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Abstract. Game playing has been a popular problem area for research in artificial intelligence and machine
learning for many years. In almost every study of game playing and machine learning, the focus has been on
games with a finite set of states and a finite set of actions. Further, most of this research has focused on a single
player or team learning how to play against another player or team that is applying a fixed strategy for playing the
game. In this paper, we explore multiagent learning in the context of game playing and develop algorithms for
“co-learning” in which all players attempt to learn their optimal strategies simultaneously. Specifically, we address
two approaches to colearning, demonstrating strong performance by a memory-based reinforcement learner and
comparable but faster performance with a tree-based reinforcement learner.
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1. Introduction

Since the genesis of the study of artificial intelligence (AI), AI researchers have found
game playing to be a fertile area for exploring and expanding the capabilities of machines
in problem solving. Games offer the human many challenges and opportunities for exploring
his or her own abilities in finding strategies for personal advance—generally at the expense
of the opponent. Attempting to install game playing abilities in the computer has opened
new avenues for studying approaches to efficient search, pattern recognition, classification,
and knowledge representation.

Initially, research in computer game playing was limited to constructing fixed strategies
for the computer to apply against a human opponent. The worth of the strategy was deter-
mined based on how well the computer fared against the human. How many times did the
computer win? How long did the game last? Was the computer, at least, an interesting
opponent to play?

Until Arthur Samuel developed his checkers player (Samuel, 1959), the thought of con-
structing a machine that could “learn” to play a game capable of competing with a human
was just a dream. With Samuel’s checkers player, artificial intelligence took a step for-
ward, demonstrating that a mere machine could not only be programmed to solve complex
problems but could actuallylearn how to solve these problems by applying knowledge
gained from previous experience. Since Samuel built his learning checkers player, the field
of machine learning and the study of game playing have come together to yield several
significant advances.
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To date, research in multiple agent planning and control has been limited largely to the
area of distributed artificial intelligence (Rosenschein & Genesereth, 1985; Stone & Veloso,
1996a; Suguwara & Lesser, 1993; Tan, 1993) and artificial life (Collins, 1992; Huberman
& Glance, 1995; Sandholm & Crites, 1995; Stanley, Ashlock, & Tesfastsion, 1993). In
distributed AI (DAI), several agents cooperate to achieve some goal or accomplish some
task. The task is usually one of sufficient complexity that no single agent can accomplish the
task alone. Because the agents cooperate, research in distributed AI has focused primarily
on developing efficient procedures for communicating between the agents to enable the
agents to develop the cooperative plans. Artificial life research, on the other hand, does
explore issues related to both cooperation and competition, but its primary focus is on the
emergence of intelligent behavior in a population of agents. For example, work on the
iterated prisoner’s dilemma has been useful to characterize mating habits (Sandholm &
Crites, 1995; Stanley, Ashlock, & Tesfatsion, 1993).

Recently, work has begun to appear that focuses on learning in multiagent systems
(Grefenstette, 1991; Schmidhuber, 1996; Tan, 1993). Problems in multiagent systems are
distinct from problems in DAI and distributed computing, from which the field was derived,
in that DAI and distributed computing focus on information processing and multiagent sys-
tems focus on behavior development and behavior management (Stone & Veloso, 1995). In
addition, problems in multiagent systems are distinct from problems in artificial life in that
multiagent systems focus on individual behaviors and artificial life focuses on population
dynamics (Collins, 1992). So far, most work in learning and multiagent systems has empha-
sized multiple agents’ learning complementary behaviors in a coordinated environment to
accomplish some task, such as team game playing (Stone & Veloso, 1996b; Tambe, 1996a),
combinatorial optimization (Dorigo, Maniezzo, & Colorni, 1996), and obstacle avoidance
(Grefenstette, 1991).

The research discussed in this paper focuses on exploring methods of learning in the
context of competitive multiagent systems. In particular, we focus on exploring methods
for the on-line learning of optimal strategies for playing differential games and developing
approaches to learning approximate optimal solutions to discrete Markov versions of these
games. Differential games are related to control problems in that the objective is to determine
values of a set of control variables that optimize some objective function (namely, payoff)
while satisfying the constraints of the game. The games are related to planning problems in
that each player, independently, attempts to make a decision to force the state of the game
into the best state for that player.

The major contributions of this paper include the development and evaluation of two
novel algorithms for colearning approximate optimal strategies to several differential
games studied in the literature. The first algorithm is a memory-based algorithm in
which the players share a common memory base, and the second is a tree-based algo-
rithm in which the players share a common decision tree. We decided to use a com-
mon data structure for both agents to speed the convergence to optimal since the ob-
jective of the research was learning optimal strategies rather than simulating biological
learning.

Because differential games assume simultaneous actions by the players, these games are
more general than traditional games in extensive form. Consequently, the results of the
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research presented in this paper can be applied to the general class of two-player games in
extensive form, with and without behavioral strategies.

2. Learning and Markov decision processes

For purposes of this paper, we restrict our attention to two-person zero-sum games of
imperfect information. Further, we limit the scope to positional games. Apositional game
is a game in which the sequence of moves leading up to the current state is irrelevant in
deciding the optimal strategy to apply. Thus, it is also a game of perfect recall because
history does not matter. This property is called theMarkovproperty and is derived from
the study of Markov decision processes.

A Markov decision process (MDP) is defined by a set of statesS, a set of actionsA, a
set of transitions between statesT, associated with a particular action, and a set of discrete
probability distributionsP, over the setS. Thus,T : S× A → P. Associated with each
action while in a given state is a cost (or reward),c(s,a). Given a Markov decision process,
the goal is to determine a policy,π(s), (i.e., a set of actions to be applied from a given state)
to minimize total expected discounted cost.

Research in learning and MDPs has focused on developing approaches to finding optimal
policies in MDPs when the state or action spaces becomes large. Many of the algorithms
are derivatives of value and policy iteration but focus on sweeping only parts of the space.
Other algorithms apply ideas from reinforcement learning to function approximators to
learn the policies.

Barto et al. (Barto, Bradtke, & Singh, 1993; Barto, Sutton & Watkins, 1991) describe
two alternative approaches to solving an MDP that are both forms ofasynchronousdy-
namic programming. The first approach, which they refer to as “asynchronous dynamic
programming,” is a derivative of Gauss-Seidel dynamic programming (Bertsekas, 1987);
however, where Gauss-Seidel dynamic programming still performs a systematic “sweep”
of all states, asynchronous dynamic programming allows states to be updated at arbitrary
points in time. When a state is updated, it uses the current values of successive states.

The second approach is called real-time dynamic programming (RTDP) because it pro-
vides an on-line learning strategy rather than the traditional off-line strategies of other
dynamic programming algorithms. RTDP applies a greedy strategy with respect to the cur-
rent estimate of value functionV(s), V̂(s), to define the policy for the controller. Whenever
an action is taken, the cost/payoff of that action is applied immediately to updateV̂(s).
To ensure convergence of RTDP, it is necessary to visit all states “infinitely” often. One
approach used to ensure this is to require that all states be selected infinitely often as initial
states.

One of the problems with methods such as asynchronous dynamic programming and
RTDP is that these methods require a complete understanding of the transition probabili-
ties, p(s′ | s,a), underlying the MDP (Barto, Bradtke, & Singh, 1993). They also require
knowledge of the immediate costs,c(s,a). The requirement to know the cost holds, in
particular, in the off-line case but can be relaxed when learning on line as in RTDP. In many
control tasks, such as the differential games studies in this paper, such knowledge may not
be available.
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A conceptually simple approach to solving MDPs with incomplete knowledge, called
Q-learning was proposed by Watkins in 1989 (Watkins, 1989; Watkins & Dayan, 1992). In
Q-learning, the controller maintains estimates of the optimalQ values for each admissible
state-action pair. TheseQ values are estimated based on experience applying admissible
actions in each state, rather than based on an evaluation function that includes the state-
transition probabilities.

During control, the controller keeps track of the succession of states visited, the actions
taken in each state, and the costs incurred as a result of taking the actions in each state.
Either during control or upon termination, theQ values are updated as follows. LetQt (s,a)
be theQ value at timet when actiona is performed in states. Then thisQ value is updated
by computing

Qt+1(s,a) = [1− αt (s,a)] Qt (s,a)+ αt (s,a)[c(s,a)+ γQt (s
′, π(s′))]

whereαt (s,a) is the value of the learning rate for state-action pair〈s,a〉 at timet, γ is the
discount rate,Qt (s′, π(s′)) = mina∈A Qt (s′,a), ands′ is the successor state.

In reinforcement learning, considerable attention has been given to Sutton’s Temporal
Difference Learning algorithm (Sutton, 1988; Dayan, 1992; Tesauro, 1992). The temporal
difference method is intended to be applied in “multistep prediction problems” where payoff
is not awarded until several steps after a prediction for payoff is made. This is exactly the
problem that arises with delayed reinforcement. At each step, an agent predicts what its
future payoff will be, based on several available actions, and chooses its action based on the
prediction. However, the ramifications for taking the sequence of actions are not revealed
until (typically) the end of the process. It has been shown thatQ-learning is a special form
of temporal difference learning where the “look-ahead” is cut off. Specifically,Q-learning
is shown to be equivalent to TD(0) when there exists only one admissible action in each
state (Barto, Bradtke, & Singh, 1993; Dayan, 1992).

3. Machine learning and games

Although games have been a popular topic for study in artificial intelligence and machine
learning, little research has been done in multiagent learning and games. As with other
problems in reinforcement learning, learning strategies for game playing can be posed as
a control problem. The object is for an agent (or player) to learn the “best” or “optimal”
strategy to use against its opponent. In the context of two-player games where one player is
applying a fixed strategy, the second player optimizes its strategy to yield maximum payoff
in the game. When both players are attempting to learn, each must be sensitive to the fact
that opponent’s strategy is not fixed. Thus, what may be “optimal” in one context (i.e., with
a particular strategy applied) will not necessarily be optimal in another context. Of course,
if the expected payoffs are known for the various joint strategies, then “learning” reduces
to solving the game.

It is interesting that one of the earliest success stories in machine learning was an approach
similar to temporal difference learning applied to game playing. In 1959, Arthur Samuel
reported on experiments he performed with a computer learning an evaluation function for
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board positions in the game of checkers (Samuel, 1959). Samuel’s idea was to use experience
from actual play to learn the evaluation function. Then the computer could adapt its play
to improve its performance by gradually improving the ability of the evaluation function to
predict performance. The evaluation function was updated in the course of playing several
games in which one player, using the current evaluation function, challenged a second
player, using the best evaluation function found so far.

More recently, Gerald Tesauro applied temporal difference learning in self-play to the
game of backgammon (Tesauro, 1995). As with Samuel’s checkers player, Tesauro’s
TD-Gammon has the two players playing each other using an evaluation function (imple-
mented as a feed-forward neural network). The approaches differ in that, for TD-Gammon,
both players use thecurrentevaluation function that has been learned. In addition, where
Samuel constructed several abstract features for the terms in his scoring polynomial, Tesauro
processes raw state information.

In the economics community, Roth and Erev (Erev & Roth, 1995; Roth & Erev, 1995)
explored what they call “cognitive game theory.” They focused their research on limited
rationality game theory to facilitate modeling the learning process. Their goal was to better
understand the nature of different economic games and the limitations of learning “rational”
strategies to play these games. The learning model used by Roth and Erev is a relatively
simple reinforcement learning model and applies to both players in a two-person game.
In addition, compared to the self-play methodology of Samuel and Tesauro that requires
homogeneous agents, Roth and Erev represented the players separately, thus allowing for
heterogeneous agents.

Michael Littman explored usingQ-learning for colearning among homogeneous agents
in the context of Markov games (Littman, 1994, 1996). It appears his approach also applies
to heterogeneous agents, but no such experiments were reported. A Markov game is a
special form of Markov decision process in which actions by two (or more) competing
players jointly determine the next state of the game. Solving the Markov game consists of
developing a policy for play that maximizes the expected payoff to each player under the
assumption the other players are playing optimally.

Littman proposes the following approach to applyingQ-learning to solve two-person
Markov games. Assuming a lookup table mapping current state-action-action triples to
Q-values exists, play consists of selecting actions either at random (to promote exploration)
or according to the current policy. This policy is given by returning an action according
to mixed strategies derived for one player which is then fixed to permit selecting the other
player’s action through simple maximization (Littman, 1996). The mixed strategy for the
first player is determined by solving the linear program derived from a game matrix of
expected payoffs taken from theQ table.

In independent research, Harmon, Baird, and Klopf investigated applying reinforcement
learning in function approximators (specifically, artificial neural networks) to learning solu-
tions to differential games (Harmon, Baird, & Klopf, 1995). For their research, they focused
on a single linear-quadratic differential game of pursuit in which a single missile pursues a
single airplane, which is similar to the evasive maneuvers problem studied by Grefenstette
et al. (Grefenstette, 1988; Grefenstette, Ramsey, & Schultz, 1990; Harmon, Baird, & Klopf,
1995; Rajan, Prasad, & Rao, 1980). As a linear-quadratic game, the kinematic equations



P1: SUD

Machine Learning KL653-03-Sheppard November 5, 1998 20:38

206 SHEPPARD

are linear functions of the current state and action, and the payoff function is a quadratic
function of acceleration and the distance between the players. In game playing, Harmon
et al. note that optimal play may require application of mixed strategies. To simplify
their experiments, however, they chose to assume pure-strategy solutions existed for their
game.

Recently, work in coevolutionary algorithms has begun to suggest approaches to multi-
agent colearning with some encouraging initial results. Potter, DeJong, and Grefenstette
developed an approach to coevolution in which an agent is decomposed into “subagents”
each responsible for learning an activity to be combined to solve a complex task (Potter,
De Jong, & Grefenstette, 1995). In this approach, multiple agents operate on a single task
in parallel. The agents are initialized with rules to bias their activity toward some subset of
the total problem. The multiagent (or composite) plan then consists of the concatenation
of the best plans learned by the subagents.

Grefenstette and Daley consider another coevolutionary strategy for cooperative and
competitive multiagent plans (Grefenstette & Daley, 1995). These are the first experiments
by Grefenstette et al. in which multiple competitive agents learn simultaneously. In their
approach, rather than coordinating subplans, each agent is responsible for its complete plan.
They apply their approach to a food-gathering task in which two agents compete against
each other to obtain the most food.

Smith and Gray describe an alternative approach to coevolution applied to the game
of Othello, which they call a coadaptive genetic algorithm (Smith & Gray, 1993). Their
approach focuses on developing a fitness function that is derived from the ability of a
member of the population to compete against other members of the population. Their
coadaptive fitness function appears to be a variation on tournament selection, except that
selection takes place at the end of a complete round-robin tournament.

The research described in this paper is similar to the work of Littman (1994) and Harmon
et al. (1995) except the focus is on using colearning to determineoptimalstrategies in games
with simultaneous play. For these experiments, behavior strategies (i.e., mixed strategies at
each stage in the game) are determined forbothplayers based on learned expected payoffs
(Sheppard, 1996). Two novel algorithms are presented and compared—a memory-based
algorithm and a decision-tree-based algorithm.

In static games, the strategies of all players are generally known. Further, in solving
static games, payoffs assigned to selected strategy combinations are also known. If the
players do not know the payoffs, then learning these payoffs is a variation of thek-armed
bandit problem in which all players are trading exploration (determining expected payoffs
for each strategy combination) with exploitation (playing the optimal mixture of strategies
based on current knowledge about expected payoffs).

In dynamic games, the strategies of all the players arenot necessarily known. Thus, it
is impossible to assign payoffs to strategy combinations because the combinations are not
known. Although the players do not necessarily know the strategies of their opponents,
generally they do know the dynamics of their opponents (i.e., they know the differential
equations that characterize the performance of all of the players). This leads to a solution
concept in which the players attempt to characterize their strategies in terms of regions in
strategy space based on the dynamics of the game and assign payoff to those regions.
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4. Memory-based co-learning

Because the definition of a solution to any game (whether static or dynamic) involves
determining strategies and expected payoffs for all players of the game, we wish to explore
methods for the competing players to learn their optimal strategies on line. Fixing the
strategy of one player while the other learns is interesting from a control theory perspective.
It is uninteresting from a game theory perspective, however, because the learning agent is
focusing on a single competing strategy. Usually, competing strategies are unknown, and
players must learn to maximize their expected payoff in the presence of this unknown. In
addition, in the case of learning strategies, the dynamics of the players may be unknown as
well (i.e., the players do not know the differential equations characterizing performance).

Traditionally, memory-based learning consists of storing examples of classification in-
stances or previous experiences in a memory base (i.e., the memory) and searching the
database for “similar” examples when presented with a new problem. The action taken
corresponds to the action associated with the closest example (or some combination of
examples) in the database. Other variants on the memory-based approach consist of con-
structing tables of state-action combinations and storing expected payoff with these table
entries. Learning consists of updating the expected payoffs over time.

4.1. The MBCL algorithm

Our memory-based approach (which we callMBCL) is based on a combination of these
two variants. In particular, we usek-nearest neighbor to identify the examples that most
closely match the current state of the game. We also useQ-learning to update expected
payoff associated with each of the examples in the database. A high-level description of
the learning algorithm is shown in figure 1.

The first step in the algorithm involves seeding the population with an initial set of games.
This step is needed because memory-based reasoning cannot function without a preexisting
memory base. Seeding consists of generating several random games. Specifically, games
are generated where one-third of the games apply random actions for both players, one-third
of the games fixP (i.e., the pursuer) on a single random move per game and generate random
actions forE (i.e., the evader), and one-third of the games fixE on a single random move

Figure 1. High-level pseudocode of memory-based colearning algorithm.
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Figure 2. Pseudocode for playing the differential game.

per game and generate random actions forP. The initial Q values associated with each
of the examples are largely irrelevant, so we assign the value of zero to all nonterminating
moves and the actual payoff of the game to the terminating moves.

When playing the game, the moves for both players are determined by examining the
memory base. This process is illustrated by the pseudocode in figure 2. Following this
procedure, in each state of the game, theks neighbors to the current state in the memory
base are found (whereks is the number of neighbors to the current state). Next only the
range of moves found among the neighbors are considered (i.e., we consider the minimum
and maximum values of the set of actions returned with the examples), and the range is
partitioned inton representative moves for each player (i.e., we subdivide the range inton
equal size intervals and consider the midpoints of these intervals as representative moves).
These moves are used to determine thekm nearest neighbors based on stored moves from
among theks neighbors found previously (wherekm is the number of neighbors among the
ks examples to a specific combination of moves).

Becausen moves are considered for each player, and we wish to compare the performance
of the two players on each of the pairs of moves, we can construct a payoff matrix of the
form


E[ρ1,1] E[ρ1,2] · · · E[ρ1,n]

E[ρ2,1] E[ρ2,2] · · · E[ρ2,n]
...

...
. . .

...

E[ρn,1] E[ρn,2] · · · E[ρn,n]
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whereE[ρi, j ] represents the expected payoff when pairing movesi and j . This matrix is
the basis for the tableau used to solve the corresponding linear program and its dual. The
moves for the two players are then selected from the resulting mixed strategies. Because
we quantize the possible actions to construct a tableau for linear programming, when one of
these discrete actions is selected, an actual action is generated at random from the interval
[action−δ, action+δ], whereδ is equal to one-half of the size of a partition, derived from
subdividing the original range of moves.

For each entry in the matrix, we compute the expected payoff asE[ρi, j ] =
∑km

p=1wp ρp,
whereρp is the payoff associated with examplep, andρi, j indicates the matrix entry for
the i th E-move and thej th P-move. The weightswp are computed as,

wp = e

( − fd (xp,xq )2

2K2
w

)
/w∗

whereKw is a smoothing kernel width that determines the distance over which the weight is
significant,w∗ is the sum of the exponentials, used as a normalizer, andfd is the normalized
Euclidean distance betweenxp and xq. Here xp corresponds to the examplep and xq

corresponds to the pair of moves given by the current values fori and j .
When learning, we update the associated payoffs with the stored points usingQ-learning.

The points actually updated consist of theks nearest neighbors identified in each state. As
indicated above, the initial payoff stored with the points will be the actual payoff received
from the first play. Subsequent updates will only occur if the point is one of thek-nearest
neighbors in some state. In this case, theQ-learning update rule is applied.

Q(si ,ap,ae) = (1− α j )Q(si ,ap,ae)+ α j (ρ + γQ(s′, π(s′)))

whereQ(si , ap, ae) is the currentQ value associated with applying the pair of actions
〈ap, ae〉 in statesi , α j is a learning rate associated with the specific point being updated,
γ is a discount factor,Q(s′, π(s′)) is the maximumQ value in states′, ands′ is the state
resulting from applying actions〈ap,ae〉.

4.2. Experiments

To evaluateMBCL, we ran several experiments using four differential games. These games
include a simple game of force, a pursuit game with simple motion, an extension to the
pursuit game in which a boundary is placed atx = 0, and a pursuit game in which both
the pursuer (P) and the evader (E) have limited mobility. This latter game is an extension
of the traditional Homicidal Chauffeur game (Isaacs, 1975) which limits the mobility ofP
but notE. To reduce the size of the state space, all games are played with state variables
relative toP. Further, all game matrices are constructed such that each player hasn = 10
strategy ranges. Since the focus of this research is to provide alternative approaches to
analyzing and solving differential games, the games were selected to represent the types
of games studied in differential game theory. Further, the games were selected to show
a steady increase in difficulty in determining a solution, rather than focusing on issues of
dimensional scalability.
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4.2.1. A game of force. For our first experiment, we consider a differential game in which
two players are applying a force to a falling object in an attempt to make the object land
at a certain point. Even though this game is not a pursuit game, we refer to the players as
P andE for historical reasons. For playerP, the objective is to push the object as far to
the left as possible; playerE is attempting to push the object as far to the right as possible.
Each player is constrained differently, thus requiring different strategies. This means that
a single strategy cannot be learned through self-play and given to both players. Thus, they
are heterogeneous agents (Stone & Veloso, 1996a). ForP, the magnitude of the force is
fixed andP must determine the appropriate angle with which to apply the force. ForE,
the angle is fixed andE must determine the appropriate magnitude of force to apply.

The dynamics of the game are given by

ẋ = Av+ B sinu

ẏ = −1+ B cosu

|v| ≤ 1

u ∈ [0, 2π ]

whereA andB are game parameters defining the dynamics of the game, andu andv are
the controls set byP andE, respectively. The payoff function is defined to be thex value
at the point the object lands. For this game, withA = B = 1, we expect optimal solutions
whenu = 3π

2 andv = 1.
For these experiments, several parameters needed to be set. In particular, we ran each

simulation for 10,000 games and tested the results of learning after every 250 games. For
each test, we played 50 games and averaged the “payoff” received after each game. For
each of the 50 test cases, we used a uniform probability distribution and randomly generated
a new starting position such thatx0 ∈ [−0.25, 0.25] andy0 ∈ [0.85, 1.0]. For the game
parameters themselves, we setA = 1 andB = 1. For the learning algorithm, we fixed the
learning rate atα = 0.15 and setγ = 0.95, ks = 30, andkm = 5. We also defined the
kernel,Kw = 4.

The results of this experiment are shown in figure 3. This graph was produced by
running the experiment ten times and averaging the results at 250 game intervals. The
curve at the center of figure 3 marked with a cross shows optimal play throughout the
experiment. The curve marked with diamonds indicates performance of bothP andE as
they learn. In addition, through the course of learning,P andE played against an optimal
opponent to demonstrate their personal progress. The curve marked with a square indicates
P’s performance against an optimalE, and the curve marked with a plus indicatesE’s
performance against an optimalP.

It is interesting to note thatP learns to play optimally relatively quickly, achieving near-
optimal performance after only 1250 games.P seems to converge to optimal performance
after 2000 games, andE is still struggling. Finally, it seemsE gains sufficient experience,
playing against what is essentially a fixed opponent, and learns to play optimally after 4000
games.

One possible explanation for this difference in performance may arise by examining the
landscape of the payoff function for each player.P is permitted to select any angle in the
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Figure 3. Learning performance for game of force.

range [0, 2π). The optimal move comes atu = 3π
2 , and sampling the action space provides

a smooth slope on either side of optimal. ForE, on the other hand, the optimal move
(v = 1), arises at the boundary of legal moves (v ∈ [−1, 1]). Sampling only has benefit on
one side of optimal (because the other side is infeasible). When compared toP, which is
able to sample on both sides, it is possible thatE obtains half the benefit of exploration that
P receives.

4.2.2. Pursuit with simple motion. For the second experiment, we consider a differential
game in which one player is pursuing another player in a two-dimensional playing field.
For playerP, the objective is to captureE. For playerE, the objective is to evadeP.
For purposes of this and subsequent games, a time limit was set to 200 discrete steps to
bound the time required to run the experiments. Neither player has any constraints on its
mobility, meaning each player can turn instantaneously in any direction, similar to two
children playing tag. Each player moves at a fixed speed, andP is twice as fast asE. The
kinematic structure, with the relative coordinate system for this and subsequent games, is
shown in figure 4.

Again, we see that the two players cannot be modeled as one to allow “self-play” learn-
ing. In other words, each player has different objectives and capabilities and must learn
appropriate strategies on their own. Further, this game is more difficult than the game of
force in that a separate action must be taken depending on the position of the opponent—no
single fixed action applies.
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Figure 4. Kinematic structure of simple pursuit game in relative coordinates.

The dynamics of the game are given by

ẋP = −vP sinφP

ẏP = vP cosφP

ẋE = −vE sinφE

ẏE = vE cosφE

where〈xP, yP〉 and〈xE, yE〉 are instantaneous positions ofP and E, respectively. Also,
we assume thatP has a lethal envelope,l > 0, such thatP capturesE if√

(xP − xE)2+ (yP − yE)2 ≤ l

We specifyl = 0.05 for these experiments. Optimal solutions for the game exist for both
players at

φP = φE = arctan
x

y

in coordinates relative toP. Payoff was defined to be the change in distance betweenP
andE from the start of the game to the end of the game.

Again, several parameters needed to be set for the experiments. We ran each simulation
for 5000 games and tested the results of learning after every 250 games. For each test, we
played 50 games and averaged the payoff received after each game. For each of the 50
games, we used a uniform probability distribution and randomly generated a new starting
position such thatxP ∈ [−1, 1], yP ∈ [−1, 1], xE ∈ [−1, 1], andyE ∈ [−1, 1].

For these and all subsequent experiments, we used a variable learning rate. Specifically,
a learning rate was associated with each example stored in the memory base. Initially, the
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Figure 5. Learning performance for pursuit game with simple motion.

learning rate was set to 1.0 meaning that the first update of the associatedQ value results
in the actual payoff being assigned. Each time an instance is updated, the learning rate is
changed according to the following schedule:

αi = 1

χi

whereχi is a count of the number of times instancei has been updated, including the current
time. Thus, initially,χi = 1. In addition to the learning rates, we presetγ = 0.95, ks= 30,
km = 5, andKw = 4.

The results of this experiment are shown in figure 5. This graph was also produced by
running the experiment ten times and averaging the results at 250 game intervals. Examining
this figure, we note thatE is able to perform well throughout the game. It appears as if no
learning is required forE to maximize its ability to evade. We know, in general, this is not
true. If E does not proceed directly away fromP, andP aims directly atE, thenP must
captureE more quickly.

When examiningP’s performance, we see that random motion is clearly not preferred
for pursuit. In fact, initially,E is always able to get away fromP. However, after only
1000 games,P has been able to direct its movements atE and brings its performance to a
level comparable to optimal.

One curious result arises from examining this figure. If the simulation truly implements
an optimal strategy for comparison, we would expect the optimal curve to lie between the
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two curves when each player is being tested against optimal players. In other words, when
P andE both play optimally, the resulting performance shouldalwaysbe equal to or better
than when one of the players is using the learned strategy. In figure 5, however, we find that
this is not the case. Specifically,E’s learned strategy appears to always beat the case where
E plays optimally. Further, we find that all three curves (excluding the case where both
players play optimally) converge to approximately the same performance after about 1750
games. We believe this performance is the result of the simulation quantizing the game,
which has the effect of shifting the equilibrium point of the gram. We note that the players
were still able to learn appropriate “optimal” strategies for this revised game. Experiments
investigating the effects of quantizing the game are described in (Sheppard, 1996).

4.2.3. Pursuit with simple motion in a half plane.For the third experiment, we consider
a variation of the pursuit game with simple motion in which a boundary exists atx = 0
thus forcing the game to take place in the half plane. On the surface, this game appears to
be, essentially, the same as the previous game. In fact, this is true when the players are not
near the boundary. However,E’s optimal strategy changes sharply when the players are
playing in close proximity to the boundary (figure 6).

This game further extends the difficulty in learning optimal strategies in three ways. First,
the strategies for both players still depend on the position of the other player, but there is
a new factor affecting the strategies—the boundary. Second, when play occurs in close

Figure 6. Learning performance for pursuit game in half plane.
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proximity to the boundary, the strategies for the two players become different. Third, the
transition between the two strategies forE is not smooth, indicating a discontinuity in the
optimal strategy forE arising from the boundary.

The dynamics of this game are identical to the previous game. Further, both players
continue to be able to move with no limitation on mobility (except for that arising from the
boundary) and with fixed speeds. All of the parameters from the previous game were used
for this game as well. If eitherE or P collides with the boundary during play, the player
does not pass through the boundary but skids along the boundary a distance proportional to
the y component of its force vector.

The results of this experiment are shown in figure 7. Again, the graph was produced
by running the experiment ten times and averaging the results at 250 game intervals. It
is interesting to note that the average performance for optimal play is slightly lower (i.e.,
more in favor ofP) than in the previous experiments. This can be explained through the
presence of the boundary.P’s optimal strategy has not changed, butE’s has. Further, the
boundary forcesE to move in such a way that would be suboptimal given the boundary did
not exist. Therefore, it is reasonable to expect the boundary to favorP.

As with the previous experiment, we note thatE appears to perform relatively well
using the strategy implicit when the memory base was seeded (i.e., random motion). This
time, however, there appears to be little convergence toward optimal. As we saw in the last
section, when the boundary was absent, some convergence did occur. It is possible that the
boundary can serve as an advantage toE under the conditionP’s reaction toE’s action is
delayed.

Figure 7. Optimal strategy for simple pursuit in the half plane.
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We also note thatP’s performance does improve relative toE, but the level and rate
of improvement has degraded. This would arise from the difficultiesP would have when
colliding with the barrier, thus slowing its advance towardsE. Even thoughP’s optimal
action need not consider the boundary, the additional state variables in the examples increase
the search space, making it more difficult forP to learn this fact. Indeed, the additional state
information forP is “irrelevant,” and irrelevant attributes are known to degrade performance
in memory-based learning (Aha, 1992; Salzberg, 1991).

4.2.4. Pursuit with limited mobility. The final game we studied withMBCLfurther extends
the pursuit game by limiting the mobility of both players. For this experiment, we removed
the boundary, but we limited the players such that they can only make turns within a
constrained range of possible turns. Specifically, we limitedP’s mobility such that it can
turn only in the range±π

4 , and we limitedE’s mobility such that it can turn only in the
range±π

2 .
This game is a generalization of the Homicidal Chauffeur game (Basar & Olsder, 1982;

Isaacs, 1975; Lewis, 1994). In the Homicidal Chauffeur, only the mobility ofP is limited.
Given the added complexity of the game, no optimal solution was available; however, we
were able to define a heuristic based on the optimal solution for the Homicidal Chauf-
feur. Specifically, the heuristic strategy forP was to aim, as closely as possible, atE. If
turning towardsE required an angle exceedingP’s limits, P turned as sharply towardE
as possible.E’s heuristic strategy, again based on the optimal strategy for the Homicidal
Chauffeur, was to turn sharply in the direction ofP, attempting to get insideP’s radius of
curvature.

The dynamics of this game are identical to the original pursuit game with simple motion,
except for the limitations on mobility. In addition, all of the experimental parameters are
the same, except that we permitted learning to occur over 10,000 games rather than limiting
to 5000 games.

The results of this experiment are shown in figure 8 with a comparison to heuristic
play shown in figure 9. These graphs were produced by running the experiment ten times
and averaging the results at 250 game intervals. This time, the curve marked with a
cross indicates heuristic play by both players, the curve marked with a diamond indi-
cates both players using their currently learned strategies, the curve with a square indicates
P’s performance against a heuristicE, and the curve marked with a plus indicatesE’s
performance against a heuristicP.

Figure 8 appears to show little, if any, learning by the two players. However, if we
examine figure 9, we find that learning does, indeed, occur. In all cases,E was able to
evadeP. When examiningE’s ability to play against the heuristicP, we find P losing
a little ground at the start (demonstrating the power of random motions byE when P’s
mobility is limited) but losing about 30% more ground (relative to the heuristic) at the end
of the experiment. Further,E was still improving when the experiment was terminated,
albeit slowly.

When examiningP’s ability to play against the heuristicE, we findP losing considerable
ground at the start but reducing its losses by approximately 40% (relative to the heuristic)
by the end of the experiment. As withE, P was still improving when the experiment ended.
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Figure 8. Learning performance for pursuit game with limited mobility.

Figure 9. Deviation from heuristic for pursuit game with limited mobility.
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4.3. Discussion

The results of applyingMBCL to solving differential games are quite encouraging. In all
cases, learning was demonstrated, and in the simplest cases, near optimal performance was
achieved. Unfortunately, the computational burdens for learning these games was quite
extensive.

As mentioned in Section 4.1, the processMBCLfollows requires seeding the memory base
with several examples. The current version ofMBCLdoes not modify the memory base at
all, except to update theQ values associated with each example. All of the experiments were
run on either Sun Sparc 2 or Sun Sparc 10 processors. To give an idea of the computational
burden, Table 1 shows the number of examples in each of the memory bases and the clock
time required, in the best case, to complete the experiment.

Clearly, the time required to learn solutions to these games is excessive; however, our
method of searching for neighbors did not use efficient structures to reduce search time,
such askd-trees. Even so, much of the computation time can be attributed to constructing
and solving two linear programs at each stage of the game. The simplest game, in which
only a single action needed to be found, required an hour and a half (actually less, given it
converged in less than half of this time). When we considered only the one-step game of
force, we found the solution immediately. The other games required approximately a day
to run, and convergence only occurred with one game.

This observation points out the advantage of a proper representation for the problem to
be solved. For example, when we posed the game of force as a delayed reinforcement task,
we found the task learnable, but only after a large amount of simulation. On the other hand,
posing the problem as an immediate reinforcement learning problem yielded a solution in
one step. Considering the pursuit games, we could have represented them as immediate
reinforcement learning problems as well, using the change in distance between the players
as the immediate payoff. But in preliminary experiments doing just that, we found no
difference in performance from using delayed reinforcement.

As can be seen, the number of examples required to learn the game of force was relatively
small. The pursuit games required approximately an order of magnitude more examples
and were not able to learn as well. This provides an indication of the difficulty of these
tasks.

What is not shown in either the graphs or the table is that the examples for the pursuit
games were probably not chosen intelligently. The approach to seeding was chosen to
provide a wide sample of state-action combinations. InitialQ values did not matter since

Table 1. Relative computational burdens for solving games withMBCL.

Game Games stored Examples stored Minutes

Force 7500 50,000 96

Simple 2000 400,000 1376

Half 2000 400,000 1372

Limit 2800 560,000 3193
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they would be learned over time. Nevertheless, a uniform random sampling of the space was,
apparently, not sufficient to approximate some of the surfaces encountered in these games.
Applications of variable resolution techniques (Anderson & Crawford-Hines, 1994; Deng
& Moore, 1995; Moore & Atkeson, 1995; Simons et al., 1982) may be more appropriate
for problems such as these.

If we consider a more formal analysis of the computational burden ofMBCL, we find
the following. Assuming a fixed size memory base withn examples andd dimensions,
we can consider two extremes—one where we perform a brute-force search of the memory
base to find neighbors and one where we assume an efficient structure, such as akd-tree.
In the worst case, findingks neighbors will requireO(ksnd) time where the efficient ver-
sion would requireO(ksd logn) time. The process of populating the game matrix requires
O(ks) time for the action range checking, populatesO(m2) entries in the matrix, and needs
searchO(kskm) searches per entry. We applied the simplex method for linear programming;
however, it is known linear programming can be performed in polynomial time using algo-
rithms such as the interior point method. Selecting the move from the candidates is linear
in m, and updating the state of the game is constant. Thus, the overall complexity is domi-
nated by the size of the memory base (for linear search and by frequent solving of linear
programs.

Nevertheless, the results fromMBCL are highly encouraging. They indicate colearning
can occur and suggest it is possible to learn optimal solutions to two-player differential
games. Unfortunately, the computational resources required to learn these solutions are
excessive. In the next section, we explore an alternative strategy to colearning with the
focus being on reducing the computational requirements while maintaining or improving
learning performance. We find several encouraging results improving the computational
requirements and find that the two algorithms are comparable in their ability to learn to play
differential games.

5. Tree-based colearning

In the previous section, we present an algorithm for colearning in differential games that,
although providing promising results, had large computational and memory requirements.
In this section, we consider an alternative algorithm that, although not memory-based, is
inspired by the results of applyingkd-trees in memory-based learning (Bentley, 1980; Deng
& Moore, 1995; Moore, 1990).

A kd-tree is a data structure used to store a set of examples in a memory base such that
nearest neighbors can be found in logarithmic expected time. Specifically, akd-tree is a
binary tree where each interior node of the tree tests the values of one of the attributes in
thek-dimensional attribute space. In addition, each node corresponds to a single instance
in the memory base (Moore, 1990). Nodes are selected for splitting until no further splits
are required (i.e., until all points are represented in the tree).

In memory-based learning, thekd-tree can provide significant speed-up in searching for
nearest neighbors; however, the size of the memory base does not change. Actually, the
resulting memory base will be larger than a “monolithic” memory base because of the
overhead associated with storing the tree.
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To address the problem of storing all examples, alternatives such as editing have been
offered to reduce the size of the memory base. However, striking a balance between
sufficient coverage of the problem space and small size of the memory base is tricky at best.
Methods for variable resolution memory-based learning also offer possible approaches to
provide this balance.

5.1. The TBCL algorithm

Our approach applies the speed advantage of thekd-tree with the space advantage of variable
resolution memory-based learning without the need to store explicit examples. Instead,
we incrementally construct a “decision” tree that partitions the state space and strives to
maintain balance to minimize search. Rather than storing examples at interior nodes of the
tree, we store a game matrix at the leaves that represent behavioral strategies for playing
the game. When performance converges, the game matrix can be discarded, and the mixed
strategies associated with the game matrix retained. Further, if any of the pure strategies
have an associated probability of zero, these can be dropped as well.

To describe the tree-based algorithm (which we callTBCL), we begin by considering the
degenerate case where the tree consists of a single node. In this case, the node covers the
entire state space of the game. Associated with this node is a single game matrix, pairing
expected payoffs for the strategies of the two players. Mixed strategies are computed by
solving the linear program defined by the game matrix. Learning consists of updating the
entries in the game matrix based on actual play and re-solving the linear program.

Because most games will require different actions in different states, usually a single
node with a single game tree will not be adequate. When learning converges, if the perfor-
mance is not adequate, the node can be split into additional nodes and learning restarted.
In the simplest case, splitting consists of selecting one of the state variables and dividing
the state space along the midpoint of the dimension defined by that variable. The game
matrix of the parent is then copied to each of the children, the learning rates reset, and
learning proceeds as before. A high-level description of the learning algorithm is shown in
figure 10.

The first step in the algorithm is to create the tree. This consists of creating a single
node, covering the entire state space. A single game matrix is constructed with uniformly
distributed random values. Then the corresponding linear program is solved to provide
an initial set of mixed strategies for the two players to follow. This initial set of strategies
is tested against 50 uniformly distributed random games, and the result is compared to a
performance goal (either in terms of convergence or in terms of number of iterations).

If the performance goal is not met,TBCL passes into a two-part learning loop. The
first part consists of performingQ-learning on the current game structure. The second part
consists of selecting a node in the tree to split should the performance goal not be ob-
tained.

In the Q-learning portion of the algorithm, a game is played and evaluated. Similarly in
MBCL, the history of the game was stored to permit evaluation of theQ values associated
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Figure 10. High-level pseudocode of tree-based colearning algorithm.

with the instances in the memory base. InTBCL, the sequence of the game is traversed
to determine which node in the tree was used at each step and what actions were taken at
that step. The corresponding cell in the game matrix at that node is then updated using
Q-learning. Once the game is finished, all game matrices that were changed are solved
using linear programming to find new strategies for the associated nodes.

The Q-learning loop continues until some convergence criterion is satisfied. This crite-
rion could be a measure of the change in performance of the players, or it could be a fixed
number of iterations. We chose the latter for our experiments. Once the loop finishes, per-
formance is measured and compared against the performance goal. If the goal is satisfied,
the algorithm terminates. Otherwise, a node is selected and split. Nodes are selected by
considering the number of updates. The node receiving the most updates in aQ-learning
loop is split because this indicates a large number of visits to the states represented by that
node. Splitting takes place according to the algorithm given in figure 11. Once the node
has been split and new game matrices generated for the children, these matrices are also
solved, andQ-learning continues.

If we consider the algorithm in figure 11, we see that the attribute is selected that maxi-
mizes the difference in the game matrices following the split. Specifically, each attribute is
considered by assuming the split is made along the attribute. Two game matrices are gener-
ated for each split. A game matrix is constructed by initializing a game from the midpoint
of the partition and playing a game. The game is played according to the strategies stored
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Figure 11. Pseudocode for splitting algorithm.

in the tree, except for the first move. All pair-wise combinations of moves are considered
for this first move, and the results of the game are stored in the matrix cell indicated by the
initial pair of moves.

Each pair of matrices is compared by computing the Euclidean distance between the
matrices. The attribute whose pair of matrices is maximally distance is selected for splitting.
When the node is split, the limits for that attribute are updated within the node, and the
game matrix from the parent node is copied into each child. All of the counts used to update
the learning rate forQ-learning are reset to one for that partition.

When playing the game, the moves for both players are determined by traversing the tree
to find the partition that covers the current state. When the partition is found, the mixed
strategies associated with each player are used directly to pick their respective moves.
Because the strategies are updated at the end of each learning game, there is no need to
solve the linear programs on-line as in the memory-based approach. The result is fast search
through the state space and fast determination of the actions.

5.2. Experiments

We evaluated the performance ofTBCLusing the same games and same procedures as for
the evaluation ofMBCL. As before, we appliedTBCL to four games, including the simple
game of force, the pursuit game with simple motion, the pursuit game in a half plane, and
the pursuit game with limited mobility. Again, we assume all states are represented relative
to P, and the game matrices are constructed withn = 10 for each player.

5.2.1. A game of force. For the simple game of force, we used the same kinematic equa-
tions as in Section 4.2.2. Because of the nature of the algorithm, several different parameters
were set. For this game, we trained for 100,000 games and only generated one node in the
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Figure 12. Learning performance for game of force.

tree. We decided not to subdivide the space given the simplicity of the game. We tested the
algorithm after every 1000 games and averaged the “payoff” received after each game. For
each of the 50 test cases, using a uniform probability distribution, we randomly generated
a new starting position such thatx0 ∈ [−0.25, 0.25] andy0 ∈ [0.85, 1.0]. For the game
parameters themselves, we again setA = 1 andB = 1. For the learning algorithm, we
allowed the learning rate to vary and setγ = 0.95.

The results of this experiment are shown in figure 12. As before, this graph was generated
by running the experiment ten times but this time averaging the results at 1000 game inter-
vals. In these experiments, we find convergence occurs relatively quickly with performance
settling after approximately 20,000 games. Performance seems to improve some through
60,000 games, but then there is a small jump causing performance to degrade followed by a
return to the previous level of performance. It is also interesting to note that whenP andE
play each other, performance is fairly constant throughout and is degraded from optimal in
favor of E. Further, performance seems to converge to this level rather than to the optimal
level. This is due, most likely, to quantizing the available actions at a courser level than
MBCLand interpolating between strategies.

5.2.2. Pursuit with simple motion. For the game of pursuit with simple motion, we used
the kinematic equations as in Section 4.2.2. Again, we trained for a period of 100,000
games, but this time we split a node in the tree after every 5000 games. This resulted in a
tree with 20 leaf nodes. We tested the results of learning after every 1000 games to monitor
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Figure 13. Learning performance for pursuit game with simple motion.

the level of convergence while a tree’s structure was fixed and to observe the effects of
adding a new node to the tree. Whenever we tested the performance of the algorithm we
played 50 games generated at random according to a uniform probability distribution and
averaged the payoff received after each game. For each of the 50 games, we generated
starting positions such thatxP ∈ [−1, 1], yP ∈ [−1, 1], xE ∈ [−1, 1], andyE ∈ [−1, 1].
We permitted the learning rate to vary and setγ = 0.95. The results of this experiment
are shown in figure 13. This graph was produced by running the experiment ten times and
averaging the results at 1000 game intervals.

Examining this figure, several interesting results can be observed. First, similar toMBCL,
performance byE appears to be good without any learning, thus indicating the power of
random moves in our simulation. In fact, we find whenE applies its initial strategy against
an optimalP, it is able to do nearly as well as an optimalE. We do note some movement
toward optimal through 40,000 games, however.

When examiningP’s performance, we find it starts out performing poorly, never capturing
E (as shown by a positive payoff). However, after 5000 games,P has been able to improve to
at least preventE from gaining any additional ground. By the time 40,000 games have been
played,P is able to advance onE fairly consistently. When the experiment was terminated
at 100,000 games, the slope ofP’s learning curve indicated it was still improving.

Taking a closer look at these learning curves reveals an interesting, but not surprising,
behavior ofTBCL—especially when examining the performance ofE playing againstP
rather than their optimal counterparts. Notice that performance is fairly constant through
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the first 5000 games. At 5000 games, the first split occurs and average payoff drops
from 0.1 to about 0.0. This suggests a single node was not sufficient for improving the
performance of either player. In fact, if we examine the performance of each player against
the optimal counterpart, we find similar flat performance. Examining performance between
5000 and 10,000 games, we find a similar flat trend. When the tree splits again at 10,000
games, a similar change in payoff is experienced with average payoff dropping from 0.0
to about−0.075. We find yet another drop at 15,000 games. From approximately 20,000
games onward, we do not see any additional sudden changes but note a relatively steady
improvement when examiningP’s performance. It is possible the performance change
should still be attributed to the tree splitting, but by this time the impact of splitting on the
total tree is so small, it is difficult to discern the reason for improvement.

5.2.3. Pursuit with simple motion in a half plane.Continuing with the experiments, we
next added the barrier atx = 0 to play the pursuit game in the half plane (see Section 4.2.3).
All of the parameters used in this experiment were identical to the parameters in Sec-
tion 5.2.2. The dynamics of the game are identical to the previous game, and each player
still has the ability to turn instantaneously in any direction (except when constrained by the
boundary). If eitherP or E collides with the boundary, the player skids along the boundary
a distance proportional to they component of its force vector.

The results of this experiment are shown in figure 14. This graph was produced by
running the experiment ten times and averaging the results at 1000 game intervals. We find

Figure 14. Learning performance for pursuit game in half plane.
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that the performance of each player is similar to performance without the barrier, except that
the barrier apparently causes some difficulties that need adaptation. In particular, we note
thatE does not start performing “optimally” as before, but its performance is still relatively
good. Further, as learning proceeds,E clearly changes its strategy and approaches optimal,
indicating the game is more difficult forE than the game without the barrier. After 100,000
games,E’s performance appears to have flattened out.

For the pursuer, performance is also similar to no boundary. Again, we find that perfor-
mance still seems to be improving through 100,000 games. We also see the trend moving
from E always getting away toE losing ground. Nevertheless, the performance compared
to Section 5.2.2 is degraded as well.

These degradations in performance are not surprising for several reasons. First, we
introduced an “obstacle” that increases the state space (we must now keep track of our
distance to the boundary). Second, this boundary complicatesE’s strategy due to the
sudden shift in performance whenE approaches the boundary.

We also note that the impact of node splitting is visible again. This time, however, there
appears to be a slight improvement for bothE andP during the first 5000 games. As before,
a sudden change in performance occurs when the first split is made, but the second split (at
10,000 games) has no noticeable effect. This suggests the possibility ofTBCLperiodically
choosing an inappropriate node to split. However, at 15,000 games, we see another sudden
change, indicatingTBCL found a node to split that would help. This suggests that further
study in selecting a node for splitting would be appropriate and beneficial.

5.2.4. Pursuit with limited mobility. Finally, we applyTBCL to the pursuit game with
limited mobility. This game is identical to the game described in Section 4.2.4. Again, we
removed the boundary, but we also limited the mobility of both players to permit them to
make instantaneous turns within a constrained range of possible turns.

We do make one change in the experiments. Specifically, we only permit training to take
place through 20,000 games. We test after 250 games, as before, but this time we also split
after 1000 games. This change was justified by the fact there was little evidence of change
between splits. Consequently, we reduced the number of games played before splitting.
We still wanted to monitor the progress between splits, so we increased the frequency of
testing accordingly.

The results of these experiments were both encouraging and surprising. The performance
learning curves are shown in figure 15. This graph was produced by running the experiment
ten times and averaging the results at 1000 game intervals. First, it was clear thatE’s random
strategy was not satisfactory against a heuristicP, andE learned a strategy that became
competitive (although still somewhat inferior). Improvement byP relative to a heuristic
opponent was similar.

The surprising result concerns comparing the curve forE versusP to the curve for
heuristicE versus heuristicP. As we see, heuristic performance is fairly constant through-
out (which it should be). The performance ofE versusP; however, was not constant.
Of course, this is what we would like, except that we found the performance todiverge
from the heuristic. Although heuristic performance appears to yield an average payoff of
approximately 1.9, we found the average payoff forE versusP to drop from around 1.7 (at
10,000 games) to about 1.5 (at 20,000) games.
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Figure 15. Learning performance for pursuit game with limited mobility.

We believe that the reason for this unpredicted behavior is associated to the algorithm
for selecting a node to split. Evasion depends onE getting insideP’s radius of curva-
ture. According to Basar and Olsder (Basar & Olsder, 1982), this requirement is further
complicated by the fact that the decision surface characterizing the optimal solution of the
Homicidal Chauffeur game has a “leaky corner.” A leaky corner is a characteristic in the
surface between terminal conditions of the game in which performance cannot be forced
by either player. The leaky corner is even more problematic in our game in whichboth P
andE have limited mobility (rather than justP).

To be able to learn this surface may require many more splits in the decision tree.
Further, because our method for selecting a node to split is biased towards nodes that are
frequently updated, and we hope that we are in the region with the leaky corner relatively
infrequently, our method is probably not well suited for learning these characteristics. Thus,
a substantially larger number of node splits may be required with our method.

5.3. Discussion

We were pleased with the results ofTBCL, especially when compared to the performance
of MBCL. First, we found the overall learning performance to be quite good. In fact,
we feel the performance was clearly “comparable” to the performance ofMBCL—even
with several known deficiencies inTBCL. Further, as the games became more complex,
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Table 2. Relative computational burdens for solving games withTBCL.

Game Games stored Leaves Minutes

Force 100,000 1 31

Simple 100,000 20 49

Half 100,000 20 43

Limit 20,000 20 22

the experimental results seemed to indicate that the tree-based approach could ultimately
adapt better to the underlying state-action space; however, we did not try any variable-
resolution memory-based strategies to compare. It is possible that the advantages of the
tree-based strategy can be attributed to the variable resolution, which can be replicated in
memory-based approaches.

In addition to the comparable performance ofTBCL relative toMBCL, we also found
a substantial improvement in computational and memory burden. As before, all of the
experiments forTBCL were run on either Sun Sparc 2 or Sun Sparc 10 processors. To
give an idea of the improvement in computational burden, Table 2 shows the time required
for playing the games (in the best case) and the size of the associated trees (in number of
leaves—because all of the trees are binary, we know the number of nodes in the tree is twice
the number of leaves minus 1).

As we see, the times required to learn these games were substantially less than the times
required forMBCL (Table 1).1 Given a more clever approach to splitting nodes, we may
have been able to yield even stronger performance with the same, or possibly fewer, numbers
of nodes. Further, we could have increased the search space by providing a finer resolution
on the strategy space and still been able to learn in a reasonable period of time.

If we perform a complexity analysis similar to the one performed forMBCL, we find
TBCL has several advantages. First, if we assume the tree will grow to some maximum
sizeT (given in terms of the number of leaves of the tree), we find the following. First,
linear programming does not need to be performed during play since it is only done after
learning. Assuming the decision tree can be constructed to maintain reasonable balance,
time to traverse the tree at any given step in the game should beO(logT). As with MBCL,
selecting a move isO(m), and updating the state is constant. Thus, play is very efficient.

The tradeoff comes when considering learning. InMBCL, learning consisted of updat-
ing the Q values associated with known examples in the memory base. This is no more
than O(ks). Every time a matrix changes, a linear program needs to be solved. Thus,
the computational burden associated with linear programming is transferred from the on-
line evaluation and play of the game to learning. Further,TBCLperiodically splits nodes in
the tree which involves evaluating potential splits and then performing a final split. The eval-
uation step for a single split requiresO(m2 p+m2) and the actual split requiresO(dm2 p).
SinceT splits occur as the tree is generated, the total time to learn isO(Tdm2 p).

In all of the experiments, the sizes of the trees were limited such that these trees would be
significantly smaller than akd-tree forMBCL. If the trees were made comparable in size, it
is likely the total time required for the two algorithms (including play and learning) would



P1: SUD

Machine Learning KL653-03-Sheppard November 5, 1998 20:38

COLEARNING IN DIFFERENTIAL GAMES 229

be comparable. However, the results of our experiments seem to indicate that small trees
are sufficient to learn fairly complex tasks. This implies small memory-bases may also be
effective, given the right set of examples. Note this is consistent with experiments reported
in (Sheppard & Salzberg, 1997).

One possible limitation in bothMBCL andTBCL is the reliance on a common set of
Q-values. While this is a valid concern in the context ofindependentagents learning to
play against each other, it is clear that the algorithms apply directly when separate experience
bases are maintained. Our research, as noted earlier, did not maintain separate experiences
because our primary goal was developing an approach to learn “optimal” solutions to the
games. We believe convergence to optimal with separate experience would have occured,
but a much slower rate.

6. Future work

Because the games reported in this paper are limited to two dimensions, work exploring
games of higher dimensionality (e.g.,x, y, z) is necessary. Further, in many ways, the
games described do not correspond to similar games in the real world; therefore, games
characterizing more realistic capabilities (e.g., noisy sensors, and imperfect controllers)
should be encouraged.

We note that all the algorithms discussed in this paper are limited to symbolic reasoning
systems. Specifically lacking are any algorithms derived from the connectionist (i.e., neural
network) community, despite the fact that much of the successful research in reinforcement
learning has been applied to connectionist systems, with symbolic systems largely lim-
ited to lookup tables. Additional work that applies the ideas in this paper to connectionist
systems would be warranted. Of particular interest would be work integrating connection-
ist and symbolic systems into a cohesive multiagent learner. For example, an interesting
architecture might include an artificial neural network to provide a fitness function for fill-
ing out a game matrix. Harmon and Baird’s (1995) approach using a neural network could
easily be extended to include a full evaluation of the linear program and its dual. Given this
extension, comparable performance might be achieved from their approach.

Several variations ofMBCLshould be considered. For example, limited seeding followed
by variable resolution memory-based learning would provide a potential solution to the
problem of appropriate sampling and excessive memory-base size. In addition, using a data
structure such as thekd-tree to store the memory-base would significant speed up learning
and testing.

Throughout this paper, no concerted effort was made to identify “optimal” parame-
ters for the learning algorithms. BothMBCL andTBCLhave a relatively large number of
parameters that need to be set. Evaluating the effects of various parameter settings, for
example through a factorial study, would provide considerable insight into the power of the
algorithms and their ability to find reasonable parameters in other games.

As withMBCL, several variations onTBCLcould be explored. For example, we note that
the method for selecting a node to split is naive at best. It may be possible to apply selection
techniques such as those used in traditional classification decision trees to characterize
potential improvement (e.g., entropy reduction, minimum description length, and minority
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measures). As an alternative, it may be worthwhile to explore techniques ofk-step look-
ahead to evaluate a node for splitting. Under such a method, a small number of splits are
selected and evaluated. The best split is then selected, and learning continues from that
point.

Related to the problem of selecting a node for splitting is the problem of selecting an
attribute and associated value for splitting. In our experiments, we selected the attribute
that maximized the difference between resultant submatrices. Again, principles such as
entropy reduction or minimum description length may be appropriate.

In all cases, we assumed that the split value would be the midpoint of the region. Again,
this may not be appropriate. Because we are not splitting examples, we cannot select regions
between neighboring examples; however, a similar quantization of the attribute space may
be appropriate.

Finally, it may be appropriate to consider nonaxis-parallel trees in growing trees forTBCL.
Work by Heath and Murthy has pointed out several issues and offered several suggestions
for constructing oblique decision trees and addressing concerns such as look-ahead and
splitting criteria (Heath, 1992; Murthy, 1995).

One of the significant differences betweenMBCLandTBCLis thatQ-updates inMBCL
occur over a region in the instance space whereQ-updates inTBCLapply only to individual
cells in the game matrix. An interesting variation toTBCLwould apply a weighted update,
such as

Q(s,ap,ae) = (1− wαi )Q(s,ap,ae)+ wαi [ρ + γQ(s′, π(s′))]

wherew is a weight based on proximity to the target cell. Thus, cells in a region around
the target cell to be updated could also be updated. This approach is motivated by the fact
that the game matrix for a differential game would, frequently, be fit by a smooth surface.

7. Summary

In this paper, we provided a new algorithm for memory-based colearning in which two
opposing agents learn control strategies simultaneously. These results (and the results of
TBCL) can be extended to alternating Markov games (in which players take turns) (Littman,
1996), team games (in which teams of players cooperate to devise mutual strategies) (Tambe,
1996a, 1996b), and community games (in which players choose opponents to maximize
their personal payoff) (Stanley, Ashlock, & Tesfatsion, 1993). They can also be applied to
games that are more traditional with homogeneous agents such as backgammon, checkers,
and othello. The strengths of the approach include the relative simplicity in storing examples
and updating value estimates for game play. Unfortunately, the approach is both memory
and computation intensive.

We also provided a second novel algorithm for colearning based on dynamically partition-
ing the state space of the game. The focus of the approach was on reducing memory and com-
putation requirements while maintaining or improving upon the performance obtained by
MBCL. The resulting algorithm,TBCL, accomplished these goals by not requiring explicit
storage of examples in a memory base and by keeping game matrices at each of the leaves
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of the tree. Examples were replaced by state space partitions covering a region of the space.
Since the regions can be partitioned to any required resolution, this approach can maintain
the level of performance of the memory-based approach without explicitly storing examples.

In addition, since game matrices are kept with each partition, several computational
advantages are obtained. First, the game matrix does not need to be regenerated at every
step of the game. Second, if multiple steps in the game take place within the same partition
of the state space, only one linear program needs to be solved (rather than one for each visit
to the partition). Finally, following learning, the game matrix can be thrown away (thus
further reducing memory requirements), and the current strategies stored with the partition
used for play—there is no need to solveany linear programs during actual use. The result
is an approach to colearning that is faster than memory-based learning during both training
and actual use.
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Note

1. Clearly, usingkd-trees or similar data structures inMBCLwould reduce this difference.
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