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ABSTRACT 

The most difficult part of system maintenance is diagnosing 
failures. System expertise is needed, but manuals cannot 
cover all the unique situations and in-house experts are 
difficult to retain because of today’s budgets. The resulting 
“expertise gap” has led to the development of “intelligent” 
diagnostic aids to compensate for the missing expertise. 

The first computer-assisted diagnostic aids attempted to 
capture and emulate the reasoning process of experts by 
encoding heuristics they used for diagnosis. Despite some 
early successes, capturing expertise is a high-risk process. 

An alternative approach to system maintenance uses a 
model of the system as a foundation for its knowledge base. 
This model-based approach differs from the rule-based 
approach in the way it incorporates and processes 
knowledge about the system. A particular type of model, 
the information flow model, is very useful for diagnosing 
problems. This approach, however, suffers from a complex 
model building process that is labor-intensive. 

Recently, the model building process has been automated 
by a tool that enables both top-down and bottom-up 
modeling. As discussed in this paper, this type of tool has 
the potential to enable widespread usage of the information 
modeling approach to system maintenance. We also discuss 
how the automated modeling approach can be used with 
machine learning techniques to enable the process to adapt 
with changing systems. 

INTRODUCTION 

Developing diagnostic systems constitutes a complex and 
labor-intensive task. In the past, analysts developed 
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diagnostic systems (generally as technical manuals and fault 
trees) using simulation and failure-modes analysis. With 
the advent of the expert system, knowledge engineers began 
encoding heuristics used by expert diagnosticians in the 
hopes of developing computer-based systems that 
performed at the level of the expert. In the medical 
domain, Shortliffe showed that rules could successfully 
represent complex medical knowledge, and his MYCIN 
system was capable of diagnosing several infectious 
diseases.’ Unfortunately, the expert system has failed to 
satisfy the maintenance requirements of modem systems. 
This arises largely because of the lack of system experts or 
because experts often cannot agree, experts cannot explain 
intuitive conclusions, and new systems have no experts. 

In response to problems associated with manual diagnosis 
and the deficiencies of expert systems, analysts and 
engineers are exploring an alternative approach to 
intelligent diagnosis-model-based reasoning. Model-based 
reasoners use mathematical representations of the systems 
to be diagnosed and generally appear in one of two forms: 
behavioral or structural. The behavioral model incorporates 
knowledge from the theory of operation and establishes 
mathematical transfer functions that characterize the 
functions of the system. When a system fails, its behavior 
changes in a such a way that the discrepancy with the 
simulation model identifies the specific fault. The structural 
model begins with knowledge about the topology of the 
system (i.e., how the components are connected) and 
combines information obtained from functional testing. 
The resulting model defines a knowledge network (similar 
in function to a rule base but different in the type of 
knowledge used) that is used to choose a test and to draw 
inferences from the test outcome. Davis’ developed a 
system that combined the behavioral model and the 
structural model for electronic circuit diagnosis. 
Unfortunately, his system was limited to simple circuits. 
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Today, several companies provide model-based reasoners as 
diagnostic aids. Most of these aids use a variation of the 
structural model as their knowledge base due to the 
apparent simplicity in constructing the models. In 
particular, Cantone, et al., Simpson and Sheppard, and 
Pattipati and Alexandridis have developed generic 
architectures for fault diagnosis using dependency-based 
models (i.e., information flow models).M We assume a pair 
of tools that function together that use an information flow 
model to assess system testability and diagnose f a u l t s 4 e  
System Testability and Maintenance Program (STAMP@) 
and the Portable Interactive Troubleshooter (POINTERn). 

Tremendous research and commercial potential in 
computer-based diagnosis exist in the area of developing 
knowledge bases for the diagnostic system. In the past, 
analysts constructed knowledge bases through a cycle of 
interviewing experts, coding rules, generating prototypes, 
and testing the prototypes against data bases derived from 
the experts. The process continues until the resulting 
diagnostic system performs according to some set of user 
requirements. Unfortunately, the approach is generally ad 
hoc and incomplete. 

For model-based systems, modelers study design documents 
and existing technical manuals to learn the “physics” of the 
system to be diagnosed. Resulting models become the 
knowledge base for diagnosis. Although more rigorous in 
their development, models constructed in this way are 
highly prone to error because of the inherent complexity of 
the systems modeled. And with advances in technology, 
complexity grows proportionately. Therefore, system 
modelers need to control the complexity of the diagnostic 
problem while still producing robust and efficient models 
for diagnosis. 

Research in machine learning has provided a new avenue 
for developing models and knowledge bases for diagnosis. 
These new approaches evolve models based on actual 
examples of failure and diagnosis. Using these examples 
(and possibly an initial model of the system), diagnostic 
systems learn the relationships between the system being 
tested and the faults causing anomalous behavior. 

In this paper, we explore an alternative learning approach 
to assist the modeling process. We describe a system in 
which we use a simulation model as a “teacher” to identify 
test attributes automatically for the system to be diagnosed. 
The automated modeling system begins with a simulation 
model and evaluates tests in a nominal situation to 
determine the limits and tolerances on these tests. Then 
the system sequentially fails the components in the system 
and reruns the simulation to determine which tests will fail. 
The results of these simulations define an uttribute map for 
the system that becomes the basis for an information flow 
model to be processed by STAMP and POINTER. 

THE INFORMATION FLOW MODEL 

The model-based approach incorporates techniques from 
information fusion and artificial intelligence to guide 
analysis. Tests provide information, and diagnostic 
inference combines information from multiple tests using 
symbolic logic and pattern recognition. 

The structure of the information flow model includes two 
primitive elements: tests and fault-isolation conclusions. 
Tests include any source of information that can be used to 
determine the health of a system. Fault-isolation 
conclusions can include failures of functionality, specific 
nonhardware failures (such as bus timing errors), specific 
multiple failures, and the absence of a failure indication. 
The information obtained may be a consequence of the 
system operations or a response to a test stimulus. Thus, 
we include observable symptoms of failure processes in the 
information flow model as tests. Doing this allows us to 
analyze situations that involve information sources other 
than formally defined tests (here, however, we discuss only 
defined tests). The purpose of our model, of course, is to 
combine these information sources (tests) to derive 
conclusions about the system being diagnosed. 

The basic representation of the information flow model 
includes both a dependency representation (structural 
model) and a logical representation (logic model) of the 
system being analyzed. In addition, the information flow 
model includes the definition of groups of logically related 
tests and conclusions. In this representation, we define 
logical values for tests and fault-isolation conclusions. 
Specifically, if a test fails, it is true; if a test passes, it is 
false. An asserted conclusion (i.e., a failure) is true; a 
conclusion eliminated from consideration is false. (see 
Ref. 5 for a discussion of the information flow model.) 

We simplify the scope of the model in the following way. 
First, we assume that the tests correspond to specifically 
defined observation points within a system. Our example 
is a simple analog circuit, and these points correspond to 
probes in the circuit. In addition, we limit fault-isolation 
conclusions to correspond to specific failure modes of the 
circuit components. For example, a transistor may fail in 
at least one of six ways: 

0 Open collector 
0 Open base 
0 Open emitter 
0 Collector-emitter short 
0 Base-emitter short 
0 Collector-base short 

For a given transistor in a circuit, we include one fault- 
isolation conclusion for each of these failure modes in the 
model. Here, we consider developing only an attribute 
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map, so tests depend only on fault-isolation conclusions 
(later processing recovers test-to-test dependencies). A test 
depends on a fault isolation conclusion (i.e., failure mode) 
if and only if the test fails when the failure mode exists, and 
the failure mode does not exist when the test passes. 

LEARNING IN FAULT DIAGNOSIS 

A problem common to all computer-aided diagnostic 
systems is that the knowledge bases (whether rule bases or 
models) are difficult to develop. As a result, errors are 
common. This leads to ineficient and even incorrect 
diagnosis. Further, as the complexity of systems increase, 
the likelihood of erroneous models increases. Two 
questions naturally follow from this problem: 

1. How does one develop models that minimize the 
chance of error? 

2. In the event errors occur, how does one identify and 
correct the errors? 

Work @ the area of machine learning suggests potential 
solutions to both problems. Through a process of 
simulation or fault insertion, examples can be generated 
that capture the failed behavior and determine test-to-fault 
relationships. Also, discrepancies in repair 
recommendations and actions taken to repair the system 
help identifl errors in the knowledge base. Finally, actual 
use of a diagnostic system provides information related to 
improving diagnostic performance. Before addressing the 
first question, we review learping techniques. 

Simpson and Dowling describe a system that learns 
optimization data through actual diagnosis.' As systems are 
tested, the diagnostic aid times tests and records failures. 
Then the aid modifies the test time and failure rate weights 
to reflect the recorded events. Future diagnoses use the 
modified weights during optimization. 

Another approach becoming popular involves connectionist 
systems (also called neural networks). Perhaps the most 
frequently used approach is back-propagation? Diagnostic 
neural networks map test results to diagnoses through a 
process of training. When training a neural net, the 
network processes several example test-fault combinations 
and learns by minimizing the error in its output through a 
hill-climbing algorithm. In addition, neural networks have 
been trained to interpret signals generated from running a 
test to determine if a test has passed or failed? We have 
also developed a neural network to interpret the results of 
the inference process (under uncertainty) with the 
information flow model to determine if additional testing 
is necessary." 

The learning method applied for neural networks frequently 
falls in the category of similarity-based learning (SBL). 
DeJong describes SBL as "discovering a combination of 
features that best classifies the regularity in a set of 
examples. The resulting generalization over the examples 
is the new concept."" In SBL, a teacher presents several 
examples to the learning system until the system recognizes 
the regularity discussed by DeJong. 

In the event domain knowledge is available, this knowledge 
can be used to reduce the number of training instances in 
learning. Explanation-based learning (EBL) incorporates 
a detailed domain theory and a detailed functional 
specification of the concepts to be learned. Using the 
domain knowledge, the system learns concepts with single 
training instances." In fault diagnosis, an example of a 
misdiagnosis together with a model of the physics for the 
technology employed in the system can be used to derive an 
explanation of an appropriate diagnosis. From this 
explanation, the learning system modifies the diagnostic 
model to include the knowledge of the correct diagnosis. 

The automated modeling approach we describe fits loosely 
within explanation-based learning. The simulation model 
forms the domain theory to be used to diagnose. In this 
case, there will be no misdiagnoses. Rather, the teacher 
inserts faults in the simulation model and runs another 
simulation. The learning system examines the behavior of 
the simulation and compares that behavior to what it 
expects given a functional system. It identifies discrepancies 
at the probe points in the simulation and explains the 
discrepancy with the knowledge that the system has failed. 
From this explanation, the learning system identifies a set 
of attributes to be used in the attribute map for the circuit. 
The complete attribute map then forms the basis for the 
information flow model. 

SYSTEM SIMULATION 

The first step in the automated modeling process is to 
develop a baseline simulation model of the system to be 
diagnosed. For our discussion, we use the example circuit 
in Figure 1. This circuit has 5 transistors, 1 capacitor, and 
10 resistors. In addition, a 1Zvolt dc power supply is 
available, and 10 volts dc are applied as input. An analyst 
begins by writing a simulation model of the circuit. This 
simulation should reflect nominal behavior of the circuit 
because it will be used to determine test limits. We chose 
to use the PSpice" circuit simulation package to implement 
our prototype modeling tool. (PSpice is a registered 
trademark of MicroSim Corporation.) The baseline PSpice 
simulation model for this circuit is shown in Figure 2. 
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a i  2 i 3 ~ 2 ~ 3 4 3 9  
a2 4 3 5 ~ 2 ~ 3 4 3 9  
a3 8 4 7 ~ 2 ~ 5 4 1 6  
94 6 8 9 P2N3439 
a5 6 9 12 P2N3439 

C1 2 5 CMOD 500PF 

R l  1 2 RMOO 1OOK ' 

R2 2 0 RMOD 10K 
R3 6 4 RMOD 270K 
R4 6 7 RMOO 15K 
R5 7 0 RMOD 5K 
R6 8 11 RMOD 1OOK 
R7 9 10 RMOO 27K 
R8 10 11 RMOD 6.8K 
R9 12 11 RMOD 10K 
R10 10 5 RMOD 8.2K 

.LIB 

.MODEL RMOO RES(R=l DEV=lO%) 

.MODEL CMW CAP(C=1 DEV=105) 

VPS 6 0 30 
VNPS 11 0 -30 
VINPUT 1 0 10 

.END 

* 
* 

* 

Figure 2. PSpice Baseline 
Simulation File for the Example Circuit 

-38 UDC 

Figure 1. Example Circuit 

In addition to the circuit file, PSpice requires additional 
information to be included with each simulation. PSpice 
runs simulations for determining test limits (the worst case 
analysis) and then runs several simulations for each possible 

failure mode for each possible component in the circuit. 
Currently, we have developed a library of 23 failure modes 
and 3 types of tests. The 23 failure modes address the 
resistor, the capacitor, the transistor, the diode, a voltage 
source, and various integrated circuits; and 3 types of tests 
include dc, noise, and transient. 

For each simulation, several special fies need to be written. 

a Test Description File. The test description f ie  
specifies the location of probe points in the circuit 
and the parameters necessary to evaluate the probe. 
Usually, an entry in the file includes a test label, the 
test type, the test location, and time parameters for 
making the measurement. 

a Test State File. The test state file specifies the tests 
that belong to each state in the circuit. 

a Special Component File. At times, the basic 
component in the PSpice library is insufficient to 
describe a particular component in the circuit. The 
special component file allows the engineer to specify 
the reference designator and the component type so 
that the correct failure modes can be associated. 

e Common Setup File. The common setup file allows 
the engineer to group simulation setup commands ia 
a separate file rather than in the actual circuit file. 
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This permits easy modification of operating 
conditions without changing the actual circuit file. 

Statement Addition File. The statement addition file 
associates PSpice commands with specific operating 
states so that only relevant commands are included 
in the simulation. When the automated modeling 
program invokes PSpice, it first inserts the relevant 
commands from this file into the circuit file. 

Statement Deletion File. Similar to the statement 
addition file, the statement deletion file specifies 
commands in the PSpice circuit file that do not apply 
to particular operating states. When the automated 
modeling program invokes PSpice, it begins by 
deleting the relevant commands from the circuit file. 

Special Test File. The special test file permits tests 
to be associated with specific failure modes in the 
circuit. This prevents the automated modeling 
system from applying the special test to components 
not relevant for analysis. 

system failures. The following two sections describe these 
processes. 

Determining Test Limits 

After the engineer constructs the baseline circuit file, he or 
she runs PSpice to determine test limits. In addition to the 
circuit file, the engineer constructs a test file describing 
probes in the system. The automated modeling program 
inserts the probes in the circuit file and rum the circuit 
using a worst-case analysis. PSpice runs each test 
individually in a default state, although all the tests 
associated with a given state could be run simultaneously. 
The worst-case analysis varies the input through a range of 
nominal values to determine the limits at the probe points 
in the circuit. These limits define the range of values for 
the corresponding test to pass. If the probe detects a value 
beyond the limits, the test fails. 

For the sample circuit, we have defined five tests: two are 
dc tests, two are transient analyses, and one is a noise test. 
Because of the nature of transient analysis, the two 
transient tests expand to three tests corresponding to 

These data files define the complete input data package for “voltage-peak-positive,” “voltage-peak-negative,” and 
the automated modeling system. Once the files have been “voltage-peak-to-peak.” The five tests examine signals from 
defined, the automated modeler proceeds to run several the Q4 and Q5 transistors, and their test limits are given 
simulations to compute test limits and ident@ attributes of in Table 1. 

Table 1. Test Limits for Sample Circuit 

Test Label Lower Limit Upper Limit 

DC, Q4 

Voltage Peak-to-Peak, 0 4  

Voltage Peak Pos., Q4 

Voltage, Peak Neg., Q4 

DC, Q5 

Noise, Q5 

Voltage Peak-to-Peak, Q5 

Voltage Peak Pos., Q5 

Voltage Peak Neg., Q5 

TQCE 

TQCETR-VPP 

TQCETR-VP 

TQCETR-VN 

TQ5-E 

TQ5-EN0 

TQ5-ETR-VPP 

TQ5-ETR-VP 

TQ5-ETR-VN 

-15.12 

14.05 

1.01 

-l3.04 

-15.64 

0.00 

13.92 

0.48 

-l3.46 

-11.11 

17.13 

4.29 

-12.84 

-11.62 

1.91 x 108 

17.21 

3.75 

-13.44 
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Fault Insertion 

Once the test limits have been determined, the automated 
modeler inserts faults into the circuit according to the 
failure mode library. Only one component is considered at 
a time, and only one operating state is considered at a time. 
Au tests appropriate to an operating state are considered 
simultaneously. To insert a fault, the automated modeler 
modifies the circuit file by eliminating the appropriate 
component line and inserting appropriate commands from 
the failure mode library. For example, if the capacitor in 
the sample circuit shorts, the following two lines will be 
inserted in the circuit file: 

RADD1 2 5 RES 0.0001 
C1 2 5 CMOD 500PF 

As noted, the automated modeler runs simulations for each 
fault insertion and examines the PSpice output report to 
determine which (if any) tests detect the failure. The 
attributes of the inserted failure mode make up the failed 
test. For the capacitor that has shorted, the automated 
modeler finds the following attributes: 

TQ4-ETR-VPP, TQ4-ETR-VPI TQ4-ETR-VN, 
TQS-ETR-VPP, TQ5-ETR-VP, TQS-ETR-VN 

As a result, the automated modeler has determined that 
each transient analysis test depends on the failure of 
capacitor C1 (i.e., if C1 shorts, each transient test will 
detect the failure). 

When the automated modeler generates the complete 
attribute map, it provides a corresponding dependency list 
to STAMP for processing. In order for STAMP to use the 
attribute map, it first identifies any additional dependency 
relationships between the tests in the model. STAMP uses 
an inference procedure called logical closure to compute 
these dependencies. (The algorithms for logical closure are 
provided in Ref. 5.) Following closure, STAMP analyzes 
the model to assess system testability. In particular, it 
evaluates test resource utilization, identifies ambiguity, 
considers false alarms, and assesses multiple failure 
problems. STAMP also provides several fault trees for 
manual diagnosis. 

As an alternative, the model processed by STAMP can be 
used by POINTER for interactive diagnosis. POINTER 
does not use a precomputed fault tree but incorporates the 
optimization and inference algorithms of STAMP to 
diagnose a system adaptively. Each step in the diagnostic 
process is determined based on the current context. In 
addition, information relating to test confidence, grouping, 
and alternate inference can be incorporated in the 

diagnostic process. Finally, POINTER includes additional 
learning algorithms to improve performance and identify 
errors in the model (as described above). 

FUTURE DIRECTIONS 

Whether using fault trees, rule bases, simulation models, 
or dependency models, developing knowledge bases for 
complex system diagnosis is a time-consuming and error- 
prone task. To improve the knowledge acquisition process 
(i.e., reduce the cost and increase the accuracy), we have 
developed a system for manipulating sibnulation models to 
construct structural diagnostic models. To automate the 
process further, a CAD system that produces PSpice 
models (e.g., SCHEMA” registered by Omation, Inc.) can 
be used to develop circuits and feed the automated 
modeler. In addition to the basic circuit file generated in 
SCHEMA, the engineer simply provides information on test 
points in the system. The automated modeler then provides 
a first-level model of the circuit. It is unlikely that this 
model will be complete. We anticipate that the engineer 
will need to adjust the model to include additional tests and 
operating conditions not included in the simulation, but this 
first model provides a significant savings in the total 
modeling and analysis process. 

In the future, we anticipate adding more tests, increasing 
the size of the failure mode library, and incorporating 
information for other simulators. For example, we plan to 
include frequency tests and digital tests that will expand the 
range of components and failure modes that can be 
processed. We also anticipate developing interfaces with 
VHDL simulators and various digital simulators such as 
HITS. With the current emphasis on concurrent 
engineering, we believe the automated modeling approach 
will help designers effectively include design for testability 
in the design process for complex systems. 
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