of vari-
ables S are referred to as factors. In FEA and CCEA, the set of subpopulations
P = (P)Fi=1 optimizes over the factors such that Pi optimizes over factor Si.
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Algorithm 1. FEA
Input: Function f , base algorithm A
Output: Full solution G

1: S ← Initialize factors and subpopulations from f , X, and algorithm A.
2: G ← Initialize full global from S.
3: repeat
4: for all Pi ∈ S do
5: Optimize Pi using algorithm A

6: G ← Compete(f,S)
7: S ← Share(f,G,S)
8: until Termination criterion is met
9: return G

Evaluating the fitness of an individual using only the variables of factor Si is
insufficient, and requires the remaining variables outside of the factor to evaluate
the objective function. Let s = x|S be a restriction of variables in a full solution
x to a subset of variables S ⊆ X such that x|S = {xi | Xi ∈ S}. Let Rj = X\Sj

be the set of variables not included by the subspace factor Sj . For a full solution
x, let sj = x|Sj

= {xi | Xi ∈ Sj} and rj = x|Rj
= {xi | Xi ∈ Rj} be

a partition on x. The context of a factor Si is the remaining variables in the
global solution G, denoted rj(G) = {gi ∈ G | Xi ∈ Rj}. Let s ∪ r denote the
recomposition of a full solution x = {xi ∈ s ∪ r | Xi ∈ X}.

The FEA algorithm, as shown in Algorithm 1, has 3 primary steps.

1. Optimize: In the first step (lines 4–5), each of the individuals in subpopu-
lations Pi are optimized. For OSI, PSO is the optimizer chosen. This is done
by optimizing subspecies on factor Si while holding Ri constant.

2. Compete: In the second step (line 6), each individual in the subpopulation
competes and contributes to a new or updated global solution G (also referred
to as the global context vector). Competition occurs at the points of overlap
between the factors, and the global solution is updated with the best values
from the overlapped subpopulations.

3. Share: In the third step (line 7), information exchange occurs between the
subpopulations. Each subpopulation’s local context vector Ri is updated from
the global context G, and the worst solution sj ∈ Pi is replaced with the
global context vector, sj ← G|S .

CCEA and its factor architecture is able to run on the FEA framework, and if S
contains a single factor S then S = X and R = ∅. Thus any single-population
evolutionary algorithm can also be run using the FEA framework.

2.2 Minima and Pseudominima

To analyze convergence and the issue of pseudominima realized by [1], Strasser
and Sheppard introduced a metric to measure the proportion of factors in pseu-
dominima relative to the number of factors in local minima [26]. The metric,
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here called pseudominima ratio, is calculated as

R(t) =
Pm

Pm + Lm
,

where Pm is the number of factors that are pseudominimum, and Lm is the
number of factors that are (exclusively) at a local minima (yet are not a pseu-
dominimum as well) at iteration t. If R(t) = 1 then all subpopulations are at
pseudominima, and if R(t) = 0 then they are all at local minima. This is the
inspiration for a metric we propose in Sect. 5.2, except it is equipped to handle
first-order derivable functions and analyze convergence of subpopulations.

3 Related Work

Cooperative Coevolutionary algorithms (CCEA) began with works proposed
by [20] with the purpose of partitioning a solution-space into subsets of vari-
ables called “subspecies” using GA, “Cooperative Coevolutionary GA” (CCGA).
Treating each “subspecies” as a separate sub-problem made it potentially more
effective and feasible to find a solution by solving for simpler components and
recombining them into a final solution.

Van den Bergh and Engelbrecht brought cooperative coevolution to PSO [1].
In CPSO, the GA optimizer is replaced with a PSO optimizer. In this work, con-
sideration was also given to problems of premature convergence where there was
an issue with subpopulations getting trapped in “pseudominima”. One approach
to handling this problem was through the definition of the hybrid CPSO where
optimization alternated between focusing on individual factors and running full
PSO updates.

As an early attempt to extend CPSO, Pillai and Sheppard looked at the
possibility of training neural networks where the factors corresponded to paths
through the network [19]. This necessitated being able to handle overlap in
the subswarms. Subsequently, Fortier et al. explored applying the overlapping
swarm idea in OSI to solving the abductive inference problem with Bayesian
networks [10]. This led to a further generalization of OSI where Fortier intro-
duced distributed OSI (DOSI) to distribute the context vector across subpopula-
tions, each maintaining a locally-best solution rather than maintaining a global
solution vector, and sharing the subpopulation’s most optimal variable(s) with
other subpopulations [11]. DOSI increased diversity, improved competition, and
showed improved performance compared to OSI as applied to Bayesian Network
abductive inference. Subsequent work evaluated the extent to which consensus
needed to be reached on the context vector and also showed that there should
be equivalent performance with DOSI when consensus is reached [2].

Strasser and Sheppard developed a variant of FEA called Hybrid Factored
Evolutionary Algorithms [26], similar to the Hybrid CPSO [1]. These hybrid
algorithms ran an iteration of regular CPSO or FEA steps, then ran some number
of iterations of the base algorithm on an unfactored subpopulation, that is,
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optimizing over the full set of variables X. Section 4 introduces a framework that
generalizes Hybrid FEA for any particular optimizer M, a memetic variant.

This work incorporates gradient descent (GD) methods as memetic variations
to PSO, CPSOs, and OSI. In [26] it was noted an algorithm such as “Sequential
Subspace Optimization” (SESOP) in [9] that utilizes gradient descent (effectively
a block coordinate descent) might be less susceptible to becoming trapped in
pseudominima, as it is able to update any subset of variables at once rather
than just the variables of Si. Gradient descent methods are usually always able to
escape saddle-points (a form of pseudominima) in the limit [12,13]. Additionally,
there has been success applying GD to escape saddle-points, as in [6] with Deep
Neural Networks.

Du et al. found that, while gradient descent methods based on random sub-
sets generally are able to escape in the limit, perturbation-based GD methods are
considerably better at escaping saddle points [7]. Many stochastic-based algo-
rithms, including PSO, could be considered perturbation-based methods, and
as such reap benefits of using a gradient descent method. Empirically, there
has been success in memetic algorithms incorporating GD into EAs such as
“Evolutionary Stochastic Gradient Descent (ESGD)” [17] and “Improved Parti-
cle Swarm Optimization Based on Gradient Descent Method” (GDPSO) [4].

There are a number of CCEA-based memetic algorithms. Smith introduced a
memetic framework for GA, adding memetic recombination and mutation oper-
ator steps after the basic mutation operations [22]. Later, Cao et al. introduced a
generalized memetic framework, called “CC-GLS” for CCEA, by introducing a
local search component to the global search [3]. Their framework optimized each
subpopulation, first using the chosen global search method and then using the
local search method, before moving on to the next subpopulation. Their imple-
mentation utilized a DE algorithm, and Solis Wets method as the local search
method. Notably, another memetic algorithm incorporating a Solis Wets method
[23] as a local search operator using a GA, named “MA-SW-Chains,” won the
CEC 2010 Benchmark Competition for its ability to handle the highly non-
separable benchmarks [18]. Besides these, no work besides in Hybrid-FEA, has
been done on memetic algorithms for FEAs and OSI.

4 Memetic-OSI

Formally, we define a framework for which we are able to introduce any memetic
optimizer into OSI. The Memetic-OSI algorithm is mostly identical to OSI,
except it alternates between optimization algorithms for the Compete step. That
is, Memetic-OSI alternates between using PSO for the the underlying subpop-
ulation optimizer and a memetic optimizer M. We allow M to be either a
population optimizer or a solution optimizer. If M is a solution optimizer, then
a full solution x is updated to improve fitness. If M is a population optimizer,
then the individual members of Pj ∈ P, xj , are updated. The Memetic-OSI
framework is given in Algorithm 2. Here, Memetic-OSI iterates through rounds
of Optimize, Compete and Share steps, once for each of the base algorithm A and



182 N. Patera and J. Sheppard

Algorithm 2. Memetic-OSI

Input: Function f , base algorithm A = PSO, memetic optimizer M
Output: Full solution G

1: S ← Initialize factors and subpopulations from f , X, and A.
2: G ← Initialize full global from S.
3: while true do

� FEA Steps using base algorithm A
4: for all Pi ∈ S do
5: Optimize Pi using A
6: G ← Compete(f,S)
7: S ← Share(f,G,S)
8: if A = A and Termination criterion is met then
9: return G

� FEA Steps using memetic algorithm M
10: S,G ← M(f,S,G)
11: G ← Compete(f,S)
12: S ← Share(f,G,S)

the memetic optimizer M. Due to the possible stochastic nature of the memetic
optimizer, we require that Memetic-OSI terminate only upon meeting a criterion
after a round using A.

In this work, two memetic optimizers are suggested to improve convergence
in OSI, CPSO and PSO. The first memetic variation uses Gradient Descent
(GD) on the full global context vector G to improve the local context Si for
all subpopulations Pi. The second memetic variation uses a Block Coordinate
Descent (BCD) method to optimize every individual Pj in P.

The computational cost of estimating the gradient for a solution x requires
estimating the partial for every variable Xi ∈ X. Let ∇f(x) be the gradient on
x composed of partials f ′

Xi
(x) for all xi ∈ x. Estimating the gradient for a factor

S of size M requires calculating M partials for every Xj ∈ S. The expense is M
function evaluations for every individual in each subpopulation, which is a total
of M · P · F function evaluations (where M · F ≈ N in the CCEA setting) as
compared to approximately P · F function evaluations per iteration for every
individual in PSO. Due to the cost of calculating this, we devised a heuristic
similar to directional direct-search methods [8,15,16] to find a subgradient d∗

that is close to the steepest gradient, requiring fewer function evaluations. This
method generates a set of direction vectors ξS = {di ∈ S

N}Si=1 sampled from
the unit ball, and chooses a direction d∗ from ξ that minimizes an objective
function at an arbitrarily small distance ε � 1 from x. The direction is found as

d∗(x) = arg max
d∈ξS

{|f(x + εd) − f(x)|}.
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Algorithm 3. BCD-Optimizer

Input: Function f , population Pi

1: for Iter = 30 iterations do
2: for all Pj ∈ Pi do
3: d ← gradsample(f, sj ∪ ri(G),Si, S = �√M�)
4: d ← d/max |d|
5: sj ← sj − α · d

Algorithm 4. FGD-Optimzer

Input: Function f , global solution G
1: for Iter = 30 iterations do
2: d ← gradsample(f,G,X, S = �√M�)
3: d ← d/max |d|
4: G ← G − α · d

To obtain a gradient estimate for a factor S of size M on a solution x, points
are only sampled around s to obtain a direction

d∗
S(x) = arg min

d
{f(r ∪ (s + εd)) | d ∈ ξS ⊂ S

M}.

We defined a function

gradsample(f,x,S, S):=d∗
S(x)

to obtain a direction of descent d on s ⊆ x from S samples ξS ⊂ S
M where

M = |S|. This function generates a direction g that will be used as a gradient
descent direction in our memetic optimizers.

The Block Coordinate Descent (BCD) optimizer is given in Algorithm 3 as
a population optimizer, and as applied in Memetic-OSI, we refer to them as
OSI+BCD, CPSO+BCD, PSO+BCD for OSI, CCEA, and PSO. Likewise, the
Full Global Descent (FGD) optimizer is presented in Algorithm 4 as a single
solution optimizer and are referred to similarly in Memetic-OSI as OSI+FGD,
CPSO+FGD, and PSO+FGD.

In both BCD and FGD optimizers, d is chosen as a descent direction from
a heuristic number of sample directions (S = �√M�) that best minimizes the
objective function, so the descent direction estimates a directional derivative in
proportion. Note that d is normalized using an infinity norm, as a step size
αd under �2 may be too small for any learning rate α ≤ 1 in high dimensional
settings like N = 1000 and large domains. In smaller domains or low dimensional
settings, the maximum step size may be too large, so the learning rate α will need
to be tuned appropriately. A descent step is then taken to minimize the objective.
In FGD, a descent step on the global solution G occurs for Iter iterations,
updating all variables X. On the other hand, in BCD, Iter iterations of descent
steps occurs for each individual in the subpopulation. In both algorithms, the
descent step is taken regardless of the fitness improvement.
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Table 1. Separability and modality for the CEC 2010 benchmark functions, grouped
by their basis functions.

F Degree of Separability
Modality

S 1 N/2m N/m NS

Elliptic F1 F4 F9 F14 — Unimodal

Rastrigin F2 F5 F10 F15 — Multimodal

Ackley F3 F6 F11 F16 — Unimodal

Schwefel — F7 F12 F17 F19 Unimodal

Rosenbrock — F8 F13 F18 F20 Multimodal

5 Methods

5.1 Experimental Design

In this work, we wish to compare the convergence properties of OSI, CPSO, and
PSO with their memetic counterparts using the Memetic-FEA framework with
Block Coordinate Descent and Full Gradient Descent as memetic optimizers.

We have elected to use the CEC 2010 Benchmark Problems [27] for vary-
ing degrees of separability and difficulty. Table 1 summarizes the characteristics
of the 20 benchmark problems, showing the degrees of modality and separa-
bility in the problems. In all cases, we seek to minimize the functions. The
functions are grouped based on their basis functions, consisting of Elliptic, Ras-
trigin, Ackley, Schwefel’s Problem 1.2 (Schwefel), and Rosenbrock respectively.
The first three are naturally separable functions, F1-F3, which we label simply as
“S,” while the last two, F19 and F20, are naturally non-separable functions and
are labeled as “NS.” These functions, F1-F3,F19,F20, are the straight forms of
their basis functions. The remaining degrees of separability (g = 1, N/2m,N/m)
specify the number of non-separable groups of size m variables in the objective
function. These groups are separable from each other, and separable from the
ungrouped variables. The exception is Schwefel and Rosenbrock, which use the
Sphere function as the basis function over the ungrouped variables. The non-
separable groups of variables, are made non-separable by rotating the m-sized
group of variables using a rotation matrix R. For g-groups of size m, each of the
benchmarks is of the form,

F(x) =
g∑

i=1

fb(R(x[m(i−1)+1 : mi])) + fb(x[gm+1 : N ]),

where fb is a basis function, and the colon operator specifies a range of variables
on x. The benchmarks are derivable for an exact gradient, which is used to
analyze convergence of solutions.

The experimental design is a block design generated by {OSI,CPSO,PSO}×
{None, BCD, FGD} × {F1, · · · , F20}. We did not experiment with PSO+FGD
on the global solution, and only had a full gradient descent step on each particle,
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denoted PSO+BCD, with all variables being a block. A total of 25 trials were
performed for each of the blocks. Each experiment had randomized starting
positions, and a sequence of overlapping factors based on a random permutation
of the variable indices. For example, variables [x1, . . . ,x9] might be factored as

[[x5,x1,x8], [x8,x9,x2], [x2,x4,x3], [x3,x7,x6]].

For each of the 20 benchmarks and all algorithm variations, the learning rate α,
PSO parameters φ and ω were tuned using grid-search. Termination criteria were
either finding the solution or detecting a diminishing rate of improvement after a
minimum of 25M FEs. For OSI, the number of variables M in each factor and
the maximum number of overlapping variables O was tuned; while for CPSO,
only M variables in each factor were tuned since there was no overlap. To ana-
lyze performance of the algorithms, the global solution G, its benchmark value
f(G), and the number of function evaluations (FEs), were recorded after every
Compete step.

5.2 Gini Pseudominimum Measure

Since the pseudominimum ratio metric from [26] requires knowing if a factor Si is
at a pseudo-optimum to calculate the proportion of factors in pseudominima, we
introduce what appears to be a novel usage of the Gini coefficient to assess the
proportion of variables at a critical point as a proxy to estimating how close a
factor is to a pseudominimum. To estimate such a minimum, we use a metric
R(x) that has the following property,

R(x) =
1
N

N∑

i=1

I(∇xi
f(x) = 0),

where I is the indicator function that returns one when the partial is zero.
A few issues make this approach difficult in practice. The first issue is deter-

mining if xi is at a critical point, which requires choosing an ε such that
∇xi

f(x) < ε. Another issue is how to determine if xi is “stuck.” The ideal
characteristic of a metric would be to provide the proportion of xi derivatives
near-zero in a solution such that xi contributes less to the proportion as it is fur-
ther from zero. A dispersion metric such as the Gini coefficient can capture the
proportion of values in a distribution that are the same or all near-zero.

G(x) =

∑n
i=1

∑n
j=1 |xi − xj |

2n
∑n

i=1 xi

We estimate the ratio of variables in pseudominima with the Gini coefficient on
the derivative of the global solution G to take the distance from 0 into account.

RG(x) = G(∇f(x) ∪ {0})

Furthermore, as variables reach a minimum, the distribution of partials should
be dispersed evenly, so the Gini measure should approach one.
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5.3 Hypotheses

Previous work has established that CCEA and CPSO are successful in solving
problems with a high degree of epistasis and low separability [1,20]. Additional
work on the FEA and OSI have demonstrated improvement over CPSO and
PSO in with non-separable landscapes [24,25]. In the memetic setting, PSO has
had varied success in incorporating gradient descent [4], and CPSO has had
similar improvement over their regular counterparts [3,18]. With FEA and OSI,
Hybrid-FEA like Hybrid-CPSO, has shown improved convergence in problems
with low separability [26]. It is hypothesized that memetic variations of OSI will
show similar improved convergence as separability decreases in the benchmark
problems compared to PSO and CPSO counterparts.

Table 2. Final objective values for each algorithm variant M and algorithm class C on
naturally separable basis functions, across degrees of separation (Sep.) for each family
F of basis functions.

Van den Bergh and Engelbrecht claimed that Hybrid-CPSO had improved
success in non-separable problems because alternation to full PSO, which opti-
mized over all variables at once, bridged gaps between the subspaces of the
subpopulations, improving cooperation after competition [1]. Similar improve-
ment may result with Hybrid-FEA to offset too extreme competition at the
points of overlap [26]. As additional hypotheses, the FGD memetic variant opti-
mizes over all variables of G in alternation, so improvement of the context vec-
tor may improve the performance of the subpopulations by effectively improving
cooperation with other subpopulations. The BCD variant optimizes only within
the subpopulation, so it is not expected BCD will have the same success as FGD,

The BCD and FGD variations choose a descent direction, resulting in being
similar to a perturbation-based method. Perturbation-based gradient descent
methods [6,7] are known to be able to escape saddle-points; however, they may
not be able to escape saddle-points when only optimizing over a factor at a pseu-
dominimum. Nonetheless, BCD may see improvement from the stochastic and
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random nature of the descent direction, so it may be able to escape anyways.
PSO should be able to escape similarly, but marginal improvement is expected
with BCD. An improved context vector G with FGD may permit a subpopula-
tion to escape pseudominima while also having the benefit of improved search.

6 Results

Tables 2 and 3 show the final objective values obtained for each of the meth-
ods based on an average of 25 trials. The results are grouped by the family of
basis functions F , where each row group is the underlying algorithm class C of
PSO, CPSO or OSI, a column represents the memetic variant M applied (∅
indicates no memetic variation), and within each algorithm block are the results
for each degree of separability (See Table 1). The best algorithm for each func-
tion, by family and separability, is bolded. An asterisk ∗ and triangle denote
the significantly best algorithm class C for each memetic variant M, and the
best memetic variant M for each class C respectively. A p-value of 0.05 was used
to test significance with Kruskal–Wallis and Dunn’s test. Finally, the results are
visualized in Fig. 1, with the average objective value of the global solution G and
the Gini coefficient of the global solution gradient RG(∇f(G) plotted over the
number of function evaluations (FEs) for each benchmark.1

Table 3. Final objective values for each algorithm variant M and algorithm class C
on naturally non-separable basis functions, across degrees of separation (Sep.) for each
family F of basis functions.

The general trend of best memetic variant was FGD for CPSO and OSI, and
BCD for PSO. However, it appeared OSI+FGD and CPSO+FGD had the most
consistent performance, often outperforming other methods and having similar
convergence across the functions.

1 Our supplementary document provides plots for all benchmarks.
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Fig. 1. Six representative plots of average objective value and derivative Gini measure
across FEs. Columns are by separability properties. Dotted lines show at least one trial
has ceased, and the line stops when all trials cease running.

In the Schwefel-family, PSO+BCD outperformed all other algorithms. Inter-
estingly, plain PSO outperformed all OSI and CPSO variations in the two most
non-separable Schwefel problems. We suspect this behavior is from the high epis-
tasis of the Schwefel basis problem, which unlike the other basis families, has all
variables X contribute non-separably to a sum simultaneously. This high degree
of epistasis may require all variables to be optimized simultaneously, which is
best-suited in the PSO setting. The inability of CPSO and OSI to outperform
PSO, especially in the most non-separable problems, may be related to having
suboptimal factor architectures.

Consider the Gini measure of variables at critical points in Fig. 1. When
performance of an algorithm stagnates, the measure appears to plateau or flatten,
but in the case of CPSO, OSI, and their variants, the measure plateaus and
sticks to lower values than PSO or BCD variants. This appears particularly true
for CPSO and OSI in most experiments. This supports previous results that
subpopulations are sensitive to pseudominima, affecting the global solution.

Across the majority of benchmark problems, the global solutions for OSI and
CPSO appear to be unable to reach local minima, unlike PSO and its memetic
variants. The most likely reason for the inability to reach a local minimum is
related to how solutions from the subpopulations are incorporated into the global
solution. In our competition step implementation, a hill climbing-like improve-
ment is made for each variable; it tries every subpopulation individual on each
variable, and tests if fitness is improved if that individual variable is incorpo-
rated into the global solution. This hill-climbing behavior may make it difficult
to incorporate improved solutions from the subpopulations, because multiple
variables may need to be incorporated at once to have an improved solution.

With the FGD and BCD variants, the global solution seldom converges to a
local optimum, although it improved in the case of CPSO and OSI. In cases where
the solution reaches a full local optimum, performance stagnates, and improve-
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ment dramatically slows and stops. If during the beginning and throughout the
algorithm, the measure of critical points remains low and does not plateau into
a local optimum, the algorithms appear to have better performance and are
generally able to find better solutions.

The Gini measure of the global derivative has the property of gauging how
many variables are minimum, while also representing the exploration of a vari-
able. Consider then, the Gini measure when fitness is improving actively, and
has not stagnated. Lower values indicate regions of active descent to a mini-
mum, effectively providing a measure of how effective exploration is. Consider the
measure for PSO+BCD; in several cases, the algorithm achieves a low Gini mea-
sure and outperforms on multiple benchmarks. In F18, PSO+BCD starts at a
high Gini measure, and partial derivatives are more evenly dispersed because
most variables are improving. Later, the measure falls to lower values, implying
less uniform variable improvement but also indicating effective exploration with
relatively few variables are at minimum. Finally, as fitness flattens, the mea-
sure increases to a stagnation level, but not to a local minimum. In the case
of OSI+FGD in F18, a lower Gini measure does not necessarily mean improve-
ment; it may mean optimization is happening on too few variables simultaneously
because there is too much exploitation.

7 Conclusion

After 30 years, the original PSO framework continues to show its resiliency in
settings of very high epistasis and non-separability, although still unfortunately
susceptible to premature convergence. CPSO was designed to improve optimiza-
tion by solving separable subproblems individually, and OSI was intended to
address epistasis and non-separability via the overlapping regions. One of the
issues with CCEA and OSI methods is that of getting caught in pseudominima.
This work attempted to address the pseudominimum and premature convergence
problem originally described in CPSO and FEA works [1,25].

In this paper, we demonstrated benefit of incorporating memetic variants in
the OSI framework. We considered options whereby block coordinate descent
was used with each factor. We also applied full gradient descent with the global
context vector. BCD was shown to be more effective than their non-memetic
counterparts, and had the best performance with PSO. Gradient descent on the
individual particles in the population tended to cause subpopulations to reach
pseudominima sooner, thus preventing improvement in the global context vector.
On the other hand, full gradient descent on the global context yielded the best
results overall in terms of consistency for CPSO and OSI.

Our use of the Gini coefficient on a solution’s gradient gives insight on con-
vergence of the subpopulations, by measuring the number of variables at critical
points. Results showed that during periods of stagnation, minimizing the number
of variables at critical points helps exploration, but should simultaneously avoid
getting stuck in those pseudominima by not being too greedy with exploitation.

Future work will investigate improved OSI competition to prevent pseu-
dominima. Such methods as dynamic factor architectures and OSI/full-PSO
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hybrids can be adapted to the memetic case. We will address issues of potential
blockades in the fitness landscape, by improving communication between the
subpopulations and context vector. The approach will consider complete subset
competition among subpopulations and overlap regions rather than element-wise
competition of these architecture components.
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