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ABSTRACT

The basic problem of diagnosis, which is extremely complex,

consists of choosing tests to perform, evaluating the tests,
drawing inferences, and forming conclusions. This problem
is complicated by difficulties associated with performing the
tests, such as inaccurate measurements, unskilled
technicians, or incomplete understanding of gathered
evidence. Approaches to solving these problems are treated
in the literature under the subject of “reasoning under
uncertainty.” Closely related to reasoning under uncertainty
is the problem of determining when enough evidence has
been gathered to draw a diagnostic conclusion. We call this
the termination problem.

Several techniques exist for addressing the termination
problem. Some of the approaches we considered include:

® Terminate when all of the tests are complete.

@ Terminate when a set of heuristics indicates
completion.

¢ Terminate when reasoning with certainty would
terminate.

® Terminate when a pattern of certainty values
indicates a conclusion can be drawn.

In our research, we decided to explore the last technique.
Because neural networks have been demonstrated to
recognize complex patterns, we chose to explore the
application of neural networks to this problem.

This paper presents the results of developing a trained
neural network that is embedded in a portable maintenance
aid called POINTER™-the Portable Interactive
Troubleshooter. This neural network is model-independent
and may be used on a wide class of diagnostic problems.
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We review the process by which we selected the network
paradigm, gathered the training and testing data set (with
a discussion on our uncertainty formulation), trained and
tested the network, and incorporated the resulting network
into POINTER. We also discuss the overall architecture
for reasoning under uncertainty as implemented in
POINTER.

INTRODUCTION

The 1980s saw a revolution in the approach to field
maintenance for complex systems. The testability and
diagnosis considerations continue to be placed deeper and
deeper into the design itself. Despite the shift in emphasis,
there still exist shortcomings in the field maintenance
process. ARINC Research Corporation developed two
tools to assist in developing testable systems and in
streamlining the maintenance process—STAMP® (System
Testability and Maintenance Program) and POINTER.
STAMP is a computer-based model that is used to conduct
testability analyses and develop fault-isolation strategies to
improve system maintenance. The dependency modeling
approach incorporated by STAMP permits analysis of a
wide range of systems, including digital, analog,
digital/analog hybrid, electrohydraulic, and electro-
mechanical. STAMP has been used to analyze systems in
various stages of the acquisition process: preliminary
design, prototype, redesign, and operational. Several of
these applications have included analyses of built-in test
(BIT) or have used built-in test equipment (BITE) and
other forms of automatic and semiautomatic test
equipment. In addition, the particular levels of analysis
have varied from macro (full system) to micro (piece-part
level), with several levels in between, for example, line and
shop replaceable units (LRUs and SRUs) or weapon and
shop replaceable assemblies (WRAs and SRAs).

For many systems that STAMP has analyzed, significant
improvements have been achieved, and for some systems,
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order-of-magnitude improvements have been achieved [1,
2]. The software is mature and has been used on more
than 50 systems. It is currently being used by ARINC in a
number of applications.

POINTER, which was derived from STAMP, uses the
system model generated in STAMP for its knowledge base.
With the system model, POINTER interactively presents
test material and guides the maintenance process through
fault isolation. At each step, POINTER examines the
current system state to determine the next best test to
perform. The basic processes of modeling and knowledge-
base development, as well as the testability and fault-
isolation output, are described in depth in the literature [3-
5] and are not discussed in this paper.

The process of diagnosing complex systems requires
determining the tests available, how to perform these tests,
the appropriate order for sequencing the tests, and the
conclusions to be drawn from the test outcomes. In many
diagnostic systems, test outcomes are assumed to be 100%
certain, and diagnosis proceeds through a strict partitioning
of the answer set into feasible and infeasible conclusions.
Frequently, this approach will not adequately solve the
problem because of uncertainty in the testing process.

THE PROBLEM

POINTER provides a flexible, interactive approach to fault
isolation, taking advantage of the optimization and inference
techniques used in STAMP. One of the shortcomings of
the POINTER system arose from the assumptions implicit
in the STAMP approach to testability—the assumptions that
the model is correct and test outcomes are correct. No
provision existed for allowing uncertainty in the fault-
isolation process. As part of its 1990 in-house research and
development program, the ARINC Advanced Research and
Development Group incorporated an approach to
“reasoning under uncertainty” into the POINTER system.
The approach uses a modified form of Dempster-Shafer
evidential reasoning described in the literature [6-9].

A typical-fault isolation session in POINTER involves
performing tests, evaluating the results of the tests,
assigning a value of good, bad, or unknown to the results,
and determining the failure. In addition, confidence values
for the test outcomes may be specified. For example, in
addition to saying a test is bad, the technician is able to say

that his or her confidence in that outcome is certain,

somewhat certain, somewhat uncertain, or uncertain [8].
These qualifiers are then converted to confidence factors
that are used to compute evidential statistics for each
conclusion in the POINTER model [9].

The problem addressed in this paper is common to systems

using uncertainty in their calculations and can be phrased
as follows: At what point has enough information been
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gathered so that one may declare an answer? In terms of
the fault-isolation problem, we are interested in determining
the point at which additional testing is providing minimal
new information. We call this the termination problem.

ALTERNATIVE APPROACHES

The planned approach for using evidential reasoning
involves having POINTER collect evidential data during a
traditional inferential session. ~When an inferential
conclusion is drawn, the evidential data indicate the
probabilities of failure for each conclusion in the model.
Several alternative approaches to the termination problem
were considered for the POINTER system.

First, fault isolation could stop when POINTER draws a
conclusion under normal inference. Here, when POINTER
acquires or infers an outcome for each test in the model, it
would compute the expected failure with its corresponding
probability. Then further testing could be requested by the
operator. The problem with this approach is that if
additional testing is required after the inferential process
normally ends, this testing would be cumbersome.

Second, fault isolation could terminate after all tests are
performed at least once. Here, test inference would have
no effect on termination, so the result would be
comprehensive testing of the system. Unfortunately,
optimization of test strategies becomes irrelevant, and the
testing could take too long. This approach may be used in
conjunction with some other approach, but only as a final
resort to end the test process.

Third, a heuristic could be applied. For example, several
STAMP and POINTER users surveyed suggested that
POINTER should terminate when the highest probability of
failure is at least twice the value of the next highest
probability [10]. The problem with this approach is that no
two users fully agreed on when termination should occur
when given actual data, so it is unlikely that any user would
be satisfied with a chosen heuristic.

The final approach arose from the observation that the set
of probability values for the conclusion describes a pattern
of some sort. We thought that it might be possible to train
a neural network to recognize the patterns and to
determine when to terminate. In order to train the
network, we decided to obtain data from STAMP and
POINTER users and combine the recommendations of
these “experts” into a training set. Obviously, this approach
leads to a problem similar to the heuristic approach;
however, the advantage to the approach is that the network
can be constructed from actual data without having to
extract a heuristic from the experts. The neural network
approach was ultimately selected as the primary termination
determinant.




THE NEURAL NETWORK APPROACH

In constructing the neural network for POINTER, we first
examined the form of the available data to determine what
information would be useful for the network. We
determined that a probability of failure for each conclusion
was sufficient. The probability values would be derived

from the evidential statistics computed throughout the

testing process, as described in the next section.

Second, we needed to determine what type of network was
appropriate for the problem. Two general forms of
networks  exist—supervised learning networks and
unsupervised learning networks. In supervised learning,
inputs and expected outputs are given to the network during
training. The network then learns the relationships between
the inputs and outputs and develops an ability to generalize
to unknown cases. Unsupervised learning, on the other
hand, learns self-contained patterns in the data without the
assistance of a teacher. In other words, expected outputs
are not provided in training because, generally, expected
outputs are not known. Because we surveyed STAMP and
POINTER users, we selected supervised learning. In
particular, the back-propagation network was chosen
because of its proven reliability in situations such as these.

Next the training data set was constructed. This process
consisted of determining obvious cases and generating not-
so-obvious cases, surveying the experts on how to handle
the not-so-obvious cases, and putting the data in a form
suitable for the network. The network was then trained
using the generated data.

Because it is not sufficient to examine the performance of
the network on training data alone, a separate test data set
was generated. The data set consisted of situations not
covered by the training data, and the network was evaluated
based on how it performed using the data. The test data
were run through the network, and the results were used to
evaluate the network.

EVIDENTIAL DATA

As described, the process for calculating uncertainty in
POINTER is a modified form of the Dempster-Shafer
evidential reasoning process. Statistics generated from
testing using this process need to be transformed into data

suitable for a neural network. We followed the approach

discussed in this section.
Support and Plausibility

First, support and plausibility values are collected for each
conclusion in a given system. As testing is conducted,
evidence is gathered that either supports or denies
conclusions in the conclusion set. The support measure
quantifies the amount of supporting evidence for a given
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conclusion and is given by the confidence in the test
outcome. Plausibility, on the other hand, provides a
measure of the denial of conclusions and is simply one
minus the support of all conclusions not supported by the
test outcomes. These measures are combined as testing
proceeds using a modified form of Dempster’s Rule of
Combinations. See Dempster [7] and Simpson and Graham
[9] for more detailed discussions of this calculation.

Bayesian Probability
A traditional approach to reasoning under uncertainty
involves computing probabilities using estimated prior

probabilities, Pr, and known evidence gathered from testing.
This evidence is then combined using Bayes’ Rule:

Pr{concl)Pr{smpt | concl]

Priconcl,|smp1] =
Y Priconcl)Prismpt | concl))
i

where concl; is the ith possible conclusion in the set of
conclusions and smpt is the combination of all evidence so
far (i.c., the set of symptoms known).

The major problem with the Bayesian approach is
determining the prior probabilities. These are usually
determined either by tracking real data or by estimating the
probabilities. The advantage of the Dempster-Shafer
technique is that prior probabilities do not need to be
known. Support and plausibility measures are determined
solely by testing, the confidences in the test outcomes, and
the known relationships between tests and conclusions.

Nevertheless, it is still desirable to use probability values,
because these values are familiar to most people. In fact,
a relationship is defined between probability and the
evidential statistics [7]:

Support[concl) < Priconcl] < Plausibility[concl}.

In order to simplify both the neural network and the
process of surveying the experts, an estimate of the
probability was computed for each conclusion as a function
of support and plausibility. The estimated probabilities
were then used in polling the experts and as data for the
neural network,

The Unanticipated Result

The Dempster-Shafer technique is not without flaws. One
of the greatest flaws in the technique lies in the way it
records total uncertainty. If any test is performed that
provides any evidence in support of some conclusion, then
uncertainty is reduced—even in the event of a conflict with




known information. Ultimately, uncertainty disappears
altogether. This was not a satisfying feature, so Simpson
and Graham [9] introduced a new conclusion into the
problem: the unanticipated result. The unanticipated result
is never denied (..¢., it always has plausibility of 1.0), and it
is supported only when a t :st outcome is inconsistent (ie.,
conflicts) with previous test outcomes. Thus, uncertainty
becomes a combination of Dempster-Shafer uncertainty and
the support for the unanticipated result.

BACK-PROPAGATION

The back-propagation network is called a mapping network
because it solves the following type of problem. Assume we
have a function, F, that maps a set of inputs, /, into a set of
tasgets, T (i.e., F: I = T). Assume also that it is impossible
to present all instances of I for training (perhaps because /
is an infinite set). We want to lcarn F using a subset of I,
which can then be used to generalize tc all instances of I.

As a practical approach to the problem, we can choose I,

which is a subset of I, and T, which is the corresponding
subset of T. We will use these two sets to learn the map
F:I - T, We then want to present some inotinl, toF,
as follows:

F:i - T, = F()

This corresponds to the generalization described above.

The back-propagation network solves this problem in the
following way. A network is constructed (called a feed-
forward network) in which the first layer represents the
form of the input data (i.., input data are transformed so
that they can be entered into the network at the first layer),
the last layer represents the desired output of the network,
(i.e., the targets), and zero or more “hidden” layers are
positioned in between the input and output layers.

All of the nodes at a given layer are connected to every
node at the next higher layer. Associated with each of
these connections is a weight that represents how strongly
a signal will pass between nodes. Initially, these weights are
set to random values. The process of training the network
involves modifying the weights so that the inputs are
transformed to the outputs as the signal is propagated.

The term “back-propagation” comes from the learning
algorithm. The first time an input is passed through a
network, the output has a very low probability of being
correct. Back-propagation involves computing an error
value corresponding to how much the actual output differs
from the expected output. A complete derivation of the
back-propagation learning rule is described by Rumelhart,
Hinton, and Williams [11].

The actual process of training the network involves multiple
presentations of the examples to the network. The network
weights are modified gradually, following the error surface,
defined by the network’s weight space, down the gradient to
a local minimum. This is referred to as “gradient descent.”
When the network settles, we hope it contains a solution to
the mapping problem.

THE POINTER NEURAL NETWORK

After examining the data available from the evidential
process, we were concerned that a separate network would
need to be constructed for each model developed.
However, after considering the task and the assumptions
implicit in the process, a means by which one network could
be used for all models was developed. This has the greatest
impact on the input layer.

First, the unanticipated result must be present for all
problems. Second, since terminating fault isolation rather
than identifying the failure is the network objective, one
node should correspond to the highest expected probability
value. Third, in order to determine if the highest expected
probability is “high enough,” it needs to be compared with
at least one other value as well as the uncertainty. Because
we are still assuming that only a single failure will be
isolated at a time, the comparison is made with only the
next highest expected probability. Thus, only three nodes
are required for the input layer corresponding to highest
expected probability, second highest expected probability,
and probability of an unanticipated result, respectively.
Because the network only has a simple “yes/no” decision to
make, the network only needs a single output. Finally, to’
handle nonlincarities inherent in this problem, we included
a hidden layer. After several iterations, the hidden layer
was developed with three nodes.

Traditionally, back-propagation uses a sigmoid function for
its activation function. In other words, the function is S-
shaped and is bound on the bottom and the top by zero and
one, respectively. The actual function we used was:

1
1 +e*

) =

where x is the raw output of a given node. The reason for
the function is that the back-propagation algorithm requires
a differentiable threshold function. The logistic function
meets this requirement and behaves extremely well.

DEVELOPING THE TRAINING DATA SET
Given the ncural network to solve the problem of

terminating fault isolation, we needed to develop a set of
training data for training the network. Three steps were




followed to generate the data: generating the training
cases, surveying the experts, and adapting the data.

Generating the Training Cases

In generating the training data set, we began with a model
with 10 conclusions plus an unanticipated result, using
known cases. These consisted of the following:

1. One conclusion with 100% probability and all others
with 0% probability.

2. One conclusion with 100% probability, the
unanticipated result with 100% probability, and all
other conclusions with 0% probability. (Note: This
is not a realistic case, but it sets the bounds.)

3. All conclusions with uniform probability.

The first two cases resulted in termination, and the third
case resulted in no termination.

Because no real data currently existed for this problem, we
developed a data generator to generate examples that would
not necessarily have an obvious answer. This program went
through the following steps:

1. Probability values for the 10 conclusions were
generated at random according to a lognormal
distribution.

2. Probability values for unanticipated results of half of
the cases were generated at random according to the
lognormal distribution.

3. The random values for the 10 conclusions were
normalized to sum to 1 - Pr[unanticipated result].

4. All values less than or equal to 0.1 were set to zero.
This corresponds to less than a uniform value for the
10 conclusions, and these were deemed not to be
“reasonable” conclusions (thus set to zero).

5. The 11 probabilities were normalized again.
Surveying the Experts

Forty training cases were generated using the above
algorithm. The training cases were presented to a set of 15
experts, and the experts determined how to train the neural
network. The survey was conducted in three steps.

First, a miniature version of the survey was constructed in
which 11 training cases were given to the experts to
evaluate. The purpose of the shorter survey was to educate
the experts and get them thinking about the problem. Also,
the 11 cases would be repeated in the longer survey and
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would be used as an indicator of consistency in evaluating
the cases.

Second, a longer survey was constructed with 44 training
samples. The four extra samples were internal duplicates
used to verify consistency. The long survey was given to the
experts over one week after the short survey was given.

As an additional consistency check, the experts were asked
to circle the candidate conclusions for each case. This
request was made because, in preliminary versions of the
survey when given to trial subjects, the incorrect conclusion
was indicated by two subjects when a failure was indicatcd.
Following the formal survey, one more subject improperly
identified the candidate failures.

The third step took place immediately following the long
survey and was intended to clarify the opinions and
approaches used by the experts. In this step, the cxperts
were asked to respond to eight opinion questions about the
problem studied and the survey. Following an examination
of this portion of the survey, two-thirds of the expert
opinions had to be rejected. A detailed discussion of the
survey results is given by Sheppard [10].

Adapting the Data

The final training data set was derived from five expert
responses. The five responses were selected following the
consistency analysis of the survey results. Once the training
set was completed (i.e., the answers were associated with
each training case), the data were transformed into data
compatible with the network architecture as follows:

1. The maximum probability was assigned to node one.

2. The second highest probability was assigned to node
two.

3. The probability of an unanticipated result was
assigned to node three.

4. The three probability values were renormalized to
sum to one. This ensured that the data were
independent of the size of the model.

TRAINING

The neural network was trained using the data generated
according to the above process. Training consisted of
presenting data to the network 5,000 times. Learning and
momentum terms were set to 0.2 and 0.5, respectively.
Following training, the network performed with 100%
accuracy and a total error (based on the error function used
in back-propagation) of 0.007484.



DEVELOPING THE TEST DATA SET

In order to evaluate how well the network generalizes to
unknown cases, a set of data representing the unknown
cases was generated. This data set contains all
permutations of three numbers to two decimal places under
the following constraints:

1. The numbers are all in the closed interval [0,1].
2. The numbers all sum to 1.0.

3. The first number is always greater than or equal to
the second number.

Exactly 2,601 cases were generated.
TESTING THE NETWORK

All 2,601 test cases generated were run through the trained
network. No additional training was done. After running
the network, the results were scanned for reasonableness.
We found that, as unanticipated result increased, the
network became more likely to terminate—indicating that,
under uncertainty, the network was conservative with its
testing. This was how we wanted the network to perform.

In addition to scanning the test results, we generated a test
survey for the experts to complete. The survey consisted of
20 cases selected at random from the test data (Table 1).
This survey was given to the five experts used to generate
the training set. On average, four of the experts agreed
with the neural network on each test case. In one case, the
neural network indicated termination was not appropriate
where four experts said it was appropriate. This case was
at the neural network decision boundary and could have
been called either way. Thus, overall, network performance
was in agreement with the experts.

INTEGRATING THE NETWORK
The POINTER neural network is one element in a much
larger system for handling uncertainty. This system has five

components:

1. Aninference engine using first-order logic to guide
initial evidence gathering,

2. A “qualifier” menu to be (optionally) attached to

each test. This menu describes the confidences in
the test outcomes and is based on the fuzzy logic
work by L. Zadeh [12].

3. A statistical inference engine using Dempster-
Shafer evidential reasoning that tracks the support
and plausibility measures associated with each
conclusion.
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Table 1. Results of Validated Survey

Expert Responses Network

Case No. Yes No Response
1 4 1 Yes
2 0 5 No
3 5 0 Yes
4 4 1 No*
5 1 4 No
6 4 1 Yes
7 1 4 No
8 5 0 Yes
9 4 1 Yes
10 5 0 Yes
11 5 0 Yes
12 3 2 Yes
13 5 0 Yes
14 5 0 Yes
15 5 0 Yes
16 1 4 No
17 4 1 Yes
18 1 4 No
19 5 0 Yes
20 4 1 Yes

* This is the only disagreement. This case was also
borderline for the network.

4. The neural network described in this paper to
determine when to terminate fault isolation.

5. A learning procedure to expand the unanticipated
result into new conclusions and to modify
dependency relationships based on direct conflicts in
testing.

The overall POINTER reasoning process was designed to
be “user-driven.” In each instance of a fault isolation, the
computer can suggest testing to be done, but the user can
dictate what is to be done and control both the isolation
and evidential processes. For example, a user may stop and
get an answer whenever he or she deems it appropriate.
Also, when the computer suggests an answer, the user may
request additional testing. The neural network in this case
acts as an expert advisor on when sufficient evidence has
been gathered. These and a number of other features are
described in detail by Simpson, Sheppard, and Unkle {13].
A more complete discussion of the portable maintenance
aid and its approach to reasoning under uncertainty is given
by Simpson and Sheppard [8].




CONCLUSION

A unique approach to handling a difficult problem in any
knowledge-based system incorporating reasoning under
uncertainty has been developed in answering the question:
“When has sufficient information been gathered to declare
an answer?” By using a meural network to solve this
problem, we were able to encode expertise gathered from
maintenance experts into the process without explicitly
describing the heuristics used. We were able to accomplish
this by training the network to mimic known cases and then
to generalize to unknown cases. So far, all tests indicate
that the network should perform well in a fielded
environment in handling fault isolation in an uncertain test
situation.
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