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Abstract. Precision agriculture is a research area that uses technology
from engineering and computer science to improve all aspects of agricul-
ture, including but not limited to crop health, irrigation, and fertilizer
application. In agriculture, questions of sustainability often arise: How do
we minimize environmental impact while simultaneously helping farm-
ers maximize their net return? In this paper, we present a method to
optimize crop yield production in winter wheat, with the goal of seeking
to increase farmers’ production. However, only focusing on optimizing
production can lead to poor sustainability if an unnecessary amount of
fertilizer is applied or farming equipment is put under undo stress. We
therefore seek to address these impacts on sustainability by including
objectives that directly address these concerns. Our method utilizes a
new approach to solve multi-objective optimization that uses overlap-
ping subpopulations, known as a Multi-Objective Factored Evolutionary
Algorithm. Our results indicate that including overlapping subpopula-
tions in the multi-objective optimization context is beneficial for explo-
ration of the objective space. Our results also indicate that including
these sustainability-driven objectives does not significantly impact net
return or yield.

1 Introduction

Sustainable Agriculture has been defined by the U.S. Congress in the 1990 Farm
Bill as “an integrated system of plant and animal production practices having
a site-specific application that will, over the long term: Satisfy human food and
fiber needs; Enhance environmental quality and the natural resource base upon
which the agricultural economy depends; Make the most efficient use of non-
renewable resources and on-farm resources and integrate, where appropriate,
natural biological cycles and controls; Sustain the economic viability of farm
operations; Enhance the quality of life for farmers and society as a whole [30].”
Based on this definition, we investigate the effect of adding two sustainability-
focused objectives to the problem of optimizing net return for winter wheat
production, creating a multi-objective optimization (MOO) problem.

⋆ Supported by NSF grant 1658971 and USDA Grant NR213A750013G021.



2 A. Peerlinck & J. Sheppard

In our work, we focus on defining “prescription maps” that dictate levels
of nitrogen fertilizer to be applied on a field planted with winter wheat. We
address two problems: first is generating the experimental prescription maps,
which are used to gather data on the field to determine the nitrogen response
of the crop, and second is generating prescription maps based on estimating
crop response to determine how much fertilizer to apply to maximize net return.
Each problem has a unique objective: maximizing stratification and maximizing
net return. However, they both have potential sustainability issues, which we
address by considering two additional objectives: minimizing overall fertilizer
applied to mitigate environmental impact, and minimizing jumps in variable rate
application to reduce the economic impacts that can result from undue strain
on equipment. Due to the resulting multi-objective nature of these problems,
meta-heuristic approaches are often employed to explore possible solutions along
the different objective axes [15]. This results in searching for a set of “non-
dominated” solutions, i.e., solutions where no other options exist that improves
the result for one objective without deteriorating another objective. [26].

In this paper, we consider three different MOO algorithms. First we apply
the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [8] and the Co-
operative Co-evolutionary NSGA (CC-NSGA-II) [19] to validate our approach.
Then we extend the Factored Evolutionary Algorithm (FEA) [27] to create a
multi-objective implementation which we call MO-FEA [21], where the specific
implementation using NSGA-II is denoted F-NSGA-II. Then we apply all three
approaches to the two problems in Precision Agriculture (PA): experimental and
optimal prescription map generation.

2 Background

2.1 Prescription Maps

As discussed previously, our interesting in this paper is in developing prescription
maps (experimental and optimal—Fig. 1) that optimize objectives balancing net
return and sustainability. Experimental prescription maps aim to spread pre-
defined fertilizer rates evenly across a field to determine crop response based
on different input (e.g., nitrogen) levels [22]. Possible fertilizer rates are pre-
defined to ensure that the different levels are represented evenly across the field.
In our experiments, we focus on stratifying the rates based on previous years’
yield information. In other words, we look at which parts of the field had high,
medium, and low yield the year before and distribute the fertilizer across these
3 levels, where the specific objective function is based on the work in [22].

Optimal prescription maps specify fertilizer rates to apply based on crop
response and economic models to maximize expected net return. These maps
depend upon the ability to predict based on the prescribed inputs, general field
information, and satellite data such as the normalized difference vegetation index
(NDVI). The classic way to approach yield prediction is to use linear regression;
however, this approach is limited in its ability to represent the yield response
curves. As a result, machine learning approaches such as Random Forests [16]
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Fig. 1: Example of an actual experimental prescription map (left) and an actual
optimal prescription map (right) for field Sec35Mid. Colors indicate fertilizer
rates where red-to-green indicates increasing rates.

and Deep Learning [31] have become more popular. We use these models to
predict the yield and use the result to determine the expected net return (NR):

NR = Y × P −AA× CA− FC, (1)

where Y is the expected crop yield, P is the crop selling price, AA is the “as-
applied” fertilizer rate, CA is the fertilizer cost, and FC reflects any fixed costs
associated with production.

2.2 Multi-Objective Optimization

Multi-Objective Optimization is the process of optimizing multiple objective
functions simultaneously [15]. Formally and without loss of generality, assume
we wish to minimize k objectives. Then MOO consists of solving

min
x∈X

f(x) = {f1(x), f2(x), . . . , fk(x)},

with k ≥ 2 objective functions fi : Rn → R that have conflicting goals and x =
[x1, x2, . . . , xn]

⊤ denotes the decision variables. Then for fi ∈ F k, F k represents
the objective space, and X ∈ Rn represents the solution space.

One of the most approachable ways to perform MOO is to transform the set
of objectives into a single objective [6]. The weighted sum approach does this by
assigning weights to each objective function, where the weights sum to 1. The
ϵ-constraint method transforms all objectives except one into constraints which
are bound by a value Rϵ. Then single-objective methods can be applied directly.

Such transformation approaches are limited by the fact that a user needs
to decide which objective is more important. Alternatively, if a set of solu-
tions is desired, the problem needs to be solved multiple times with different
weights. To avoid such pitfalls, meta-heuristic approaches are often employed.
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There are two different general classes of meta-heuristic approaches: local search
and population-based search [9]. These meta-heuristics use the concept of Pareto
optimality to return a set of potential solutions spread across the objective space.

When exploring algorithms that are generalized for any MOO problem, Pareto-
based solutions are often favored [33]. More specifically, metaheuristic methods
track the Pareto front of possible solutions along the different dimensions in the
solution space [26]. Pareto dominance is used to determine solution quality. For-
mally, a point x∗ ∈ X is Pareto-dominant if ∀fi ∈ f ,∀x ∈ X ,x ̸= x∗, fi(x

∗) ≤
fi(x), and ∃fj ∈ f , fj(x

∗) < fj(x). where x ≺ y denotes that x dominates y.
Then the Pareto optimal front (PF ∗) is the set of points mapped from the set
of Pareto optimal solutions onto the objective space F k to form the boundary
of the set of non-dominated solutions.

The Non-Dominated Sorting Genetic Algorithm (NSGA) was introduced by
Srinivas et al. in 1994 [26], and improved in 2002 by Deb et al. to create NSGA-
II [8]. It was then adjusted further to address MOO problems with more than
three objectives to create NSGA-III [7]. However, we chose NSGA-II since it
has been shown to be the better choice on 3-objective problems [13]. NSGA-II
is an elitist GA that finds Pareto non-dominated solutions and uses a crowding
distance measure to maintain diversity in subsequent generations. The parent
population Pt and the offspring population Qt are combined into one population
Rt = Pt∪Qt. Rt is sorted based on the non-domination principle, and individuals
are assigned to different non-domination sets based on how good the solution is.
If an set of non-dominated solutions is larger than the remaining slots for the
next population, a second elimination is performed based on crowding distance.

Cooperative co-evolutionary algorithms (CCEAs) were introduced by Potter
and De Jong [23]. CCEAs are based on symbiotic relationships found in nature,
where different species live together and improve each others’ standard of life.
To mimic this, a problem is divided into smaller components, each represented
by a different population. In the first version of CCEA, single-objective problems
with n dimensions are decomposed into n 1-dimensional subproblems, each with
their own subpopulation. These subpopulations are then evolved separately and
periodically recombined to form a complete solution. An individual’s fitness is
based, not only on how well it solves its own part of the problem, but also on
its ability to cooperate with other partial solutions. CCEA is applied frequently
to MOO, and the resulting algorithms are called co-operative co-evolutionary
multi-objective optimisation algorithms (CCMOEA) [19]. Several studies found
that a co-operative approach can be beneficial for finding a well spread out
Pareto front when compared to the single population MOEA [12, 19].

3 Related Work

The question of sustainability in agriculture has existed since the start of pre-
cision agriculture as an area of study [2]. But addressing these sustainability
issues in practice has proven more difficult. Variable Rate Application (VRA)
involves technology that allows farmers to apply different input rates to differ-
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ent parts of the field to control their production and reduce cost more precisely
[25]. By using VRA, farmers are able to apply less fertilizer overall than if they
were to apply a uniform rate across an entire field, thus also improving their
sustainability practice [2].

Several studies have shown that VRA can help with sustainability [5, 32];
however, this is not always the case. Some studies found that using VRA in-
creases the cost for the farmer [28]. To the best of our knowledge, three studies
have applied MOO algorithms to VRA prescription maps to provide a set of po-
tential prescriptions. In [22], a simple weighted-sum approach is applied to maxi-
mize stratification for experimental prescriptions while trying to minimize jumps
in input levels between consecutive cells. Zheng et al. applied a multi-objective
fireworks optimization algorithm for variable-rate fertilization [34] with the goal
of finding the optimal fertilization for oil crops based on three objectives: yield,
energy consumption, and spatial effects. An additional study used an economic
optimization model to determine the fitness of fertilizer prescription maps and
irrigation strategies for optimal crop yield in western Switzerland [18]. The au-
thors integrated climate change into a genetic algorithm model and found that
climate change increases income risk for farmers.

4 Optimizing Prescriptions with MO-FEA and NSGA-II

Classic CCEA only creates subpopulations that have distinct variables, i.e., there
is no overlap between subpopulations. Strasser et al. proposed including overlap
in subpopulations to create the Factored Evolutionary Algorithm (FEA). FEA
defines a factor architecture (FA) to decompose the set of variables into groups, in
a way that permits overlap. As such, FEA includes CCEA as a special case [27].
Due to the possibility of overlap, FEA combines principles from both cooperative
and competitive co-evolution, and FEA with overlapping FA’s has been shown
to perform well on combinatorial optimization problems such as NK-landscapes
[27] and Bayesian network abductive inference [11]. We extended FEA to handle
MOO based problems in a way that still supports existing single-population
MOO algorithms to work within the framework [21].

In MO-FEA, in addition to maintaining an archive of non-dominated solu-
tions N , we keep a set of global solutions G that are non-dominated for that
generation, i.e., G is replaced each generation based on the non-dominated so-
lutions found by the current subpopulations. Initially, each subpopulation is
assigned the same global solution g ∈ G for evaluating the fitness of its individ-
uals. As the algorithm progresses, a random global solution gr ∈ G is chosen for
each subpopulation without replacement to ensure that as many of the found
non-dominated solutions are represented across the subpopulations.

In this work, we assume a field is divided into m cells, each of which will
receive a prescription of the amount of nitrogen to apply. To create an exper-
imental prescription we use a set of fertilizer levels to apply to the field (e.g.,
F = {0, 20, 40, 60, 80, 120}). This means we are solving a combinatorial optimiza-
tion problem. On the other hand, the optimized prescription specify fertilizer rate
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Algorithm 1: Factored NSGA-II

input : number of cells m, fertilizer values F , FEA generations itFEA,
population size n, NSGA-II iterations itNSGA

initialize: individual X ← {x0, . . . , xm};xi ∈ F , global solution set X← {X},
subpopulations ← {sj ⊂ X}, non-dominated archive N ← {}

1 while FEA generations < itFEA do
2 for each sj ∈ subpopulations do
3 N ′′

sj ← NSGA-II(s, n, itNSGA, X)

4 end
5 N ′ ← {}
6 for each variable xi do
7 X ← random(X)
8 for each sj where xi ∈ sj do
9 n′′ ← argmincrowding-distance(N

′′
sj )

10 N ′ ← N ′ ∪ n′′

11 X(i)← n′′
i

12 N ′ ← N ′ ∪X

13 end

14 end
15 N ′ ← non-dominated(N ′)
16 X← N ′

17 N ← N ∪N ′

18 for each sj ∈ subpopulations do
19 X ← random(X)
20 sj(X)← X
21 argmaxcrowding-distance({p0, . . . , pm} ∈ sj)← X

22 end
23 N ← non-dominated(N )

24 end
25 return N

on a continuum with a lower and upper bound. Thus we are solving a continuous
optimization problem. In our experiments, we set the lower and upper limit of
the fertilizer rate to F = {0, . . . , 150}, since the farmers we work with impose
an upper limit of 150 lbs nitrogen/acre.

Algorithm 1 shows the basic operation of F-NSGA-II, which is our imple-
mentation of MO-FEA where each subpopulation is optimized using NSGA-II
[8]. During the “Compete” step (lines 5–17), overlapping subpopulations use
the non-dominated solution in N ′′ with the best crowding distance to represent
the current decision variable. Each potential solution for every decision variable
is then saved in a temporary solution set N ′. In addition, a randomly cho-
sen non-dominated solution from the subpopulation is added to N ′ to increase
exploration. N ′ is evaluated for non-dominance, only keeping Pareto optimal so-
lutions, and the resulting N ′ forms the new set of global solutions G. Then N ′ is
added to N , which is re-evaluated for non-dominance. Then G is shared across
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the subpopulations, where the worst solution in the subpopulation is replaced
by the chosen g. The fitness scores are then updated, completing the “Share”
step (lines 18–22). This constitutes one iteration of MO-FEA.

5 General Experimental Approach

We pose the following hypothesis: Including sustainability-focused objectives
to minimize overall fertilizer rate and reduce impact on farm equipment does
not significantly degrade Montana winter wheat harvest profit. To evaluate our
hypothesis we examine the cropping of winter wheat using both experimental
and optimal prescription maps as applied to Montana fields using three MOO-
algorithms, denoted NSGA-II (single population), CC-NSGA-II (cooperative co-
evolutionary), and F-NSGA-II (factored).

5.1 Factor Architecture

The factor architecture for MO-FEA and CCMOEA is based on the length of
a single strip, i.e., one group includes the cells from one end of the field to the
opposite end where the applicator has to turn around. This gives us the distinct
groupings as used in CCMOEA. To introduce overlap, we calculate a number p
by multiplying the number of cells in each strip by 0.2 and rounding the resulting
number upward such that p ≤ 1. A new group is then created by combining the
last p cells of a strip and the first p cells of the subsequent strip.

5.2 Objective Functions

To generate nitrogen prescriptions, we optimize the following objectives:

1. Maximize net return or stratification (see Section 2.1)
2. Minimize application level changes between adjacent cells
3. Minimize overall fertilizer rate

For the second objective, large jumps in fertilizer rate between consecutive cells
puts strain on the farming equipment, increasing wear and tear. In turn, this
leads to the farmer having to repair or replace equipment more frequently, in-
creasing cost and waste, which has negative ecological impacts. To address this,
we adjust the jump score presented in [22] to handle continuous fertilizer rates

as follows: Fitnjumps =
∑c−1

i=1 |F (mapi) − F (mapi+1)|, where F (mapi) is the
fertilizer rate for the ith cell on the field. The jump score now sums over the
absolute difference in applied fertilizer between adjacent cells determined by an
“as-applied” map.

Lastly, we want to mitigate the effect fertilizer, such as synthetic nitrogen, has
on the environment by reducing the overall amount of fertilizer applied to a field.
This reduces pollution of the atmosphere by limiting greenhouse gas emission and
can help avoid polluting waterways [17], which can result in a loss of drinkable
water and the death of aquatic life. The overall fertilizer application is calculated
by summing the fertilizer prescribed in each cell: Fitnfert =

∑c
i=1 F (mapi).
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5.3 Evaluation Metrics

The hypervolume indicator (HV ) is one of the most commonly used evaluation
metrics in MOO [3]. Its popularity is partially because the only information
needed to calculate the HV of a Pareto Front approximation is a reference point.
This is in contrast to measures such as Generational Distance, which requires the
true Pareto Front to be known. Since we do not know the true Pareto Front for
our problems, the HV is a natural choice to gain insight in the size of the covered
objective space [35]. In these experiments, we min-max normalize the objective
scores and use a negative net return to support minimization. Given this, we
know the worst possible solution in the objective space is {1, 1, 1}, which we use
for computing HV . To assess the diversity of the Pareto Front approximations,
we use the spread indicator SI [14], corresponding to the sum of the width for
each objective, indicating how wide the solutions are spread across the objective
space. For each algorithm, the average HV and SI were calculated across 5 runs.
An ANOVA test with α = 0.05 was performed to assess statistical significance
across the algorithms, followed by a pairwise t-test with p = 0.005.

Finally, to compare two Pareto fronts, denoted as X′ and X′′, we use the
coverage C of the fronts as presented in [36]. We define the total non-dominated
set, or union front, X∗ to be the result of combining the fronts from the three
algorithms’ representative runs g as

X∗ = nondom

(
g⋃
i

X′
i

)
.

X∗ can then be used to calculate what percentage of the original non-dominated
set is included in X∗: AC(X′,X∗). We then find the relative coverage of the
non-dominated sets when compared to the union front, calculated as

AC(X′,X∗) =
|{x′ ∈ X′ : ∃x∗ ∈ X∗ : x∗ ⪯ x′}|

|X∗|
.

The union front’s HV and SI are also calculated and compared.

5.4 Prescription Evaluation

For both experiments, we choose four different non-dominated solutions from the
approximate Pareto Front created by each algorithm for each of the five runs
of the algorithms. These solutions are based on the three extreme points in the
Pareto Optimal set: minimum jump score, maximum net return, and minimum
fertilizer rate. The centroid for these three solutions, xc, is found as follows,

xj
c =

1

3

3∑
i=1

xj
i , ∀j ∈ k,

where k represents the objectives. The non-dominated solution closest to this
centroid (based on the Lebesgue measure [4]), is used as the fourth solution.
We compare the four different types of prescription maps using an ANOVA test
(α = 0.05) to evaluate the impact of different objectives on net return.
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6 Experimental Prescription Results

6.1 Parameters and Data

For the experimental prescriptions, each of the algorithms was set to termi-
nate after the non-dominated archive did not change for 5 iterations. We chose
this approach since farmers are able to generate their own experimental trials,
and they often create these trials shortly before they need to fertilize. Thus, we
wanted to mimic the shortened runtime desired by the farmers. Mutation rate
and crossover rate were set to 0.1 and 0.9 respectively, based on results from [22].
Note that we used swap mutation, and the parents for crossover are selected us-
ing tournament selection with tournament size 5. The remaining parameters are
the population sizes for all three algorithms and the number of iterations NSGA-
II needs to be run on the subpopulations for F-NSGA-II and CC-NSGA-II. To
determine these parameters, a grid search was performed. Four different pop-
ulation sizes were considered, {100, 200, 500, 800}, and three different iteration
limits, {50, 100, 200}. Based on the results of the grid search, a population size
of 500 was chosen for all algorithms, and an iteration limit of 100 was chosen for
both CC-NSGA-II and F-NSGA-II.

For our experimental maps, we collected data on three fields from two farms.
We use the farmer designations for these fields (i.e., Henrys, Sec35Mid, and
Sec35West). Previously, we trained a convolutional neural network (CNN) based
on prior experiments to predict yield from the wheat harvested on these fields [1].
We use this CNN to predict yield based on the fertilizer applied. We create an
initial, random prescription based on the field boundary. The farmer provides
information on the width of their fertilizer application equipment and which
fertilizer rates to apply across the field. For our experiments, the cell sizes for
the fields are 120 ft by 300 ft. For all prescriptions, six different fertilizer rates
were specified in pounds per acre: F = {20, 40, 60, 80, 100, 120}. Once the initial
grid was created, the cells were ordered based on the “as-applied” route the
farmer takes across the field to apply fertilizer.

6.2 Results and Discussion

We found significant differences (α = 0.05) between yield predicted for each of
the fields, as well as the different algorithms for each field. However, no significant
difference was found between the results for different objectives, confirming our
hypothesis that ethical objectives do not impact yield. For each field, the yield
predictions for a specific prescription are averaged to create Fig. 2. A summary
for each field of the hypervolume, spread indicator, and adjust coverage for each
algorithm’s non-dominated sets averaged over 5 runs, as well as the unionized
non-dominated set, are given in Table 1. Adjusted coverage uses a randomly
selected run for each algorithm to avoid bias. This is repeated five times and the
five separate calculations are averaged to get the final adjusted coverage score.

The prescription maps across all three algorithms, as well as the union front,
produce consistent yield predictions with small fluctuations between the different
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Fig. 2: Yield prediction results averaged across the entire field.

Table 1: Experimental prescriptions: Hypervolume (HV), spread (SI), and ad-
justed coverage (AC) results for each algorithm and the union front.

NSGA-II CC-NSGA-II F-NSGA-II Union Front

HV 0.463 0.387 0.498 0.589
Henry’s SI 0.467 0.329 0.856 1.112

AC 38.9% 11.3% 49.8% 100%

HV 0.465 0.397 0.504 0.593
Sec35Mid SI 0.440 0.289 0.824 1.011

AC 30.2% 9.5% 60.3% 100%

HV 0.469 0.396 0.474 0.578
Sec35West SI 0.615 0.468 1.184 1.619

AC 27.7% 26.2% 46.1% 100%

objectives, as can be seen in Fig. 2. The statistical results confirm what can be
assessed visually: there is no significant difference between the predicted yield
values across the different objectives, including those for the union front.

When looking at coverage between algorithms (Table 1), we can see that
F-NSGA-II seems to cover more non-dominated solutions in the objective space
than the other algorithms since it contributes the largest percentage of solutions
to the union front. NSGA-II also makes large contributions to the union front,
while CC-NSGA-II has the smallest contribution for all results. This could po-
tentially be explained by the use of disjoint subpopulations in CCEA, since its
disjoint nature means that a part of the solution space may be left unexplored.
On the other hand, FEA uses the overlap to find more diverse solutions across
the subpopulations, not only by saving a non-dominated solution from each
subpopulation, but through the replacement of single variables in the global so-
lution as well. The hypervolume and spread indicator results further confirm
our hypothesis that F-NSGA-II explores more of the objective space. Across all
fields, F-NSGA-II has the largest spread and HV for its approximate Pareto
front. According to a pairwise t-test, the HV results were found to be signifi-
cantly different for all three fields; however, no significant difference was found
for the spread indicator results for Henrys and Sec35Mid between F-NSGA-II
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and NSGA-II. When comparing the algorithms’ results to the union front, we
see that the union front HV and spread are not much larger than those found
by F-NSGA-II, which is in line with the aforementioned coverage results.

7 Optimal Prescription Results

7.1 Parameters and Data

As in our previous experiments, mutation rate and crossover rate were set to
0.1 and 0.9 respectively. Swap mutation was used, and the parents for crossover
were selected using tournament selection with tournament size 5. The remaining
parameters are the population sizes for all three algorithms and the number
of iterations NSGA-II needs to be run on the subpopulations for F-NSGA-II
and CC-NSGA-II. For these experiments, our stopping criterion is the number
of fitness evaluations. This approach leads to an increase in runtime; however,
since farmers are not yet able to create their own optimal prescription maps, we
can generate these maps beforehand, negating the need for a reduced runtime.
To achieve this, we set the number of generations and population size such that
each algorithm has approximately the same number of function evaluations.
For NSGA-II, this resulted in setting a population size of 500 and running the
algorithm for 500 iterations, yielding 500× 500 = 250, 000 FEs. Our instance of
CC-NSGA-II has 24 groups, rounded up to 25 for ease of calculation, resulting
in CC-NSGA-II being run 10 times where each subpopulation is of size 50,
and NSGA-II is run for 20 generations on each subpopulation: 10 × 20 × 50 ×
25 = 250, 000. We used the same logic for F-NSGA-II, where population size is
decreased to 25 to accommodate the increase in the number of subpopulations.

For this experiment, we look at field Sec35Mid since it is a more complex
field and time constraints prevented us from finishing our experiments on the
other two fields. The cell sizes are adjusted to be smaller (120 by 240 feet) to
provide more refined optimal fertilizer rates. Based on the provided field data,
we trained a regression model for yield prediction, where yield is reported in
number of bushels per acre. We used the trained model to predict yield for the
prescribed fertilizer; the predicted yield can then be substituted into Equation
1. We used economic data provided by the US Department of Agriculture to
determine crop price and fertilizer cost [29].

We used a Random Forest (RF) as a regression model to predict yield. The
RF model [16] was implemented via Scikit Learn [20] and evaluated via 10-fold
cross-validation on the available data set. The RF yielded a root mean squared
error of 2.97. Note that we were not able to use the neural network applied with
the experimental maps since those maps could be evaluated offline while these
needed direct interfacing between the optimizer and the network. Currently, that
interface is still under construction.

7.2 Results and Discussion

Applying an ANOVA test to the net return results for the different types of
prescription maps confirms that there is no significant difference in net return.
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Fig. 3: Net return for the four different prescription maps.

Table 2: Experimental prescriptions: Hypervolume (HV), spread (SI), and ad-
justed coverage (AC) results for each algorithm and the union front on Sec35Mid.

NSGA-II CC-NSGA-II F-NSGA-II Union Front

HV 0.52 0.32 0.42 0.53
SI 1.67 1.65 1.68 1.68
AC 75% 0% 25% 100%

When we visually inspect the net return values in Figure 3, we can see that the
difference in net return when focusing on different objectives is minimal for each
algorithm. Interestingly, the lowest net return is found consistently when focusing
on minimizing jumps. Currently, the net return calculation does not include the
cost of wear on equipment. If farmers could gather data on how large jump rates
impact them economically, we could refine our net return calculation.

When evaluating the algorithms’ performance, we find there is no significant
difference between the SI, but there is a significant difference for the HV (p =
0.05). Overall, NSGA-II performed better than F-NSGA-II and CC-NSGA-II for
HV and coverage. F-NSGA-II, however, did consistently find solutions having a
higher net return, indicating it explored a different part of the search space than
the other two algorithms, which is reflected in the higher SI score.

Overall, single population NSGA-II performs better on the optimal prescrip-
tion map problem; however, this could be due to the use of FE’s as a stopping
criterion. In [10], results indicate that using FE’s may result in an unfair stop-
ping condition. This idea is supported by our experimental map results, where
we use convergence of the non-dominated archive as the stopping criterion. In
this scenario, F-NSGA-II performs better; we believe this is because NSGA-II
may be converging early on, before moving out of initial optima.
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8 Conclusion

Multi-Objective Optimization provides a way for sustainability issues to be ad-
dressed when optimizing fertilizer prescriptions in precision agriculture. In this
paper, we investigated adding two sustainability-focused objectives to existing
precision agriculture problems, that of creating experimental and optimal fertil-
izer prescription maps. For both problems three competing objectives were opti-
mized: the base objective, stratification or net return maximization respectively,
and two sustainability objectives, fertilizer rate jump minimization, and overall
fertilizer rate minimization. We applied three different MOO algorithms, NSGA-
II, CC-NSGA-II, and F-NSGA-II, of which the latter is an adaptation of the
Factored Evolutionary Algorithm in which overlapping subpopulations are used
to find an approximate Pareto front. We found that all three MOO algorithms
could find optimized prescription maps successfully, and that including these
sustainability objectives had minimal impact on yield and net return. Based on
these results, we confirmed our hypothesis that focusing on sustainability need
not significantly influence net return, thus indicating a strong justification for
modifying farming practices to incorporate such objectives, thereby reducing
environmental impact. Furthermore, our results indicate that using overlapping
subpopulations increases exploration of the objective space when compared to
the single population and disjoint subpopulation alternatives.

9 Future Work

As next steps, we plan to investigate adding temporal objectives, such as min-
imizing variation in net return across several years, and including the impact
climate change might have on crop response [18]. Another goal is to investi-
gate the effect of different yield prediction approaches when creating optimized
prescription maps. In other words, how much influence does accurate yield pre-
diction have on prescribing the correct fertilizer rate? Or is it more important
to use a model that accurately describes the shape of the yield response curve?

Results found by Strasser et al. indicate that the factor architecture could
impact optimization [27]. However, work by Pryor et al. shows that the spe-
cific factor architecture may not matter as long as the overlap ensures that all
variables are connected [24]. Based on these differing results, we plan to explore
different factor architectures and their influence, not only regarding the prob-
lem of optimizing prescription maps, but by looking at different multi-objective
benchmark problems such as DTLZ and the multi-objective knapsack problem.

Lastly, we would like to note that using function evaluations as a stopping
criterion could impact results in an unfair way [10]. To this end, we intend to
explore different ways to evaluate how long an algorithm should run, for example,
based on the amount of change in the non-dominated archive as was done in the
experimental design, or a lack of change in hypervolume. We would then evaluate
the influence of different stopping criteria on runtime to enable a transition to
farmers creating their own optimal prescription maps.
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