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Abstract—Current trust models for social networks com-
monly rely on explicit voting mechanisms where individuals
vote for each other as a form of trust statement. However,
there is a wealth of information about individuals beyond trust
voting in emerging web based social networks. Incorporating
sources of evidence into trust models for social networks has
not been studied to date. We explore a trust model for social
networks based on Markov Random Fields, which we call
MRFTrust, that allows us to incorporate sources of evidence.
To allow comparative evaluation, a state-of-the-art local trust
algorithm—MoleTrust—is also investigated. Experimental re-
sults of the algorithms reveal that our trust algorithm that
incorporates evidence performs better in terms of coverage.
It is competitive with the MoleTrust algorithm in prediction
accuracy and superior when focusing on controversial users.

Keywords-Trust Metrics, Reputation System, Social Network,
Markov Random Fields

I. INTRODUCTION

Recently, online Web services such as MySpace, Face-
Book, Friendster, LiveJournal, Blogger, LinkedIn, Twitter,
and Orkut have emerged as popular social networks. This
new generation of social networks is enormous, rich in infor-
mation, and extremely dynamic. Moreover, in today’s Web, a
vast amount of content is created by users. This content can
range from factual information to opinions about a person, a
product, or a company. People constantly interact with other
people about whom they have no immediate information. As
a result, users of these services are constantly faced with
questions of how much they should trust the content created
or opinion provided by another person and how much they
should trust the unknown person with whom he or she is
about to interact.

With this uncertainty in the mind, many e-commerce
companies such as eBay and Amazon enable users to rate
other users or their reviews by providing a trust vote.
Most online forums have some mechanism for users to rate
others’ opinions or responses. In some cases, the voting is
implicit. For example, reading an article can be considered
an implicit positive vote. Utilizing this vast amount of trust
data or aggregating trust scores for users have become a real

challenge for those companies. Trust and reputation is also
very relevant to Peer-to-Peer (P2P) networks such as file-
sharing networks. P2P networks are mainly used for sharing
and distributing information. Thus, they are vulnerable to the
spread of unauthentic files [1], [2], [3], [4]. An alternative
utilization of the trust concept is used by the Google search
engine; a link from one web site to another is an expression
of trust [5].

As the Semantic Web gains acceptance, understanding the
credibility of metadata about authors is becoming important
[6]. While designing recommender systems, one researcher
found that there is a strong correlation between trust and
user similarity [7]. Thus, trust became the essential variable
in computing user similarity [8]. Finally, trust concept is
extensively applied to social networks. There is a wealth
of information on trust and reputation scoring in social net-
works [9], [10], [8], [6], [11]. For example, Mui documented
the theories and approaches about trust scores and reputation
systems using Bayesian networks for inference on social
networks [12].

There is no universal definition of trust and reputation.
Barbalet characterized trust and its consequences in detail.
He postulates that it is insufficient to define trust in terms
of “confident expectation regarding another’s behavior” as
many researchers defined [13]. Instead, the author char-
acterizes trust in terms of acceptance of dependency (the
trust giver grants control or power to trustee; thus, the
trust giver accepts dependence on trustee) in the absense of
information about the other’s reliability in order to create
an outcome otherwise unavailable. Golbeck and Hendler
adopted a narrower definition of trust for social networks—
“trust in a person is a commitment to an action based on
belief that the future actions of that person will lead to a
good outcome” [11].

Although, researchers generally don’t aggree on the def-
inition of trust, two properties of trust are used for ag-
gregation: transitivity and asymmetry. Transitivity means
if A trusts B who trusts C, then, A trusts C. Asymmetry
means if A trusts B, it doesn’t mean that B will also
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trust A. The majority of trust propagation algorithms utilize
the transitivity property [10], [1], [14], [6], [2]. It should
be noted this property may not always work with distrust
[15]. Moreover, [16] and [17] defined two types of trusts:
referreral trust and direct functional trust. If A trusts B
who trusts C, then, the trust between A-B and B-C is
direct functional trust. However, if B recomends C to A
as trustworthy, it is referral trust.

Modeling trust networks and propagating trust is a chal-
lenging task: 1) trust networks are huge and sparse, and
2) it is often difficult to model human belief and trust.
Thus, researchers have often proposed simplistic approaches
for trust propagation. Ziegler and Lausen categorized trust
metrics on three dimensions [14]: a network perspective,
computation locus, and link evaluation. For the network
perspective, they categorized trust metrics as global and
local. Global trust metrics consider all links and nodes in
the networks, where local trust metrics take into account
only a partial network. Computational locus refers to the
place where trust relationships are computed. In determining
distributed or local trust metrics, the computation load is
distributed to every node in the network, whereas in com-
putationally centralized systems, all metric computations are
performed on a single machine. The tradeoff between the
two approaches involves memory, performance, and security.
Finally, link evaluation determines whether the trust metrics
themselves are scalar or group trust metrics. In group trust
metrics, trust scores are computed for a set of individuals
whereas for scalar metrics only trust scores between two
individuals are computed.

An increasing number of articles have been published on
modeling trust networks and evaluating trust metrics [4],
[15], [14], [11], [1], [18], [16], [13], [3] using different
computational methods. For example, Wang and Vassileva
designed a Bayesian Network-based trust model for P2P
[3]. The model represents different features of trust as
leaf nodes of Naive Bayes networks. On the other hand,
[18] developed a model based on Fuzzy logic. Another
popular trust model is the Appleseed Trust metric based on a
Spreading Activation Model [14], [6]. Two different models
based on eigenvalue propagation were designed by [1] and
[15].

Massa and Avesani studied challenges of computing trust
metrics in a social network where data are sparse [19].
In such networks, neither a global reputation nor a simple
trust score is a viable option since a large percentage of
the participants are considered to be controversial; they
are distrusted by some and trusted by others. Thus, the
authors proposed a state-of-the-art framework and algorithm
called MoleTrust that uses local trust metrics. However, this
approach does not incorporate other sources of evidence. For
example, the epinion.com dataset contains articles written
by users [20] where these articles are also rated by other
users. Determining if such information is useful for a trust

algorithm is the challenge. We hypothesize that including
more evidence into a trust model will improve the prediction
power of the model and its coverage.

The rest of the paper is organized as follows. Our trust
prediction algorithm based on Markov Random Fields is
described in Section II. Then in Section III, we describe
the dataset and present our results. The last section gives
the conclusions and future directions for our research.

II. METHODS AND PROCEDURES

In this paper, we describe our approach to developing
and using a trust network model based on Markov Random
Fields (MRFs). A detailed introduction to MRFs is given
in [21]. An MRF is a stochastic process that exhibits the
Markov property in terms of the interaction of neighboring
nodes in the network. MRF models have a wide range of
application domains. The nodes in the MRF graph represent
random variables, and the edges represent the dependencies
between variables. In our approach, we use the same type
of model for propagating the trust scores in social networks.

The joint probability distribution over X and Y can be
represented by an MRF in the following way:

P(x,y) =
1

Z

∏
i,j

ψ(xi, xj)
∏
i

φ(xi, yi)

where Z is a normalization factor (also called the partition
function), ψ(xi, xj) represents pairwise influence between
node xi and xj in the network (often referred to as the
pairwise compatibility matrix), and φ(xi, yi) is a local
evidence function that forms a distribution over possible
states, xi, given only its observations yi. When considering
the application of MRFs to social network trust prediction,
we note that the social network results in a trust network
whenever users rate each other. Based on this observation,
we developed a local algorithm for learning trust metrics by
augmenting an MRF representation of social networks with
additional sources of evidence. Our framework allows us to
evaluate an active user’s trust for an unknown person in the
network.

There are two common methods for inference with MRF
models [22]: 1) Markov Chain Monte Carlo (MCMC) sam-
pling, such as Gibbs sampling, and 2) Belief Propagation.
The approach we used is based on belief propagation, so
we begin by describing the main steps in the Belief Propa-
gation algorithm. Essentially, belief propagation proceeds as
follows:

1) Select random neighboring nodes xk, xj
2) Send message Mk

j from xk to xj
3) Update the belief about the marginal distribution at

node xj
4) Go to step one until convergence.

Message passing in step 2 is carried out as

Mk
j =

∑
xk

ψkj(xk, xj) b(xk) (1)
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where b(xk) is the current belief value associated with node
xk. Belief updating in step 3 is then computed as

b(xj) = κφ(xj , yj)
∏

k∈Neighbor(j)

Mk
j (2)

where κ is a normalization factor, and Neighbor(j) is the
set of nodes adjacent to node xj .

To infer the trust score of users unknown to the current
user in that network, a local network is generated from the
global social network. The local trust network has a limited
horizon. In other words, instead of propagating trust state-
ments using the global network, we create a local network
based on a specific user’s neighborhood. For example, for a
given user A, we generate a local network that contains all
neighboring users that are only a finite distance (in terms of
the number of links crossed) away from A. Thus, the trust
score of a person in the local network can be evaluated with
respect to the active user A.

We compared the results of our approach to modeling
trust propagation to the MoleTrust algorithm, presented in
[19]. The process of generating the local network is similar
to MoleTrust in that it is based on the intuition that the
average trust path length between two individuals is small
[14]. Moreover, due to computational complexity and the
objective that any trust prediction system operate online, the
local network needs to be small.

For purposes of our experiments, we re-implemented Mo-
leTrust to ensure a fair and carefully-controlled comparison.
To predict how much a user A trusts a user B, denoted
T (A,B), MoleTrust generates a local directed graph from a
given global social network whose root is A. For each graph
depth, it adds links that represent trust statements between
users. To avoid cycles, it does not add nodes if they are
already in the local network. The depth or distance of the
graph is determined by a parameter called the horizon. If the
target user is in the local graph, a trust prediction is made.
Otherwise, the trust prediction is not made. As we will see,
this restriction has a direct impact on the coverage of the
MoleTrust algorithm. Trust propagates from the root node
to the leaf nodes with equation 3, where b(xj) is the trust
value or belief predicted at node xj :

b(xj) =

∑
k∈Predecessor(j)

b(xk)T (xk, xj)∑
k∈Predecessor(j)

b(xk)
(3)

Here T (xk, xj) is the trust value on the edge between node
xk and xj , and Predecessor(j) is the set of nodes with
edges terminating at xj . The trust values for the nodes are
calculated from this equation, whereas the trust values on
the edges are specified explicitly in the network. Edge trust
values represent explicit trust voting of one user about the
other. To start the belief propagation process, the belief of
the root node is initialized to 1.0.

MoleTrust was designed to address the issue of predicting
trust in the presences of controversial users. The most
controversial users have approximately equal numbers of
distrust and trust statements. The controversiality level of
a user is given in equation 4 [19]:

c(xj) =
|Trust(xj)| − |Distrust(xj)|
|Trust(xj)|+ |Distrust(xj)|

(4)

where Trust(xj) is the set of trust statements for user/node
xj , and Distrust(xj) is the set of distrust statements for
xj . This controversiality level has the range of −1.0 . . . 1.0.
A user with controversiality level of −1.0 is distrusted by
all his or her judgers, where a user with controversiality
level of 1.0 is trusted by all users who voted. On the
other hand, a user with controversiality 0.0 has an equal
number of trust and distrust votes. Therefore, a user with 0.0
controversiality is the most controversial user. We discretized
the controversiality levels of the users into buckets of width
0.1. Finally, we define the coverage of a prediction algorithm
to be the percentage of statements that are predictable by that
algorithm.

The MoleTrust algorithm accepts an incoming link to node
xj if the predicted trust value of xj’s corresponding parent
node is above a threshold. Otherwise, the link between them
is blocked from propagating the trust scores. We claim this
approach biases the performance of the MoleTrust algorithm
by limiting its predictions to those that are “easy.” Although
this approach may result in accurate trust predictions, it
results in low coverage. For a given graph depth or horizon,
if the user is not in the local network, MoleTrust cannot make
a prediction. Moreover, if trust propagation does not reach
the target user due to the link blocking explained above,
the prediction cannot be made. For example, if we were to
predict Alice’s trust in Mark based on the network in Figure
1 without a direct link between them, the trust will propagate
indirectly through nodes Bob and Dave. However, if neither
Bob nor Dave have direct links to Mark, a prediction cannot
be made by MoleTrust. The other situation arises when
the all parent nodes of the target node Mark, namely Bob
and Dave, have the calculated trust score below the given
threshold. Since they will be blocked from propagating their
trust scores, once again MoleTrust cannot make a prediction.
As a result the coverage of MoleTrust is bounded by the local
network structure and the threshold parameter.

In contrast to the approach above, we designed an al-
gorithm based on the Belief Propagation in MRFs that
overcomes the coverage limitations of MoleTrust. In our
approach, we construct a local network similar to MoleTrust
but with undirected links. In addition, each node is also
attached to evidence nodes. An evidence node represents
a respective user’s observation about the target node. The
evidence node, thus, creates an indirect link between two
nodes. For example, in Figure 2, if both Bob and Dave rated
one or more articles written by Mark, they have created
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Figure 1. Determining Coverage in MoleTrust

Figure 2. Determining Coverage in MRFTrust with Evidence

indirect links based on this evidence about Mark. When
neither Bob nor Dave have direct links to Mark, a prediction
still can be made through these indirect links.

As described in section III below, the epinions.com dataset
contains article ratings that can be used as evidence. Our
algorithm exploits this evidence to increase the prediction
coverage. To the best of our knowledge, no other trust
propagation algorithm has been developed that incorporates
other sources of evidence into their trust calculations. Our
MRF based algorithm, which we call MRFTrust, uses the
Belief Propagation algorithm defined above; however, unlike
MoleTrust, messages are propagated in our model from
nodes that are also connected to the target node. We proceed
from the assumption that the neighbors of the target node
have a more reliable estimate of trust. In other words,
a user may be globally more controversial even though
he or she is less controversial in a local graph. Thus,
propagating from neighbors to the source node is in essence
propagating this more reliable assessment to the source
node, resulting in a better prediction. When constructing
our graph, we ensure that the resulting graph is a tree
structure to control the computational complexity of the
belief propagation algorithm. For example, Figure 3 shows
the result of generating the tree from the graph constructed
in Figure 2. The marginal at the source node represents the
probability that the person associated with the source node

Figure 3. MRFTrust Network with Evidence Nodes

will trust the person associated with the target node. The
process by which the subgraph/tree is constructed results in
that marginal being conditioned on the evidence about the
target node.

In our algorithm, the initial belief for the neighbor nodes
of the target node in equation 1 is calculated as

b(xk) =

{
T (xk, Target) Link Exists
φ(xk, yk) Otherwise

where φ(xk, yk) is node k’s observation about the target
node, calculated as

φ(xk, yk) =

[
θ

1− θ

]
and θ is the average rating issued by xk on articles or
documents written by the target user, normalized by the max-
imum rating for the articles. For example, if Bob rated three
articles written by Mark with an average score of 4.0 out of
maximum score of 5.0, the local evidence is

[
0.8 0.2

]T
.

Thus, with probability 0.8, Bob trusts Mark. Equivalently,
with probability 0.2, Bob distrusts Mark. Since the algorithm
needs to be run for each pair of users and the inference has to
be done online, the time complexity of the inference should
be kept linear. As such, we limited the propagation of belief
to only one direction. Considering bidirectional propagation
will be considered as future work. Thus, marginal probability
distributions are only approximate. The compatibility matrix
ψ(xk, xj) is then constructed as

ψ(xk, xj) =

[
T (xk, xj) 1− T (xk, xj)

1− T (xk, xj) T (xk, xj)

]
T (xk, xj) represents the average value of trust between
nodes k and j. For example, if node k trust node j, the
value is 1.0. A value of 1.0 effectively means that users
are compatible. On the other hand, if node k trusts j and j
does not trust k, its value is 0.5. Finally, in our algorithm
the prediction is made if at least 10 users have evidence on
the target user or the target user is in the local network.
Otherwise, no prediction is made.
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III. EXPERIMENTS AND ANALYSIS

In this study, the epinions.com dataset for collaborative fil-
tering was used [20]. Epinions.com is a website where users
can write reviews about products and rate other reviews. It
also allows users to express their Web of Trust (i.e., reviewers
they trust) and their Block List (i.e., a list of authors they
distrust). Thus, the dataset contains user ratings of articles
created by other users as well as user ratings of each other
in the form of Web of Trust and the Block List. The value of
1 is used for trust statements (Web of Trust), and −1 is used
for distrust statements (Block List). We rescaled the trust
scores so that the distrust statements would have a value of
0. This ensured the trust values were in the range 0.0 . . . 1.0.
The article ratings represent how likely a user rates a certain
textual article written by another user. The rating value has a
range 1 . . . 5 where 1 is “not helpful” and 5 is “very helpful.”

The epinions.com data set contains about 132,000 users,
who issued 841,372 statements of trust or distrust. We
removed 573 trust statements corresponding to statements
where the recipients of the statements were also the senders
of the same statements. In testing our approach, we used
a leave-one-out experimental design to evaluate the per-
formance of the model. Specifically, for every existing
relationship between users A and B in the data set, we
removed a true trust statement from user A to user B and
then constructed the local network between them. Then, we
predicted A’s trust statement for B based on that network.
We repeated this procedure to evaluate MoleTrust as well.
We also implemented two naive algorithms—Gullible and
Skeptic. Gullible, outputs “trust” if the target is in the local
network; otherwise, it it doesn’t do any prediction. Skeptic,
also outputs “trust” if the target is in the local network; how-
ever, unlike Gullible, it outputs “distrust” if the target is not
in the local network. Thus, Skeptic’s coverage is 100%. All
tests were performed using horizon = 2 since the reported
experiments on MoleTrust used this horizon. Because of this,
we denote all implemented algorithms with a “2” after the
name (e.g., MRFTrust2). We re-implemented MoleTrust2 as
described in [19] with the same parameters they report using.
Specifically, the threshold value of blocking a trust links was
set to 0.6.

MRFTrust2 did not perform as accurately as MoleTrust2
for distrusted users. However, MRFTrust2 performed com-
parably with high controversiality users and virtually identi-
cally for trusted users. Figure 4 shows the coverage plot-
ted against the controversiality level for each algorithm.
Although MoleTrust2 has a lower error rate (especially in
areas of distrust), its coverage is also very low; as described
in section II, its coverage is bounded by the structure of
the local network and the threshold parameter. As shown
in the Figure 4, its coverage is bounded by Gullible2’s
coverage. Moreover, MoleTrust2’s coverage is around 30%
on the most controversial bucket of users. On the other hand,

Figure 4. Coverage Percentage by Controversiality Level

MRFTrust2’s coverage is significantly higher. As shown
in the figure, its coverage is close to 75% on the most
controversial users and approaches 100% on most of the
remaining levels. The highest coverage MoleTrust2 ever
achieves is around 80%.

The fact that MRFTrust and MoleTrust have radically
different coverage makes direct comparison between them
difficult. In an attempt to make the comparison between
these two algorithms fair, we designed two experiments to
compare MRFTrust2 to MoleTrust2 in ways that ensure the
coverage is the same for both algorithms. In the top part
of Figure 5, MRFTrust2+ is the MRFTrust2 algorithm that
runs only on cases where MoleTrust2 can make a prediction,
whereas MRFTrust2– is the MRFTrust2 algorithm that runs
on cases where MoleTrust2 cannot make a prediction. It
is not surprising that MRFTrust2– has higher error rates.
However, in most cases, the error rate is below 50%.
Furthermore, MRFTrust2+ and MoleTrust2 have comparable
results. MoleTrust2 continues to be significantly better than
MRFTrust2+ in the controversiality range −1.0 . . . − 0.4
(while being much closer in performance as compared to the
original experiments), but the results are statistically com-
parable in the range −0.3 . . . − 0.1. Then from 0.0 . . . 1.0,
MRFTRUST2+ is significantly better. Confidence intervals
for MRFTrust2+ and MoleTrust2 are given in the second
and third columns of Table III.

Similar to the previous experiment, we designed another
experiment to compare MoleTrust2 to MRFTrust2 where we
increased the coverage of MoleTrust2 to be equivalent to
MRFTrust2. In the bottom part of Figure 5, MoleTrustRan-
dom2+ is a version of MoleTrust2 where it makes a ran-
dom prediction if the target is not in the local network.
Moreover, it only runs on cases where MRFTrust2 can
make a prediction. On the other hand, MoleTrustRandom2–
is similar to MoleTrustRandom2+ except it only runs on
cases where MRFTrust2 cannot make a prediction. The
results show that MRFTrust2 performs equivalent to or better
than MoleTrustRandom2+ if the two algorithms have the
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Cntr Mole2 MRF2+ MRF2 MoleRnd2+
-1.0 0.0014± 0.0006 0.0667± 0.0040 0.2543± 0.0050 0.1941± 0.0042
-0.9 0.0270± 0.0037 0.0929± 0.0068 0.1787± 0.0072 0.1306± 0.0058
-0.8 0.0569± 0.0060 0.1430± 0.0099 0.2263± 0.0094 0.1733± 0.0075
-0.7 0.0714± 0.0071 0.1301± 0.0106 0.2180± 0.0102 0.1898± 0.0084
-0.6 0.1052± 0.0129 0.1523± 0.0165 0.2902± 0.0143 0.2717± 0.0121
-0.5 0.1231± 0.0114 0.1594± 0.0145 0.2838± 0.0126 0.2779± 0.0106
-0.4 0.1723± 0.0139 0.2321± 0.0184 0.3056± 0.0158 0.2652± 0.0124
-0.3 0.1696± 0.0170 0.1520± 0.0177 0.3326± 0.0132 0.3674± 0.0112
-0.2 0.1855± 0.0163 0.1821± 0.0188 0.3053± 0.0155 0.3230± 0.0129
-0.1 0.2151± 0.0136 0.2274± 0.0178 0.2958± 0.0143 0.3251± 0.0113
0.0 0.2904± 0.0189 0.2134± 0.0191 0.3322± 0.0101 0.4422± 0.0082
0.1 0.2409± 0.0109 0.2285± 0.0144 0.3138± 0.0116 0.3522± 0.0089
0.2 0.2479± 0.0126 0.1842± 0.0142 0.2976± 0.0110 0.3738± 0.0089
0.3 0.2466± 0.0100 0.1731± 0.0113 0.2866± 0.0085 0.3860± 0.0069
0.4 0.2588± 0.0077 0.1825± 0.0097 0.2513± 0.0084 0.3413± 0.0065
0.5 0.2422± 0.0066 0.1458± 0.0075 0.2456± 0.0066 0.3506± 0.0053
0.6 0.2258± 0.0046 0.1353± 0.0054 0.2211± 0.0049 0.3257± 0.0040
0.7 0.1692± 0.0035 0.0943± 0.0038 0.1724± 0.0038 0.2783± 0.0034
0.8 0.1183± 0.0018 0.0603± 0.0018 0.1312± 0.0021 0.2216± 0.0020
0.9 0.0555± 0.0008 0.0278± 0.0007 0.0792± 0.0010 0.1414± 0.0011
1 0.0079± 0.0003 0.0041± 0.0003 0.0886± 0.0010 0.1446± 0.0011

Table I
MEAN ABSOLUTE ERROR 95% CONFIDENCE INTERVALS FOR
MoleTrust2 (Mole2) VS MRFTrust2+ (MRF2+) AND MrfTrust2

(MRF2) VS. MoleTrustRandom2+ (MoleRnd2)

Figure 5. MRFTrust2 Compared to MoleTrust2 Given Equivalent Coverage

same coverage. Confidence intervals for MRFTrust2 and
MoleTrustRandom2+ are given in columns four and five of
Table III.

IV. CONCLUSION

We have proposed a new algorithm for incorporating
evidence into trust prediction within the context of social
networks. Our algorithm utilizes a Markov Random Field
formulation to represent trust/distrust relationships between

users and incorporates evidence nodes capturing user rat-
ings of articles written by other users in the network. We
discussed several experiments, comparing our MRFTrust
algorithm to the state-of-the-art MoleTrust using the epin-
ions.com data set. Incorporating evidence into the model
enabled us to utilize implicit trust relationships to predict
trust and thereby increase the prediction coverage.

One of the key complexities in performing our experi-
ments arose based on the substantial differences in coverage
exhibited by the two algorithms. To address this, we included
two experiments where we attempted to equalize coverage.
In one case, we limited the instances covered by MRFTrust2
to be the same as those covered by MoleTrust2. In the second
case, we extended MoleTrust2 to make random predictions
on those examples it did not cover but that were covered
by MRFTrust2. Of particular interest was that, under both
of these conditions, the performance between the MRFTrust
and MoleTrust algorithms either became comparable, or
the MRFTrust algorithms beat the MoleTrust algorithms.
This is particularly interesting in the light of the fact the
base algorithms showed a much stronger advantage to the
MoleTrust algorithm (ignoring the issue of coverage). At this
point, it is difficult to explain the difference in performance;
however, we plan to focus on such an analysis by considering
the particular characteristics of the data and the role of
evidence in the data.

As future work, we plan to explore alternative and ad-
ditional sources of evidence to be included into the MRF
model. A candidate for another source of evidence could be
based on how source and target users rate common articles.
We speculate that if they both rate the same article with the
same score, the likelihood of them trusting each other would
be higher than if they rated the same article with different
scores. Thus by incorporating evidence nodes that reflect
“correlation” in article scoring, we may find even higher
accuracy in predicting trust. In addition, we plan to evaluate
the effect on computational burden and prediction accuracy
when increasing the horizon in the local graphs. Finally, we
began to explore different ways of combining the results of
MRFTrust and MoleTrust to yield an ensemble-based model.
Initial results indicated an over-emphasis on the MRFTrust
portion that failed to incorporate the high-accuracy parts
of MoleTrust adequately. Alternative approaches will be
explored to compensate for this problem.
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