
AUTOMATED PRODUCTION OF INFORMATION MODELS
FOR USE IN MODELBASED DIAGNOSIS

John W. Sheppard
William R. Simpson

ARINC Research Corporation
2551 Riva Road

Annapolis, MD 21401

ABSTRACT

The most difficult part of system maintenance is diagnosing
failures. System expertise is needed, but manuals cannot
cover all the unique situations and in-house experts are
difficult to retain because of today’s budgets. The resulting
“expertise gap” has led to the development of “intelligent”
diagnostic aids to compensate for the missing expertise.

The first computer-assisted diagnostic aids attempted to
capture and emulate the reasoning process of experts by
encoding heuristics they used for diagnosis. Despite some
early successes, capturing expertise is a high-risk process.

An alternative approach to system maintenance uses a
model of the system as a foundation for its knowledge base.
This model-based approach differs from the rule-based
approach in the way it incorporates and processes
knowledge about the system. A particular type of model,
the information flow model, is very useful for diagnosing
problems. This approach, however, suffers from a complex
model building process that is labor-intensive.

Recently, the model building process has been automated
by a tool that enables both top-down and bottom-up
modeling. As discussed in this paper, this type of tool has
the potential to enable widespread usage of the information
modeling approach to system maintenance. We also discuss
how the automated modeling approach can be used with
machine learning techniques to enable the process to adapt
with changing systems.

INTRODUCTION

Developing diagnostic systems constitutes a complex and
labor-intensive task. In the past, analysts developed

CH3158-3/92/0000-0972 $1 .OO 0 1992 IEEE

diagnostic systems (generally as technical manuals and fault
trees) using simulation and failure-modes analysis. With
the advent of the expert system, knowledge engineers began
encoding heuristics used by expert diagnosticians in the
hopes of developing computer-based systems that
performed at the level of the expert. In the medical
domain, Shortliffe showed that rules could successfully
represent complex medical knowledge, and his MYCIN
system was capable of diagnosing several infectious
diseases.’ Unfortunately, the expert system has failed to
satisfy the maintenance requirements of modem systems.
This arises largely because of the lack of system experts or
because experts often cannot agree, experts cannot explain
intuitive conclusions, and new systems have no experts.

In response to problems associated with manual diagnosis
and the deficiencies of expert systems, analysts and
engineers are exploring an alternative approach to
intelligent diagnosis-model-based reasoning. Model-based
reasoners use mathematical representations of the systems
to be diagnosed and generally appear in one of two forms:
behavioral or structural. The behavioral model incorporates
knowledge from the theory of operation and establishes
mathematical transfer functions that characterize the
functions of the system. When a system fails, its behavior
changes in a such a way that the discrepancy with the
simulation model identifies the specific fault. The structural
model begins with knowledge about the topology of the
system (i.e., how the components are connected) and
combines information obtained from functional testing.
The resulting model defines a knowledge network (similar
in function to a rule base but different in the type of
knowledge used) that is used to choose a test and to draw
inferences from the test outcome. Davis’ developed a
system that combined the behavioral model and the
structural model for electronic circuit diagnosis.
Unfortunately, his system was limited to simple circuits.

972

Today, several companies provide model-based reasoners as
diagnostic aids. Most of these aids use a variation of the
structural model as their knowledge base due to the
apparent simplicity in constructing the models. In
particular, Cantone, et al., Simpson and Sheppard, and
Pattipati and Alexandridis have developed generic
architectures for fault diagnosis using dependency-based
models (i.e., information flow models).M We assume a pair
of tools that function together that use an information flow
model to assess system testability and diagnose f a u l t s 4 e
System Testability and Maintenance Program (STAMP@)
and the Portable Interactive Troubleshooter (POINTERn).

Tremendous research and commercial potential in
computer-based diagnosis exist in the area of developing
knowledge bases for the diagnostic system. In the past,
analysts constructed knowledge bases through a cycle of
interviewing experts, coding rules, generating prototypes,
and testing the prototypes against data bases derived from
the experts. The process continues until the resulting
diagnostic system performs according to some set of user
requirements. Unfortunately, the approach is generally ad
hoc and incomplete.

For model-based systems, modelers study design documents
and existing technical manuals to learn the “physics” of the
system to be diagnosed. Resulting models become the
knowledge base for diagnosis. Although more rigorous in
their development, models constructed in this way are
highly prone to error because of the inherent complexity of
the systems modeled. And with advances in technology,
complexity grows proportionately. Therefore, system
modelers need to control the complexity of the diagnostic
problem while still producing robust and efficient models
for diagnosis.

Research in machine learning has provided a new avenue
for developing models and knowledge bases for diagnosis.
These new approaches evolve models based on actual
examples of failure and diagnosis. Using these examples
(and possibly an initial model of the system), diagnostic
systems learn the relationships between the system being
tested and the faults causing anomalous behavior.

In this paper, we explore an alternative learning approach
to assist the modeling process. We describe a system in
which we use a simulation model as a “teacher” to identify
test attributes automatically for the system to be diagnosed.
The automated modeling system begins with a simulation
model and evaluates tests in a nominal situation to
determine the limits and tolerances on these tests. Then
the system sequentially fails the components in the system
and reruns the simulation to determine which tests will fail.
The results of these simulations define an uttribute map for
the system that becomes the basis for an information flow
model to be processed by STAMP and POINTER.

THE INFORMATION FLOW MODEL

The model-based approach incorporates techniques from
information fusion and artificial intelligence to guide
analysis. Tests provide information, and diagnostic
inference combines information from multiple tests using
symbolic logic and pattern recognition.

The structure of the information flow model includes two
primitive elements: tests and fault-isolation conclusions.
Tests include any source of information that can be used to
determine the health of a system. Fault-isolation
conclusions can include failures of functionality, specific
nonhardware failures (such as bus timing errors), specific
multiple failures, and the absence of a failure indication.
The information obtained may be a consequence of the
system operations or a response to a test stimulus. Thus,
we include observable symptoms of failure processes in the
information flow model as tests. Doing this allows us to
analyze situations that involve information sources other
than formally defined tests (here, however, we discuss only
defined tests). The purpose of our model, of course, is to
combine these information sources (tests) to derive
conclusions about the system being diagnosed.

The basic representation of the information flow model
includes both a dependency representation (structural
model) and a logical representation (logic model) of the
system being analyzed. In addition, the information flow
model includes the definition of groups of logically related
tests and conclusions. In this representation, we define
logical values for tests and fault-isolation conclusions.
Specifically, if a test fails, it is true; if a test passes, it is
false. An asserted conclusion (i.e., a failure) is true; a
conclusion eliminated from consideration is false. (see
Ref. 5 for a discussion of the information flow model.)

We simplify the scope of the model in the following way.
First, we assume that the tests correspond to specifically
defined observation points within a system. Our example
is a simple analog circuit, and these points correspond to
probes in the circuit. In addition, we limit fault-isolation
conclusions to correspond to specific failure modes of the
circuit components. For example, a transistor may fail in
at least one of six ways:

0 Open collector
0 Open base
0 Open emitter
0 Collector-emitter short
0 Base-emitter short
0 Collector-base short

For a given transistor in a circuit, we include one fault-
isolation conclusion for each of these failure modes in the
model. Here, we consider developing only an attribute

973

map, so tests depend only on fault-isolation conclusions
(later processing recovers test-to-test dependencies). A test
depends on a fault isolation conclusion (i.e., failure mode)
if and only if the test fails when the failure mode exists, and
the failure mode does not exist when the test passes.

LEARNING IN FAULT DIAGNOSIS

A problem common to all computer-aided diagnostic
systems is that the knowledge bases (whether rule bases or
models) are difficult to develop. As a result, errors are
common. This leads to ineficient and even incorrect
diagnosis. Further, as the complexity of systems increase,
the likelihood of erroneous models increases. Two
questions naturally follow from this problem:

1. How does one develop models that minimize the
chance of error?

2. In the event errors occur, how does one identify and
correct the errors?

Work @ the area of machine learning suggests potential
solutions to both problems. Through a process of
simulation or fault insertion, examples can be generated
that capture the failed behavior and determine test-to-fault
relationships. Also, discrepancies in repair
recommendations and actions taken to repair the system
help identifl errors in the knowledge base. Finally, actual
use of a diagnostic system provides information related to
improving diagnostic performance. Before addressing the
first question, we review learping techniques.

Simpson and Dowling describe a system that learns
optimization data through actual diagnosis.' As systems are
tested, the diagnostic aid times tests and records failures.
Then the aid modifies the test time and failure rate weights
to reflect the recorded events. Future diagnoses use the
modified weights during optimization.

Another approach becoming popular involves connectionist
systems (also called neural networks). Perhaps the most
frequently used approach is back-propagation? Diagnostic
neural networks map test results to diagnoses through a
process of training. When training a neural net, the
network processes several example test-fault combinations
and learns by minimizing the error in its output through a
hill-climbing algorithm. In addition, neural networks have
been trained to interpret signals generated from running a
test to determine if a test has passed or failed? We have
also developed a neural network to interpret the results of
the inference process (under uncertainty) with the
information flow model to determine if additional testing
is necessary."

The learning method applied for neural networks frequently
falls in the category of similarity-based learning (SBL).
DeJong describes SBL as "discovering a combination of
features that best classifies the regularity in a set of
examples. The resulting generalization over the examples
is the new concept."" In SBL, a teacher presents several
examples to the learning system until the system recognizes
the regularity discussed by DeJong.

In the event domain knowledge is available, this knowledge
can be used to reduce the number of training instances in
learning. Explanation-based learning (EBL) incorporates
a detailed domain theory and a detailed functional
specification of the concepts to be learned. Using the
domain knowledge, the system learns concepts with single
training instances." In fault diagnosis, an example of a
misdiagnosis together with a model of the physics for the
technology employed in the system can be used to derive an
explanation of an appropriate diagnosis. From this
explanation, the learning system modifies the diagnostic
model to include the knowledge of the correct diagnosis.

The automated modeling approach we describe fits loosely
within explanation-based learning. The simulation model
forms the domain theory to be used to diagnose. In this
case, there will be no misdiagnoses. Rather, the teacher
inserts faults in the simulation model and runs another
simulation. The learning system examines the behavior of
the simulation and compares that behavior to what it
expects given a functional system. It identifies discrepancies
at the probe points in the simulation and explains the
discrepancy with the knowledge that the system has failed.
From this explanation, the learning system identifies a set
of attributes to be used in the attribute map for the circuit.
The complete attribute map then forms the basis for the
information flow model.

SYSTEM SIMULATION

The first step in the automated modeling process is to
develop a baseline simulation model of the system to be
diagnosed. For our discussion, we use the example circuit
in Figure 1. This circuit has 5 transistors, 1 capacitor, and
10 resistors. In addition, a 1Zvolt dc power supply is
available, and 10 volts dc are applied as input. An analyst
begins by writing a simulation model of the circuit. This
simulation should reflect nominal behavior of the circuit
because it will be used to determine test limits. We chose
to use the PSpice" circuit simulation package to implement
our prototype modeling tool. (PSpice is a registered
trademark of MicroSim Corporation.) The baseline PSpice
simulation model for this circuit is shown in Figure 2.

974

a i 2 i 3 ~ 2 ~ 3 4 3 9
a2 4 3 5 ~ 2 ~ 3 4 3 9
a3 8 4 7 ~ 2 ~ 5 4 1 6
94 6 8 9 P2N3439
a5 6 9 12 P2N3439

C1 2 5 CMOD 500PF

R l 1 2 RMOO 1OOK '

R2 2 0 RMOD 10K
R3 6 4 RMOD 270K
R4 6 7 RMOO 15K
R5 7 0 RMOD 5K
R6 8 11 RMOD 1OOK
R7 9 10 RMOO 27K
R8 10 11 RMOD 6.8K
R9 12 11 RMOD 10K
R10 10 5 RMOD 8.2K

.LIB

.MODEL RMOO RES(R=l DEV=lO%)

.MODEL CMW CAP(C=1 DEV=105)

VPS 6 0 30
VNPS 11 0 -30
VINPUT 1 0 10

.END

*
*

*

Figure 2. PSpice Baseline
Simulation File for the Example Circuit

-38 UDC

Figure 1. Example Circuit

In addition to the circuit file, PSpice requires additional
information to be included with each simulation. PSpice
runs simulations for determining test limits (the worst case
analysis) and then runs several simulations for each possible

failure mode for each possible component in the circuit.
Currently, we have developed a library of 23 failure modes
and 3 types of tests. The 23 failure modes address the
resistor, the capacitor, the transistor, the diode, a voltage
source, and various integrated circuits; and 3 types of tests
include dc, noise, and transient.

For each simulation, several special fies need to be written.

a Test Description File. The test description f ie
specifies the location of probe points in the circuit
and the parameters necessary to evaluate the probe.
Usually, an entry in the file includes a test label, the
test type, the test location, and time parameters for
making the measurement.

a Test State File. The test state file specifies the tests
that belong to each state in the circuit.

a Special Component File. At times, the basic
component in the PSpice library is insufficient to
describe a particular component in the circuit. The
special component file allows the engineer to specify
the reference designator and the component type so
that the correct failure modes can be associated.

e Common Setup File. The common setup file allows
the engineer to group simulation setup commands ia
a separate file rather than in the actual circuit file.

975

This permits easy modification of operating
conditions without changing the actual circuit file.

Statement Addition File. The statement addition file
associates PSpice commands with specific operating
states so that only relevant commands are included
in the simulation. When the automated modeling
program invokes PSpice, it first inserts the relevant
commands from this file into the circuit file.

Statement Deletion File. Similar to the statement
addition file, the statement deletion file specifies
commands in the PSpice circuit file that do not apply
to particular operating states. When the automated
modeling program invokes PSpice, it begins by
deleting the relevant commands from the circuit file.

Special Test File. The special test file permits tests
to be associated with specific failure modes in the
circuit. This prevents the automated modeling
system from applying the special test to components
not relevant for analysis.

system failures. The following two sections describe these
processes.

Determining Test Limits

After the engineer constructs the baseline circuit file, he or
she runs PSpice to determine test limits. In addition to the
circuit file, the engineer constructs a test file describing
probes in the system. The automated modeling program
inserts the probes in the circuit file and rum the circuit
using a worst-case analysis. PSpice runs each test
individually in a default state, although all the tests
associated with a given state could be run simultaneously.
The worst-case analysis varies the input through a range of
nominal values to determine the limits at the probe points
in the circuit. These limits define the range of values for
the corresponding test to pass. If the probe detects a value
beyond the limits, the test fails.

For the sample circuit, we have defined five tests: two are
dc tests, two are transient analyses, and one is a noise test.
Because of the nature of transient analysis, the two
transient tests expand to three tests corresponding to

These data files define the complete input data package for “voltage-peak-positive,” “voltage-peak-negative,” and
the automated modeling system. Once the files have been “voltage-peak-to-peak.” The five tests examine signals from
defined, the automated modeler proceeds to run several the Q4 and Q5 transistors, and their test limits are given
simulations to compute test limits and ident@ attributes of in Table 1.

Table 1. Test Limits for Sample Circuit

Test Label Lower Limit Upper Limit

DC, Q4

Voltage Peak-to-Peak, 0 4

Voltage Peak Pos., Q4

Voltage, Peak Neg., Q4

DC, Q5

Noise, Q5

Voltage Peak-to-Peak, Q5

Voltage Peak Pos., Q5

Voltage Peak Neg., Q5

TQCE

TQCETR-VPP

TQCETR-VP

TQCETR-VN

TQ5-E

TQ5-EN0

TQ5-ETR-VPP

TQ5-ETR-VP

TQ5-ETR-VN

-15.12

14.05

1.01

-l3.04

-15.64

0.00

13.92

0.48

-l3.46

-11.11

17.13

4.29

-12.84

-11.62

1.91 x 108

17.21

3.75

-13.44

976

Fault Insertion

Once the test limits have been determined, the automated
modeler inserts faults into the circuit according to the
failure mode library. Only one component is considered at
a time, and only one operating state is considered at a time.
Au tests appropriate to an operating state are considered
simultaneously. To insert a fault, the automated modeler
modifies the circuit file by eliminating the appropriate
component line and inserting appropriate commands from
the failure mode library. For example, if the capacitor in
the sample circuit shorts, the following two lines will be
inserted in the circuit file:

RADD1 2 5 RES 0.0001
C1 2 5 CMOD 500PF

As noted, the automated modeler runs simulations for each
fault insertion and examines the PSpice output report to
determine which (if any) tests detect the failure. The
attributes of the inserted failure mode make up the failed
test. For the capacitor that has shorted, the automated
modeler finds the following attributes:

TQ4-ETR-VPP, TQ4-ETR-VPI TQ4-ETR-VN,
TQS-ETR-VPP, TQ5-ETR-VP, TQS-ETR-VN

As a result, the automated modeler has determined that
each transient analysis test depends on the failure of
capacitor C1 (i.e., if C1 shorts, each transient test will
detect the failure).

When the automated modeler generates the complete
attribute map, it provides a corresponding dependency list
to STAMP for processing. In order for STAMP to use the
attribute map, it first identifies any additional dependency
relationships between the tests in the model. STAMP uses
an inference procedure called logical closure to compute
these dependencies. (The algorithms for logical closure are
provided in Ref. 5.) Following closure, STAMP analyzes
the model to assess system testability. In particular, it
evaluates test resource utilization, identifies ambiguity,
considers false alarms, and assesses multiple failure
problems. STAMP also provides several fault trees for
manual diagnosis.

As an alternative, the model processed by STAMP can be
used by POINTER for interactive diagnosis. POINTER
does not use a precomputed fault tree but incorporates the
optimization and inference algorithms of STAMP to
diagnose a system adaptively. Each step in the diagnostic
process is determined based on the current context. In
addition, information relating to test confidence, grouping,
and alternate inference can be incorporated in the

diagnostic process. Finally, POINTER includes additional
learning algorithms to improve performance and identify
errors in the model (as described above).

FUTURE DIRECTIONS

Whether using fault trees, rule bases, simulation models,
or dependency models, developing knowledge bases for
complex system diagnosis is a time-consuming and error-
prone task. To improve the knowledge acquisition process
(i.e., reduce the cost and increase the accuracy), we have
developed a system for manipulating sibnulation models to
construct structural diagnostic models. To automate the
process further, a CAD system that produces PSpice
models (e.g., SCHEMA” registered by Omation, Inc.) can
be used to develop circuits and feed the automated
modeler. In addition to the basic circuit file generated in
SCHEMA, the engineer simply provides information on test
points in the system. The automated modeler then provides
a first-level model of the circuit. It is unlikely that this
model will be complete. We anticipate that the engineer
will need to adjust the model to include additional tests and
operating conditions not included in the simulation, but this
first model provides a significant savings in the total
modeling and analysis process.

In the future, we anticipate adding more tests, increasing
the size of the failure mode library, and incorporating
information for other simulators. For example, we plan to
include frequency tests and digital tests that will expand the
range of components and failure modes that can be
processed. We also anticipate developing interfaces with
VHDL simulators and various digital simulators such as
HITS. With the current emphasis on concurrent
engineering, we believe the automated modeling approach
will help designers effectively include design for testability
in the design process for complex systems.

REFERENCES

1. Shortliffe, Edward, Computer Based Medical
Consultations: MYCIN, New York, Elsevier, 1976.

2. Davis, Randall, “Diagnostic Reasoning Based on
Structure and Behavior,” Amfcial Intelligence,
Vol. 24, 1984.

3. Cantone, Richard R.; Frank J. Pipitone; W. Brent
Lander; and Michael P. Marrone; “Model-Based
Probabilistic Reasoning for Electronics Trouble-
shooting,” Proceedings of the Eighth International
Joint Conference on A?fiflcial Intelligence, 1983.

977

4. Simpson, William R., and John W. Sheppard,
“System Complexity and Integrated Diagnostics,”
IEEE Design and Test of Computers, Vol. 8, No. 3,
September 1991.

5. Sheppard, John W., and William R. Simpson, “A
Mathematical Model for Integrated Diagnostics,”
IEEE Design and Test of Computers, Vol. 8, No. 4,
December 1991.

6. Pattipati, Krishna R., and Mark G. Alexandridis,
“Application of Heuristic Search and Information
Theory to Sequential Fault Diagnosis,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol.
20, No. 4, JulyIAugust 1990.

7. Simpson, W. R., and C. S . Dowling, ‘WRAPLE: The
Weighted Repair Assistance Program Learning
Extension,” IEEE Design and Test of Computers,
Vol. 3, No. 2, April 1986.

8. Rumelhart, D. E.; G. E. Hinton; and R. J. Williams;
“Learning Internal Representations by Error
Propagation,” in Parallel Distributed Processing, The
MIT Press: Cambridge, Massachusetts, 1986.

9. Katz, W. T., and M. B. Merickel, “Translation-
Invariant Aorta Segmentation from Magnetic
Resonance Images,” Proceedings of the International
Joint Conference on Neuml Networks ’89,
Washington, DC, June 1989.

10. Sheppard, John W., and William R. Simpson, “A
Neural Network for Evaluating Diagnostic
Evidence,” Proceedings of the National Aerospace &
Electronics Conference, Dayton, Ohio, May 1991.

11. Gerald DeJong, “An Introduction to Explanation-
Based Leaming,“ in Exploring Artificial Intelligence,
Morgan-Kaufmann Publishers: Palo Alto, California,
1988.

978

