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ABSTRACT

The increasing complexity of electronic systems and the
decline in the numbers of skilled technicians are leading to
increased reliance on automation in maintenance.
Automated maintenance is typified by built-in test (BIT),
embedded diagnostic systems (EDS), and improved
automatic test equipment (ATE). The BIT and EDS
concern themselves with the first level of maintenance
(organizational level) while ATEs are developed for the
second and third levels of maintance (intermediate and
depot). ATEs typically consist of several elements,
including an instrument suite, an interface test adapter, a
computer, a test executive, and a test program set (TPS).
The TPS, which defines how a piece of equipment is
diagnosed, usually has been based on an approach using
static (i.., predefined) fault trees. The static fault tree has,
inherent in its formulation, limitations in flexibility and
adaptability.

Diagnostic modeling techniques have evolved to the point
where we can place a limited form of “intelligence” into the
ATE process. An intelligent ATE should take into account
any known information (e.g., BIT readings, pilot reports,
logistic history), adapt to changing conditions during
maintenance, and provide maximum flexibility to the
maintenance technician. Further, the diagnostic process
should be flexible enough to work around deficiencies in
test equipment and other factors.

In this paper, we discuss internal research of the past 10
years which led to the evolution of several maintenance

tools and an architecture for intellient ATE. Specifically,

we review the objectives of the research program, some of
its results, and its current applications. We also describe a
demonstration intelligent ATE system consisting of a Racal-
Dana VXI, instruments-on-a-board automatic test unit for
an AV8B power supply. Finally, we discuss the capabilities
of this system and its implications for more generic ATE
architectures.
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INTRODUCTION

Test equipment has been vastly improved since the first
appearance of sequential state, paper-tape-driven
“automatic” tests systems of 20 years ago. The advent of
high-speed digital computers, microprocessors, sophisticated
instrumentation, and bus structures has resulted in statc-of-
the-art automated test systems capable of isolating failures
in equipment operating over large frequency ranges and at
digital rates exceeding 150 MHz [Dill 1990]. Unfortunately,
the advance of software used to harness and drive this
powerful instrumentation has failed to keep pace. Repair
facilities still struggle with test programs that require “full-
up” instrumentation systems and can take little or no
guidance from skilled technicians. These are the same
problems that plagued the operators using the paper-tape-
driven systems. Such problems suggest that we need to
overhaul the current approach to controlling test equipment
by incorporating intelligent approaches to fault isolation.

This paper addresses one aspect of the entire maintenance
problem—fault diagnosis with automatic test equipment.
Typical automatic test equipment (ATEs) include a suite of
test instruments in a common test station, a test control
computer (TCC) to control the instruments and interpret
the results of tests, a test unit adapter (TUA) that connects
the unit under test (UUT) to the test station, a test
program set (TPS) that instructs the computer on how to
test the unit, and a test executive that determines the order
in which tests are run and instructs the computer on how to
drive the instruments [Melendez and Hart 1990]. Until
now, TPSs and test executives have been developed to test
a unit by following a predetermined fault-isolation
sequence, called a fault tree. TPS developers attempted to
minimize the mean time to fault isolate by constructing
more efficient fault trees. This approach has worked to a
point, but the problem with writing TPSs around any fixed
fault tree is the lack of flexibility in the resulting system.
Separate fault trees and TPSs are often required for
different symptoms, different optimization criteria, and




different instrument suites. Further, should an instrument
fail, then currently a fixed fault tree would fail to reach a
conclusion.

AUTOMATIC TEST EQUIPMENT

with the lack of effective tools to develop efficient TPSs,
current ATE systems are cumbersome and subject to errors
in the way they perform diagnosis. Precomputed fault trees
are used to guide the test program, and sometimes faulty
conclusions are reached. Further, ATE systems are
incapable of adapting to lost (i.e., failed) instruments or
insights available from the technician.

Several initiatives are under way to standardize ATE
architectures. However, the current focus of these systems
is on ways to standardize and integrate analysis tools and
instumentation interfaces with little attention being given to
developing TPSs.

MATE—ir Force. The Modular Automatic Test
Equipment (MATE) program began in 1980 as an attempt
to address concerns of life-cycle cost in the maintenance of
weapon systems. Integral to the MATE concept is an
architecture for ATE systems. The program serves to
provide a set of standards and specifications for Air Force
ATE systems and attempts to implement a structure for
controlling and standardizing acquisition, development, and
maintenance of ATE systems [Cross 1987).

CASS—Navy. As with the Air Force, the Navy is concerned
with reducing the Life-cycle cost of systems and ensuring
that ATE systems are standardized to help meet that need.
The Navy instituted the Consolidated Automated Support
System (CASS) program to provide an industry definition
of operational constraints and maintenance policy for
automatic test. It then went to industry to find a way to
fulfill these goals. Further, the test systems were to be
available to a weapon system designer so that issues of
testability could be addressed early, and more time could be
spent focusing on system performance [Najaran 1986].

IFTE—Army. The Army Intermediate Forward Test
Equipment (IFTE) program was an attempt to mect the
need of increasing tactical flexibility. The purpose of IFTE
was to provide ATE equipment for line replaceable units
(LRUs) close to their operational units and was to replace
all existing test methodologies for all of the maintenance

levels in the Army. The end result is a shorter logistic

chain for system support [Espisito et al., 1986].

CAM—Automotive Industry. The Computerized Automatic
Machines (CAM) system [GM 1989}—now referred to as
the T-100 system—is a fully integrated diagnostic system
developed by EDS for General Motors. Its purpose is to
provide a means for automatically testing automobiles in
the maintenance shop by connecting an umbilical line

directly to the automobile. The system evaluates the car
and produces a troubleshooting tree (fault tree) for the
mechanic to follow.

SMART™Airline Industy. The Standard Modular
Avionics Repair and Test (SMART) system is a standard
for avionics ATE for the airline community. The system
was designed by Aeronautical Radio, Inc. (ARINC), and is
being developed by ARINC, TYX, and Acrospatiale.
SMART is a modular architecture including a set of
standards for a generic test system, which allows a freedom
of choice in selecting test instruments, TUAs, and TCCs.
The adaptable standard ATE is designed to drive and
monitor most avionic units regardless of the manufacturer
[Melendez and Hart 1990].

THE CURRENT APPROACH TO TPS DEVELOPMENT

Current approaches to TPS development involve the
development of static fault-isolation strategies as the control
structure for the test program. Such strategies incorporate
no knowledge about the changing state of the system as
tests progress and, thus, become permanently fixed. In
addition, the strategies assume that the required resources
will always be available; thus, they cannot tolerate “soft
failures” of the test equipment.

The most common form of search strategy is directed with
little or no optimization. Directed search consists of testing
a system at its outputs and proceeding backward toward the
inputs until the problem is isolated. It is equivalent to a
sequential search through the set of possible failure modes.
Circuit simulation is used to determine the effects of
failures on the tests in the system. This is appropriate and
will continue; however, nothing is done to determine if the
set of tests available can be minimized. Some of the more
prominent simulation tools used for test program
development include HITS, LASAR, ZYCAD, and
PSPICE. The first three provide models for common
digital faults, and PSPICE is used for both analog and
digital simulation. See, for example, Forster and Colburn
[1987] or Calandra and Leahy [1990}.

Since directed search and simulation are the primary means
by which diagnostic strategies are constructed, no facility is
available for an adaptive strategy. Directed search is fixed,
and simulation models usually incorporate history in the test
specification. In recent years, TPS developers have realized
the problem with directed search, and they are now using
analysis tools to assist in building optimized fault trees.
The System Testability and Maintenance Program
(STAMP®) [Simpson 1985] and the Weapons System
Testability Analyzer (WSTA) [Franco 1988] are two tools
capable of providing efficient fault-isolation strategies.
These fault trees, however, are still fixed and do not provide
the level of flexibility required to address common problems
in automatic testing, as described previously.
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Once most of the tests have been designed and specified
through a set of test requirements documents (TRDs), the
test programs can be written. Often additional tests are
provided during the coding process, when most of the
shortcomings are detected. This process leads to potential
diagnostic errors in the final TPSs. Generally, test
programs are written in ATLAS (A Test Language for All
Systems); however, there is an emphasis today on writing
the programs in Ada (for military applications) or C (for
commercial applications). Another important part of the
TPS development process is the design of the TUA. TUAs
are usually unique to the UUT and must be included with
each TPS.

LIMITATIONS OF CURRENT APPROACHES

Currently, little or no “intelligence” goes into developing
efficient ATE systems. There is a need to improve on
flexibility, adaptability, and technician control while
decreasing time to fault isolate and incidence of improper
diagnosis.* Another concern with the current approach to
TPS development is that resulting TPSs do not provide any
means for a technician to capitalize on his or her
experience in testing the system. Often, technicians learn
to recognize failures from the reports provided on the
system, thus enabling much of the diagnostic process to be
short-circuited. But current TPSs force the technician to
follow the same procedure every time the system is tested.
The end result is that technicians are treated as operators
of the ATE with no capacity for problem-solving.

Incorporating symptomatic information is hard in the
current context because multiple TPSs must be developed
for each desired symptom. If combinations of symptoms
are indicated, then the problem suffers from combinatorial
explosion. Some people are examining the possibility of
using expert systems to drive TPSs, but this approach makes
the optimization process mentioned above even more
difficult. Thus, either predefined fault trees are computed
with an cpsilon-optimal approach and symptoms are
ignored, or symptoms are included in the analysis and much
of the optimization capability is lost. As with the symptom
problem, failed instruments may be considered in the
definition of TPSs, but to include all possible combinations
is impractical. Thus the need exists for the TPS to be able
to adapt to the loss of equipment as it occurs.

INTELLIGENT AUTOMATIC TEST EQUIPMENT

In this section, we discuss an approach to intelligent
automatic testing that addresses each of the concerns raised

in the previous sections. In the-past, same- investigasems:.. -

have considered embedding expert systems into ATE as a,
means for overcoming these problems. The approach has:
worked for several other disciplines [Pople 1977; Shortliffe
1976). So far, this approach has not worked well in the
ATE problem for several reasons:

1. In new systems it is difficult to identify an expert on
the maintenance of the system.

2. Expert systems do not optimize well because cither
there is too much information to process or the
information is not well defined enough to enable
optimization,

3. Itis difficult to modify reasoning and search strategies
in the middle of a session, thus technician interaction
is limited.

In response to these difficulties, we applied the modeling
approach developed with STAMP and the infercnce
capability of POINTER™ to this problem. In developing
the knowledge base for this system, because of the unique
nature of the model, no commercial shell was used.
Rather, the ARINC STAMP tool was used to generate the
model, which was then directly manipulated by the
POINTER engine. In the intelligent test environment
described below, the test program will no longer assume
that required resources are available and that tests act on
evolving system states.

STAMP and POINTER

STAMRP is a tool for developing information flow models of
complex systems [Simpson 1985; Johnson and Unkle 1989].
These models are then analyzed by STAMP to evaluate the
testability of a design and generate diagnostic strategies. A
tremendous advantage to this approach is that STAMP will
provide an analysis of test suite shortcomings that can be
addressed before the TPSs are coded. This can improve
efficiencies and remove potential sources of error. Because
of the nature of the model, STAMP may be applied to

systems varying in complexity and technology, and it is fully
hierarchical and capable of handling problems that cross
maintenance levels. The companion tool, POINTER—
Portable Interactive Troubleshooter—provides an adaptive,
interactive environment for diagnosis [Simpson, Sheppard,
and Unkle 1989). The POINTER engine can be embedded
to provide intelligent troubleshooting in built-in test (BIT)
or ATE, or it can be used as a manual troubleshooting aid.
STAMP and POINTER together provide a framework for

* An improper diagnosis results in one of two field maintenance events. One is the cannot duplicate (CND) event where a fault indication is not repeatable.
The other is the retest okay (RTOK) event where a unit replaced at one level is found to be functioning nominally at the next level. See for example,

Simpson [1985] for an extended discussion.
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an integrated diagnostic architecture by using a common

modeling technique and processing system for all diagnostic
problems.

The Information Flow Model—STAMP

The process by which intelligent ATE systems are
constructed is completely different from the standard
approach to TPS development. The developer no longer
assumes the definition of a fault-isolation strategy (through
either directed search or an optimization process). The
developer, instead, constructs a model describing the
information flow in the system. This model can then be
used in an up-front analysis to improve system testability
before coding TPSs. Next, the simulation process changes.
The TPS writer can no longer assume that the tests are
using evolving states. Instead, neutral points must be
determined for each test (and test group) and the
simulations run from the ncutral points. This is called the
test encapsulation process. Finally, the individual tests are
coded and stored in a library to be accessed by the test
executive as required. There is no longer any need to
develop a complete test program to include the diagnostic
strategy.

The information flow model forms the knowledge base for
the application. The model provides the logical relations
between tests and conclusions in the system and further
enhances and expands on this information by providing
descriptions of test inference types, weighting factors, test
and conclusion groupings, and forced and recommended
sequencing [Sheppard and Simpson 1990]. Other systems
use similar approaches, such as IDSS [Franco 1988] and
ICAT [Cantone, Chesoweth, and Cassaro 1990].

The Test Executive—POINTER

Given an information flow model as discussed above, we
can apply an information-theory-based inference engine to
the model in order to optimize the fault-isolation sequence
and draw conclusions from the tests performed. The
system that serves as the inference engine is POINTER.
POINTER is an intelligent, interactive maintenance system
that was originally designed to guide manual
troubleshooting. We found that the process was directly
applicable to other problems in maintenance and diagnosis,
such as ATE and BIT, so we adapted POINTER to be able
to run independent programs. The result was an intelligent
diagnostic shell which became the test executive for our
intelligent ATE [Sheppard 1990].

There are five major elements of the POINTER test
executive. The first major element is the process of
optimization. This process is based on Shannon’s Theory
of Information and is called “entropy-directed search”
{Shannon 1948]. Second, the inference engine and the
metarules employed to guide the diagnostic process are

derived from STAMP. These metarules provide the model-
based reasoning capability [Sheppard and Simpson 1990].
Third, a number of methods were incorporated for
modifying the optimization process to meet the require-
ments inherent in real-world problems. These modifica-
tions are optimization process overrides that allow the
solution to be reasonable and still be verifiable. They
include sequencing requirements, groupings, and other
factors that make the test process realistic and achievable.
Fourth, two levels of learning have been incorporated in the
POINTER system. These learning clements include the
ability to adapt the optimization parameters to historical
data and to identify errors in the model and correct them
[Sheppard 1989]. Last, we incorporated reasoning under
uncertainty into the test executive, and we adapted the
Dempster-Shafer approach [Dempster 1968; Shafer 1976] to
evidential reasoning to overcome some limitations. We
added elements of Fuzzy logic [Zadeh 1981] and neural
networks [Sheppard 1990] to devise a complete uncertainty
engine.

THE ARINC INTELLIGENT AUTOMATIC TESTER

In this section, we discuss the specific elements of our
application. The ARINC Intelligent Automatic Tester
(IAT) is a small test station constructed using the principles
discussed above. The system uses off-the-shelf test
equipment, an MS-DOS-compatible test control computer,
the POINTER software as the test executive, and a library
of the encapsulated test programs written by ARINC
engineers [Dill 1990]. The IAT is shown in Figure 1.

Application—AV8B Power Supplies

The current application of the ARINC IAT is limited to
two systems: two cards from a high-voltage power supply
for the AV8B (Harrier) aircraft being used by the Navy.
The IAT system is intended to be used for depot-level
maintenance and is currently used by two technicians in
Annapolis, Maryland. A prototype manual diagnostic
system for the power supplies incorporating the same
models is being used in Cherry Point, North Carolina, for
depot-level maintenance of the power supplies. The
ARINC IAT is now a part of the complete ARINC line of
maintenance and diagnostics products.

Architecture

There are seven major elements in the ARINC IAT. First,
a library of test procedures contains the executable
programs for each test in the diagnostic model. Second, an
information flow model describes the system to be tested
and serves as the knowledge base for the IAT. Third, the
POINTER software serves as an intelligent test executive
for the IAT. Fourth, MS-DOS serves as the operating
system for the environment. Fifth, an 80386-based
microcomputer with an 80387 math coprocessor functions
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Figure 1. The Intelligent ATE

as the test control computer. Sixth, VXI and IEEE-488
instrumentation make up the test instrument suite. And
seventh, a test unit adapter—TUA (or interface test
adapter—ITA) provides a communications interface between
the UUT and the IAT. Figure 2 shows the basic system
configuration [Dill 1990].

The IAT is hosted in a C-size Racal-Dana 1262-10 VXI
chassis. This chassis houses a Racal-Dana Model 2251
counter/timer, a Datron Wavetek Model 1362 digital
multimeter, a Racal-Dana Series 1260 universal switching
system, and a Colorado Data Systems 73A-270 arbitrary
pulse/pattern generator. In addition to the VXI
instrumentation, this system contains two IEEE-488 bus-
controlled instruments: a Tektronix Model 2430M

oscilloscope and a Hewlett-Packard Model 6624A power

supply. Figure 3 shows the IAT with the instrument boards.
The interface test adapter is a Virginia Panel Series 90 Ten
Module Hybrid Connector System and modified enclosure.
This interface device is configured for testing the two UUTs
for the AV8B and contains no active circuitry.

POINTER, as described above, can be thought of as the
test executive for the IAT. POINTER operates on a

1210

generated model to select tests to perform, calls the
appropriate test program from the library, invokes the
execution of the test, reads the results of the test, draws
appropriate inferences from the test outcome, and either
chooses the next test or reports the results of the fault-
isolation process. The test selection process may be
modified or controlled by the technician.

The test programs for the two power supplies are
individual, independent test procedures that can be called
in any order. They have been written to meet the definition
of an encapsulated test. They are written in the C
programming language and control both the VXI bus and
the JTEEE-488 bus instrumentation. Each test procedure
can return one of five test results to POINTER as
described above: good, bad, untestable, manually interpret,
or manually perform.

Three Test Scenarios

To demonstrate the capability of the ARINC IAT, we use
three scenarios that may occur in testing a unit. Actually,
the IAT is capable of handling much more; therefore, these
scenarios serve as examples only.
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Full Test Scenario

The first scenario that will be described is one in which no
information is known about the system, and the system is to
be tested. A fault has occurred, and the IAT is going to
attempt to isolate that fault. The first step in the process
is to connect the UUT via the TUA to the IAT. Then the
appropriate model is selected. Next, safe-to-turn-on and
signature tests are performed to verify that fault isolation is
ready to proceed. Finally, diagnosis begins and the fault is
isolated.

Test with Failed Instrument

In the second scenario, diagnosis proceeds as in the first.
The difference lies in that we fail one of the test
instruments during fault isolation. In a traditional ATE
system, a failed instrument could cause fault isolation to
terminate without an answer. For the example, we will turn
off the oscilloscope during the fault-isolation run to
simulate that the oscilloscope has failed. The IAT will
detect the problem and continue to fault-isolate by choosing
alternative tests.*

Test with Hypothesis

In the final scenario, we will assume that the technician is
experienced with the UUT and, based on the reports, he or
she has an idea of what the fault is. Following the safe-to-
turn-on and signature tests, the technician may enter the
expected fault as a hypothesis. The IAT then proceeds to
choose tests to verify the hypothesis and, indeed, locates the
problem in fewer steps. If the wrong hypothesis were
entered, the IAT would collect that information, remove the
hypothesis, and continue to fault-isolate.

CONCLUSION

Some interesting insights came from the development of
this system. First, most real-world applications require
multiple technologies in order to get them to work properly.
When integrating artificial intelligence (AI) into an
application, no single Al technique is likely to solve the
problem. Thus integrating several techniques becomes
necessary. Second, when integrating several technologies,
each technique tends to be straightforward.

Thus, the difficulty does not come in implementing a
particular technique. Rather, the difficulty comes in
combining the techniques. Information provided by one
approach may require conditioning or interpreting before it

can be used by another approach. Further, different
approaches are occasionally completely incompatible and
cannot be integrated. These issues must be considered
whenever combining technologies—not just Al technologies.
Finally, it is clear that “academic” solutions to problems
rarely work without modification in the real world.

For example, in the optimization problem, it is nice to have
a provable optimal solution (or even an epsilon-optimal
solution), but in diagnosis, most problems have so many
constraints and time is such a critical factor, that optimizing
becomes nearly impossible, and using the original
optimization process on a single objective function may
yield inappropriate or incorrect results.

This paper has described an application of several artificial
intelligence techniques to the problem of performing
intelligent, adaptive, and efficient automatic testing. The
current approach to automatic testing involves writing test
programs that follow a predefined diagnostic strategy to
fault-isolate the system. Interaction from a technician is
climinated to the point that valuable experience and
expertise are completely ignored.  The application
presented is the first real ATE system incorporating
principles of inference, optimization, uncertainty, learning,
and the ability to adapt to user requirements in one
complete system. The techniques combined are necessarily
innovative, and they provide an innovative, integrated
approach to solving a difficult problem.
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