
DOSI: Training Artificial Neural Networks using
Overlapping Swarm Intelligence with Local Credit

Assignment
Nathan Fortier

Department of Computer Science
Montana State University

EPS 357, PO Box 173880
Bozeman MT, 59717-3880

Email: nathan.fortier@msu.montana.edu

John W. Sheppard
Department of Computer Science

Montana State University
EPS 357, PO Box 173880
Bozeman MT, 59717-3880

Email: john.sheppard@cs.montana.edu

Karthik Ganesan Pillai
Department of Computer Science

Montana State University
EPS 357, PO Box 173880
Bozeman MT, 59717-3880

Email: k.ganesanpillai@cs.montana.edu

Abstract—A novel swarm-based algorithm is proposed for the
training of artificial neural networks. Training of such networks
is a difficult problem that requires an effective search algorithm
to find optimal weight values. While gradient-based methods,
such as backpropagation, are frequently used to train multi-
layer feedforward neural networks, such methods may not yield
a globally optimal solution. To overcome the limitations of
gradient-based methods, evolutionary algorithms have been used
to train these networks with some success. This paper proposes
an overlapping swarm intelligence algorithm for training neural
networks in which a particle swarm is assigned to each neuron
to search for that neuron’s weights. Unlike similar architectures,
our approach does not require a shared global network for fitness
evaluation. Thus the approach discussed in this paper localizes
the credit assignment process by first focusing on updating
weights within local swarms and then evaluating the fitness of
the particles using a localized network. This has the advantage of
enabling our algorithm’s learning process to be fully distributed.

I. INTRODUCTION

While the backpropagation (BP) algorithm has been shown
to be an effective method for training feedforward neural
networks, it typically has a slow convergence rate [1] and
is known to suffer from local minima [2]. To overcome
these limitations alternative approaches such as particle swarm
optimization (PSO) algorithms, genetic algorithms, and hy-
brid approaches which use backpropagation combined with
evolutionary approaches have been used. This paper pro-
poses an overlapping swarm intelligence algorithm to train
feedforward neural networks using localized particle swarms.
In our approach a particle swarm is associated with each
neuron in the network. Swarms corresponding to neurons
that are directly connected in the network will periodically
communicate during the training process.

The communication scheme utilized in our approach is
the main contribution of this paper. Specifically, existing
approaches require localized swarms to interact with a single,
global network to evaluate fitness and, thereby, determine
updates to the weights. Our approach, on the other hand,
associates local networks for fitness evaluation that propagate
through a system of localized networks. Ultimately, the set
of localized networks converge to highly-fit networks that
have benefited from the PSO process training the weights.
In effect, we have extended the approach to using localized
swarms to ”solve” the local credit assignment problem to

enable the entire learning process to be distributed. We have
chosen to name this algorithm Distributed Overlapping Swarm
Intelligence (DOSI).

II. BACKGROUND

A. Artificial Neural Networks

Artificial neural networks are models consisting of a net-
work of simple computational units called neurons. When
neurons are combined using appropriate weights the resulting
networks have been shown to solve difficult problems such as
classification, regression, control, and time series prediction.

Single layer feedforward neural networks have several in-
puts that feed a single output layer. These inputs are connected
via weights, and only the output layer has neurons. Multilayer
feedforward neural networks, on the other hand, have one or
more hidden layers between the input and output layers that
also contain neurons. Hidden layers allow neural networks to
extract higher-order properties from the input. Each neuron
in a network contains a continuously differentiable activation
function. One of the most common activation functions is the
logistic function,

y =
1

1 + e−(Pm
i=1 wixi+b)

where m is the number of inputs, xi is the ith input, wi is its
weight, and b is a bias.

B. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm, first
proposed by Eberhart and Kennedy [3], is a search technique
based on the social behavior of flocking birds and fish schools.
PSO is a population-based search technique in which the
population is initialized with random solutions called particles.
The search process updates the positions of each particle-based
on that particle’s corresponding velocity vector. A particle’s
velocity vector is updated based on the fitness of the states
visited by that particle. Eventually all particles will move
closer to an optimum in the search space. The pseudocode
for the traditional PSO algorithm is presented in Algorithm 1.

PSO begins by randomly initializing a swarm of particles
over the search space. On each iteration of the algorithm the
fitness of a particle, xi, is calculated using the fitness function,
f(xi). The personal best position for that particle is stored

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1420

Algorithm 1 Particle Swarm Optimization
repeat

for each particle position xi ∈ P do
Evaluate position fitness f(xi)
if f(xi) > f(pi) then
pi ← xi

end if
if f(xi) > f(pg) then
pg ← xi

end if
vi ← ωvi+U(0, φ1)⊗ (pi − xi)+U(0, φ2)⊗ (pg − xi)
xi ← xi + vi

end for
until termination criterion is met

in the vector pi. The global best position found among all
particles is stored in the vector pg . At the end of each iteration
a particle’s velocity, vi, is updated based on pi and pg . The use
of both personal best and global best positions in the velocity
equation ensures diverse responses within the swarm. This is
an important aspect of the algorithm that provides a balance
between exploration and exploitation.

In Algorithm 1, P is the particle swarm, U(0, φi) is a vector
of random numbers uniformly distributed in the interval [0, φi],
⊗ is component-wise multiplication, vi is the velocity of a
particle and xi is the position of a particle.

Three parameters need to be defined for this algorithm:
• φ1 determines the maximum force with which a particle

is pulled toward pi;
• φ2 determines the maximum force with which a particle

is pulled toward pg;
• ω is the inertia weight.

The inertia weight ω is used to control the scope of the search
and eliminate the need for a maximum velocity. Even so, it is
customary to specify maximum velocity as well.

III. RELATED WORK

Zhang et al. [4] introduced a PSO algorithm to learn
the structure and weights of feedforward neural networks.
They tested their algorithm on two problems in the medical
domain and their results indicate that networks learned by their
algorithm have good generalization ability and accuracy.

Zhang et al. [1] proposed a hybrid PSO-BP algorithm to
search for the weights of feedforward neural networks. In their
algorithm a feedforward neural net is trained using a PSO
until convergence. After the PSO algorithm has converged,
backpropagation is used to train the network. Their results
indicate that their algorithm is better than the backpropaga-
tion algorithm and the adaptive particle swarm optimization
algorithm in terms of convergence speed and accuracy.

Cai et al. [5] introduced an algorithm to train recurrent
neural networks to predict missing values from time series
data using a hybrid of PSO and a customized evolutionary
algorithm (EA). The EA used in Cai’s approach is similar to an
evolution strategy as it has both mutation and selection but no
crossover operation. In this algorithm a population of solutions
is initialized and evaluated. Individuals are then selected based
on their fitness and these individuals are improved using PSO.
The improved individuals are then used as parents in the EA
to generate offspring.

Bergh and Engelbrecht [6] proposed a several methods to
train feedforward neural networks using PSOs in a cooperative
configuration. These methods include NSPLIT in which there
is a single particle swarm for each neuron in the network and
LSPLIT in which there is a swarm assigned to each layer of the
network. All approaches described by Bergh and Engelbrecht
require the use of a global network and their results indicated
that performance of these swarms is dependent on the degree
of interdependence between the variables.

Haberman and Sheppard [7] introduced an energy-efficient
routing protocol for sensor networks based on overlapping
particle swarms that ensures reliable path selection while
minimizing the energy consumption for the route selection
process. Their algorithm extends the life of the sensor network
and was shown to perform significantly better than current
energy-aware routing protocols.

Pillai and Sheppard [8] extended the work of [7] by devel-
oping an overlapping swarm intelligence algorithm for training
the weights of deep artificial neural networks. In their approach
the structure of the network is separated into paths where each
path begins at an input node and ends at an output node. Each
of these paths has a swarm that learns the weights for that path
of the network. A common vector of weights is maintained
across all swarms that describes a global view of the network.
This vector is constructed by combining the weights of the
best particles in each of the swarms. While this method was
shown to outperform the backpropagation algorithm and the
traditional PSO algorithm, it requires one swarm for every
possible path through the network. As a result, the number
of swarms required grows exponentially as the depth of the
network increases, thus making their approach intractable for
deep networks.

Our algorithm improves on the work of [8] and [6] by
requiring a smaller number of swarms than the OSI method
and by no longer requiring the construction of a global network
for each swarm. We hypothesize that our algorithm will
perform at least as well as the algorithms proposed by [8] and
[6] in terms of mean squared error and classification error.

IV. APPROACH

Here we describe our approach to training feedforward
neural networks based on the PSO algorithm but focusing
on learning sub-problems similar to the approaches in [6],
[7], and [8]. In our approach we associate a swarm with
each neuron in the network. A neuron’s corresponding swarm
will learn only the weights associated with that neuron.
Swarms corresponding to connected neurons will periodically
communicate with each other. This approach is similar to the
NSPLIT architecture proposed by [6] but unlike NSPLIT, our
architecture does not require that each particle be evaluated as
part of a global network. Instead, each swarm si has a personal
neural network pnni and the weights learned by each swarm
are communicated to the neighboring swarms and inserted
into those swarm’s pnn’s through a periodic communication
mechanism. Because our algorithm does not require a global
network to be shared between the swarms, and localizes the
credit assignment process, the learning process can be fully
distributed. Algorithm 2 shows the pseudo-code for our DOSI
algorithm.

The pseudocode in Algorithm 2 begins by initializing a
random neural network. This network is set as the initial

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1421

Algorithm 2 The DOSI Algorithm
Initialize a neural network N
for each neuron, n ∈ N do

Let s be the swarm associated with neuron n
s.pnn← N

end for

repeat
for i ← 0 to iter do

for each swarm s do
for each particle, p ∈ s do

Evaluate particle fitness f(p)
if f(p) > p’s personal best fitness then

Update p’s personal best position and fitness
end if
if f(p) > the global best fitness then

Update global best position and fitness for s
end if
Update p’s velocity and position

end for
end for

end for

for each neuron, n ∈ N do
Let s be the swarm associated with neuron n
Let w be the input weights of n in the s.pnn
Set w to the object parameters of the best particle in s

end for

for each edge, e ∈ N do
Let ni and nj be the neurons that are connected by e
Let si and sj be the swarms associated with ni and nj

ShareWeights(si, sj)
end for

until termination criterion is met

Let F be the final network.
for each swarm s do

Let pg be the best particle in s
Insert the weights learned by pg into F

end for

neural network for each swarm. While it would be possible
to initialize a different neural network for each swarm, this
would likely slow the algorithm’s convergence time. Next the
algorithm enters the learning procedure. This procedure begins
by running iter iterations of the evaluate and update step for
each swarm where the variable iter is a tunable parameter.
Each swarm evaluates the fitness of a particle by setting the
weights of that swarm’s neuron inside the swarm’s pnn to the
particle’s object parameters and evaluating the network’s error.
Once iter iterations of the PSO algorithm have been run for
each swarm, the swarms corresponding to connected neurons
communicate via the ShareWeights function (Algorithm 3).

To share weights, each swarm keeps track of a variable δw
for each weight w. These variables indicate how current each
weight in the swarm’s personal network is. A larger value of
δw indicates that its value was learned more recently while a
smaller value for δw indicates that the weight was learned less

Algorithm 3 The ShareWeights Function
Let si and sj be the two swarms that are to share weights
Let pnni and pnnj be the personal neural networks of si

and sj respectively

for each weight w in the neural network do
if si.δw > sj .δw then

Insert pnni’s value for w into pnnj

Increment sj .δw
end if
if sj .δw > si.δw then

Insert pnnj’s value for w into pnni

Increment si.δw
end if

end for

recently. A value of zero for δw indicates that no learning or
sharing has taken place to modify this weight in the swarm’s
pnn, while a value of infinity indicates that the weight has
been learned by the PSO algorithm. Values for δw are initially
set to zero for all weights other than the weights learned by that
swarm. Values for δw are set to infinity for all weights that the
swarm is to learn. Algorithm 3 allows swarms to share weights
that have been learned through either the PSO algorithm or
through the sharing process with the swarms to which they are
connected. Also, Algorithm 3 causes weights learned through
the PSO algorithm to trickle through the network of swarms
as the sharing occurs.

For the network shown in Figure 1 each particle has a two
dimensional position vector. Each dimension represents one of
the input weights for a swarm’s corresponding neuron. For the
network shown in Figure 1 the global best particle in s2 has
the position vector (0.23, 0.24) while the global best particle
in s1 has the position vector (0.11, 0.12).

Figure 1 presents an example of the ShareWeights function.
Before the function executes each swarm’s pnn only contains
the weights learned by that swarm. δw for s1, s2, and s3 is set
to infinity for all weights to be learned by s1, s2, and s3. δw for
all other weights is set to zero. After ShareWeights(s1, s3)
is executed pnn1 contains the weights learned by s3 and pnn3

contains the weights learned by s1. Also, s1.δw has now been
incremented to one for each weight learned from s3 and s3.δw
now been incremented to one for each weight learned from
s1. Once ShareWeights(s2, s3) has been executed pnn2

contains the weights learned by s3 and pnn3 contains the
weights learned by s2. Also, since s3.δw > s2.δw for the
input weights on node 1, pnn2 now passes the weights learned
from s1 to s3. Finally, s2.δw has now been incremented to
one for each weight learned from s3 and s3.δw has now been
incremented to one for each weight learned from s2.

V. EXPERIMENTAL SETUP

To evaluate our algorithm, several experiments were per-
formed on two-layered and four-layered feedforward neural
networks. These experiments focused on comparing our al-
gorithm with the OSI algorithm discussed in [8] and the
LSPLIT and NSPLIT algorithms discussed in [6]. We did
not compare with backpropagation or full PSO since previous
work demonstrated the superiority of OSI on these problems
[8]. In our experiments the initial weights were set randomly in

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1422

Fig. 1. Example of the ShareWeights function

the range of [−3, 3] and the velocity for each particle was set
randomly in the range of [−2, 2]. The inertia weight ω was set
to 0.729 and both acceleration coefficients, φ1 and φ2, were set
to 1.49445. These parameter values were based on the results
of Eberhart and Shi [9]. To evaluate the performance of the
algorithms the data was divided into training and testing data
sets using a 5 x 2 cross-validation procedure. The experiments
were repeated using several swarm sizes. The different swarm
sizes used were 2, 3, 5, 7, 10, 13, 15, 17, 20.

For each swarm size, we performed pairwise comparisons
using a paired student t-test for each pair of algorithms. These
paired student t-tests were performed for both classification
error and mean squared error to test for statistical significance.
For all t-tests we used a 98% confidence interval. For com-
parison we use the same data sets and network structures as
in [8].

For the first experiment the IONOSPHERE data set obtained

TABLE I
IRIS MEAN SQUARED ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.1451 0.0995 0.1098 0.0675 0.0748 0.0508 0.0630 0.0561 0.0570
LSPLIT 0.1801 0.1634 0.1203 0.1066 0.0916 0.0846 0.0893 0.0770 0.0615
NSPLIT 0.1401 0.1021 0.0578 0.0726 0.0443 0.0435 0.0342 0.0324 0.0266
OSI 0.1137 0.1065 0.1214 0.0836 0.0802 0.0890 0.1003 0.0999 0.0928

TABLE II
IONOSPHERE MEAN SQUARED ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.1906 0.1830 0.1772 0.1676 0.1561 0.1527 0.1468 0.1609 0.1458
LSPLIT 0.2407 0.2112 0.2146 0.2015 0.1935 0.1823 0.1853 0.1799 0.1855
NSPLIT 0.2080 0.2047 0.1747 0.1667 0.1376 0.1314 0.1365 0.1353 0.1246
OSI 0.1566 0.1606 0.1579 0.1680 0.1496 0.1594 0.1568 0.1551 0.1619

TABLE III
GLASS MEAN SQUARED ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.1131 0.1189 0.1144 0.1321 0.1264 0.1167 0.1078 0.1056 0.1161
LSPLIT 0.1274 0.1174 0.1193 0.1191 0.1141 0.1231 0.1144 0.1298 0.1257
NSPLIT 0.1419 0.1147 0.1045 0.0972 0.0978 0.1074 0.0785 0.0800 0.0808
OSI 0.1047 0.1164 0.1149 0.1132 0.1069 0.1078 0.1173 0.1138 0.1109

TABLE IV
4BIT MEAN SQUARED ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.2513 0.2503 0.2511 0.2521 0.2532 0.2624 0.2516 0.2512 0.2599
LSPLIT 0.2664 0.2541 0.2513 0.2504 0.2508 0.2501 0.2505 0.2522 0.2512
NSPLIT 0.2504 0.2504 0.2507 0.2504 0.2519 0.2496 0.2510 0.2516 0.2508
OSI 0.2468 0.2447 0.2460 0.2450 0.2471 0.2429 0.2502 0.2467 0.2477

from the UCI machine learning repository was used [10]. The
data set contains only two classes, but has 34 input dimensions.
This data set contains 351 instances. This experiment uses
a two-layered neural network with 34 inputs, five hidden
neurons, and one output neuron.

For the second experiment the IRIS data set was used. This
data set contains three classes and has 150 instances. One class
is linearly separable from the other two while the others are
not linearly separable from one another. For this experiment
a four-input, three-hidden, and one-output network was used.

For the third experiment the GLASS data set was used.
This data set contains six classes and has 214 instances. Each
instance has nine inputs. This data set is known to have a
highly skewed class distribution, making it difficult to learn.
For this data set a nine-input, six-hidden, and one-output
network architecture was used.

For the fourth experiment we generated data for a four-bit
parity problem using the same strategy as in [8]. The data set
consisted of 1000 randomly generated data points. Each data
point consisted of four inputs generated over the interval [0, 1]
and one output. An input was interpreted to have a value of “1”
if its value is greater than 0.5 and a value of “0” otherwise;
although, the generated floating point values were used for
training and testing. When the number of “1”s in all inputs
was even, the output was set to “1”; otherwise, the output was
set to “0”.

For this data set a four-layered neural network with four
inputs, four neurons per hidden layer, and one output neuron
was used. Neural networks that have more than two layers,
such as the ones to be used in this experiment, are called deep
neural networks. Deep networks trained using backpropagation
have been found to be much more difficult to train than
networks with less than two hidden layers [11].

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1423

TABLE V
IRIS CLASSIFICATION ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.5444 0.1937 0.1187 0.0823 0.0373 0.0423 0.0542 0.0263 0.0474
LSPLIT 0.4384 0.1508 0.0831 0.0619 0.0545 0.0504 0.0421 0.0466 0.0415
NSPLIT 0.5035 0.2193 0.0415 0.0384 0.0405 0.0398 0.0450 0.0251 0.0330
OSI 0.3349 0.2093 0.1442 0.0652 0.1200 0.0599 0.0782 0.0476 0.0629

TABLE VI
IONOSPHERE CLASSIFICATION ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.2237 0.1544 0.0993 0.0982 0.0792 0.0745 0.0875 0.0764 0.0915
LSPLIT 0.2407 0.2731 0.2458 0.1589 0.1339 0.1321 0.1040 0.1231 0.1027
NSPLIT 0.2327 0.1480 0.0846 0.0859 0.0950 0.0744 0.0738 0.0802 0.0790
OSI 0.1960 0.1514 0.0969 0.0875 0.0827 0.0816 0.0851 0.0801 0.0729

TABLE VII
GLASS CLASSIFICATION ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.7698 0.7472 0.6540 0.6586 0.5969 0.5773 0.6455 0.6545 0.5662
LSPLIT 0.7974 0.7642 0.7056 0.6425 0.6136 0.6102 0.5920 0.6018 0.6045
NSPLIT 0.7821 0.7133 0.5918 0.5670 0.5650 0.5619 0.5630 0.5998 0.5515
OSI 0.7555 0.7165 0.7108 0.6513 0.5967 0.6666 0.5875 0.5914 0.6323

TABLE VIII
4BIT CLASSIFICATION ERROR FOR DIFFERENT SWARM SIZES

Swarm Size
Method 2 3 5 7 10 13 15 17 20
DOSI 0.4727 0.4794 0.4843 0.4900 0.4982 0.4970 0.4916 0.5060 0.5031
LSPLIT 0.4863 0.4772 0.4764 0.4795 0.5131 0.5085 0.5057 0.5066 0.5151
NSPLIT 0.4700 0.4701 0.4780 0.4833 0.5047 0.5119 0.5016 0.5130 0.4992
OSI 0.4464 0.4395 0.4250 0.4088 0.4432 0.4628 0.4560 0.4088 0.4309

VI. EXPERIMENTAL RESULTS

Our experimental results are summarized in Tables I through
VIII. In these tables, each row denotes the method used and
each column denotes the swarm size used. For all tables, bold
values indicate that the corresponding algorithm’s performance
is statistically significantly better than the other algorithms on
the data set given the corresponding swarm size. Algorithms
that tie statistically for best are bolded. No values for a given
swarm size are bolded if all algorithms tie statistically for
best. Tables I through IV present the minimum mean squared
error on the test data while tables V through VIII present the
classification error.

For the IRIS data set, we observe that, based on the paired
t-tests on mean squared error, none of the algorithms signifi-
cantly outperform the others for most swarm sizes. However,
when the swarm size was set to 3, all other algorithms outper-
formed LSPLIT. The paired t-tests on classification error also
indicate that none of the algorithms significantly outperform
the other for most swarm sizes. However, for swarm size 17
DOSI and NSPLIT outperformed LSPLIT and OSI in terms
of classification error.

With the IONOSPHERE data set, based on the paired t-
tests performed on mean squared error, we observe that DOSI,
NSPLIT, and OSI all significantly outperform LSPLIT for
most swarm sizes. Based on the paired t-tests performed on
classification error, we observe that DOSI, NSPLIT, and OSI
significantly outperform LSPLIT when the swarm size is set
to 3, 5, or 7.

With the GLASS data set, based on the paired t-tests
performed on mean squared error and classification error, we
observe that none of the algorithms significantly outperform
the other.

For the 4BIT data set, based on the paired t-tests performed
on mean squared error, we observe that none of the algorithms
significantly outperform the others for the various swarm sizes.

However, the paired t-tests performed on classification error
indicate that OSI outperformed the other three methods when
the swarm size was set to 7, 17, and 20. This may be because
the OSI algorithm provides better generalization on the 4BIT
problem than our algorithm. However, the paired t-tests on
classification error and mean squared error both indicate
that DOSI performed statistically equivalent to LSPLIT and
NSPLIT.

VII. DISCUSSION

The paired t-tests on mean squared error indicate that DOSI
performed either equal to or better than the other methods
on all data sets studied. The paired t-tests on classification
error indicate that DOSI performed either equally to or better
than the other methods on all data sets studied except for
the 4BIT data set. On the 4BIT data set OSI statistically
outperformed DOSI when the swarm size was set to 7, 17,
and 20. We hypothesize that OSI’s superior performance
is due to the competition between overlapping swarms. It
would be interesting to test this hypothesis by adding similar
inter-swarm competition to DOSI to determine if it improves
performance. We plan to explore this mechanism in future
work.

Although DOSI had slightly higher classification error than
OSI in some of the 4BIT cases, it has much lower compu-
tational complexity since it only requires a swarm for each
neuron rather than requiring a swarm for every possible path
through the network. This lower complexity allows DOSI to be
used as a learning technique on much larger neural networks.
Also, the lack of a global network allows the learning process
to be distributed across multiple machines. Such distribution
is desirable for large neural networks but is complicated by
the global network when considering any of the other methods
examined here.

VIII. CONCLUSIONS AND FUTURE WORK

In the paper by Pillai and Sheppard [8] it was shown that
the OSI method is effective for training feedforward neural
networks with some indication that it would also perform well
on deep networks. Unfortunately, their approach requires a
swarm for every path in the network. Using this approach, the
number of swarms, S, that would need to be generated and
managed is

S = P = I ·NH ·O.

where P is the number of paths through the network, I is
the number of inputs, N is the number of neurons per hidden
layer, H is the number of hidden layers, and O is the number
of outputs. Thus, as layers are added to a network the number
of paths through the network grows exponentially.

The NSPLIT method [6], on the other hand, is very fast,
given the fact local swarms are specified only for each individ-
ual node. However, the experimental results demonstrated that,
while NSPLIT is effective on shallow networks, as network
complexity increased, the effectiveness of the approach tended
to break down.

In this paper, we succeeded in combining the advantages of
both OSI and NSPLIT, first by enabling a sharing of informa-
tion between the local swarms, and second by managing the
associated computational complexity. The former enabled the
training of various types of feedforward networks (including

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1424

the deep network for the 4BIT problem), and the latter made
the associated process tractable. Furthermore, by focusing on
a local fitness evaluation rather than requiring a shared, global
network, our resulting DOSI algorithm enables the entire
learning process to be fully distributed. As a result, DOSI
was shown to perform competitively with OSI and NSPLIT
in terms of mean squared error and classification error while
carrying the corresponding benefits of enabling distributed
implementation and supporting deep network learning.

For future work we will explore methods for inter-swarm
competition to improve our algorithm’s performance, espe-
cially on deep networks. For example we will explore the case
where a swarm associated with a neuron will search for both
the input and output weights of that neuron. Swarms that learn
the same weights would then compete with one another dur-
ing inter-swarm communication. This approach will increase
the amount of sharing between neighboring swarms without
introducing a combinatorial increase in computational burden.
We will test the competitive sharing approach to NSPLIT and
LSPLIT, as well as other learning methods (e.g., deep belief
networks [12] and convolutional networks [13]), specifically
on deep structure learning problems.

REFERENCES

[1] J.-R. Zhang, J. Zhang, T.-M. Lok, and M. R. Lyu, “A hybrid particle
swarm optimization-backpropagation algorithm for feedforward neural
network training,” Applied Mathematics and Computation, vol. 185, pp.
1026–1037, 2007.

[2] M. Gori and A.Tesi, “On the problem of local minima in backpropaga-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 1, pp. 76–86, 1992.

[3] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of IEEE International Conference on Neural Networks,
vol. IV, 1995, pp. 1942–1948.

[4] C. Zhang, H. Shao, and Y. Li, “Particle swarm optimization for evolving
artificial neural networks,” in Proceedings of the IEEE Conference on
System, Man, and Cybernetics, vol. 4, 2000, pp. 2487–2490.

[5] X. Cai, N. Zhang, G. K. Venayagamoorthy, and D. C. Wunsch, “Time
series prediction with recurrent neural networks trained by a hybrid
PSOEA algorithm,” Neurocomputing, vol. 70, pp. 2342–2354, 2007.

[6] F. van den Bergh and A. Engelbrecht, “Cooperative learning in neural
networks using particle swarm optimizers,” South African Computer
Journal, vol. 26, pp. 94–90, 2000.

[7] B. K. Haberman and J. W. Sheppard, “Overlapping particle swarms for
energy-efficient routing in sensor networks,” Wireless Networks, vol. 18,
no. 4, pp. 351–363, 2012.

[8] K. G. Pillai and J. W. Sheppard, “Overlapping swarm intelligence for
training artificial neural networks,” in Proceedings of the IEEE Swarm
Intelligence Symposium, April 2011, pp. 1–8.

[9] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computing, vol. 1, 2000, pp. 84–88.

[10] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[11] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” Journal of Machine Learn-
ing Research, vol. 10, pp. 1–40, 2009.

[12] G. E. Hinton and Y.-W. Teh, “A fast learning algorithm for deep belief
networks,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

SCIS-ISIS 2012, Kobe, Japan, November 20-24, 2012

978-1-4673-2743-5/12/$31.00 ©2012 IEEE 1425

