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ABSTRACT 

With recent advances in neural networks, an increasing number 
of application areas are being explored for this technology. Also, 
as software takes a more prominent role in systems engineering, 
ensuring the quality of software is becoming a critical issue. This 
paper explores the application of one neural network 
paradigm-the competitive learning network-to the problem 
of evaluating software complexity. The network was developed 
by ARINC Research Corporation for its Soffest software 
analysis system, developed on a Sun workstation. In this paper, 
we discuss the network used in Soffest and the approach taken 
to train the network. We conclude with a discussion of the impli- 
cations of the approach and areas for further research. 

INTRODUCTION 

The degree to which characteristics that impede soft- 
ware maintenance are present is called software 
maintainability and is driven primarily by software com- 
plexity, the measure of how difficult the program is to 
comprehend and work with [I]. 

In 1987, ARINC Research Corporation began researching 
approaches for analyzing software to facilitate efficient testing 
and maintenance of code. Much of that work focused on the 
problem of modeling software in order to automatically gener- 
ate software test strategies. This work included exploring the 
possibility of automatically building a functional model from 
source code. During two and a half years of research, ARINC 
Research developed two approaches to modeling and assessed a 
third approach [2-S]. With the knowledge gained, we developed 
a prototype tool-SofTest-to generate a functional model 
from FORTRAN source code [6]. 

In addition to the FORTRAN prototype, which exists on an 
HP-1000 minicomputer, we redesigned Soffest on a Sun work- 
station. This refined and redesigned version was intended to 
separate the subsystems that relied on specific programming 
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languages from the analysis portion of the system. The result 
was a language-independent analysis tool with a language- 
dependent front-end. As an extension of our work. another 
language was used as the object of our analysis-the Cprogram- 
ming language. As a result. the new version of SofTest analyzes 
C source code and generates several reports describing the 
structure and complexity of the software analyzed. 

We apply Soffest when attempting to assess the overall main- 
tainability of a software system. In performing such an analysis, 
Soffest looks for structural characteristics to determine the 
complexity of the code analyzed. As a result of the complexity 
analysis, several descriptive reports can be generated by 
Soffest, thus documenting the condition of the code. 

MEASURES OF SOFTWARE COMPLEXITY 

Lines of Code 

The most basic measure of software complexity, lines of code 
(LOC), provides a measure of the size of a program. SofTest, 
using LOC as an indicator of complexity, determines the num- 
ber of source LOC by program unit (or function). This measure 
includes executable, nonexecutable. and comment lines. 

McCabe’s Cyclomatic Number 

LOC, by itself, is not a good measure of complexity because the 
number depends largely on the programmer’s style. Some pro- 
grammers freely use space and place individual commands on 
one or more lines. Other programmers prefer compact code and 
include several commands on one line. Thus, other measures 
are needed to assess the complexity of code. 

Thomas J. McCabe (7.81 developed an approach to examining 
the control structure of a function using the cyclomatic number 
of a graph. The cyclomatic number is based on a graph represen- 
tation of the control flow of a function. The function is repre- 
sented with nodes corresponding to commands in the code and 
edges corresponding to transfer of control. In graph theory, the 
cyclomatic number is defined to be equal to the “maximum 
number of linearly independent circuits” [7]. This assumes that 
the graph is strongly connected (i.e.. there is a path from any 
node to any other node in the graph) and directed (i.e., a direc- 
tion of flow is specified on the edges of the graph). The 
cyclomatic number may then be computed as follows: 

V(G) = e-n + p 
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where r = the number of edges. )I = the number of nodes. 
p = the number of connected components (which. for a soft- 
ware function, is always I). In order to apply this expression to 
software, a control flow graph of the function analyzed is con- 
structed. This graph is constructed with single point ofentry and 
single point of exit. 13ut the resulting graph is not strongly con- 
nected, so an edge is added from the exit to the entry. Because an 
edge has been added to the graph. McCabe specifies that the 
expression for 1/(G) needs to be modified to the following (see 
reference 8 for an explanation for this modification): 

V(G) = e - 17 + 2p 

Using a simpler process, 1/(G) can be determined without gener- 
ating the control graph. The result is two versions of the 
cyclomatic number. I/(G), is computed by counting all of the 
decision points in the function (e.g., IF. FOR, WHILE, CASE) 
and adding 1. V(G), is computed by counting all of the 
individual predicates in the function used in a decision point 
(e.g., EQUAL. LESS THAN) and adding 1. Soffest only 
computes V((;), 

The cyclomatic number is used to assist in path testing a soft- 
ware function. In path testing (path analysis), test data are gen- 
erated that provide coverage of a software function. In other 
words, test data should cause every statement in the code to be 
executed at least once. The cyclomatic number provides a meas- 
ure of the amount of testing required to “cover” a function. The 
measure, as our definition of cyclomatic number indicates. pro- 
vides the number of independent circuits in the code. By remov- 
ing the edge between the exit and entry. we see this corresponds 
to the number of independent paths from entry to exit in the 
function. Soffest imposes the standard specified by McCabe [8]. 

Halstead’s Software Science 

V(G) also is not a sufficient measure, in itsetf. of software com- 
plexity. For example, the measure fails to consider the effects of 
nesting, and the CASE statements are treated with complexity 
equal to that of several IF statements. In 1977, Maurice 
Halstead discussed an approach to analyzing software using 
primitive characteristics in an attempt to eliminate these types 
of concerns [9]. The intent of Halstead’s Software Science is to 
assess the complexity of software as independently of the pro- 
gramming language as possible. The Soffest program corn- 

putes 12 metrics, including the following Halstead measures: 

nl = the number of unique operators 
il2 = the number of unique operands 
Nl = the total number of operators 
N2 = the total number of operands 
n = nl+n2 = the vocabulary of the 

function 
N = N1+N2 = the length of the function 
K = N Oown) = the volume of the function 
L = (2/nl)(n2/N2) = an estimate of the program 

level of the function 
E = v/t = the effort of the function 

The last three measures merit some additional comment. 
Volume, K is a measure of the size of the function. Halstead 

bitsed this measure on an estimate of the number of bits 
required t. store the function in memory. The program-level 
estimate, L, is a measure of the level of complexity of the func- 
tion. Its intent is to provide a sense of how difficult it is to 
“understand” the source code for that function. Finally, effort. 
E. is based on both volume and level and is intended to provide a 
measure of the effort that was required to write the function. 

CONTROL DENSITY 

In addition to LOC. V(G), and the Halstead metrics, Soffest 
computes a measure that combines lines ofcode and cyclomatic 
number, which we call the control density, D, of a function. The 
control density is computed as the ratio ofcyclomatic number to 
lines of code. The interpretation of this measure is currently 
uncertain,* but the neural network (described below) found the 
measure to be significant in assessing software complexity. 

ANALYSIS METHODS 

In addition to computing the complexity metrics, several analy- 
ses are performed which more directly describe the structures of 
the code and recommend where one should focus efforts to 
improve the code. The following sections discuss the complexity 
analysis process of the SofTest system. 

Metric Analysis 

Soffest operates on a “reduced” version of the software being 
analyzed. This reduced version is a collection of symbol tables 
with each symbol in the software categorized by type. The met- 
ric analysis that Soffest performs proceeds from these symbol 
tables to compute the metrics discussed above. The measures 
are then compared with the standards of software engineering 
practice. 

Pattern Analysis 

In addition to the traditional metric analysis. Soffest incorpo- 
rates a new approach using a neural network paradigm. The 
neural network is presented with complexity of data for each 
function analyzed, and the network detects and extracts pat- 
terns within the data. The network within Soffest was initially 
trained with data from more than 4,OtJO C functions from 
approximately 20 programs. The data consisted of normalizeA 
values of the 12 metrics: LOC, V(G). nl. 112. Nl, N2. n, N, V, I., 
E, and D. Once the system was trained. we discovered that the 
network identified three categories of functions which, after 
examining the training data, we labeled as Standard, Marginal, 
and Nonstandard. 

COMPETITIVE LEARNING 

Background 

No standards are currently accepted for Halstead’s measures, 
but Halstead’s measures have been accepted by industry as use- 
ful relative measures. Therefore. we sought to combine 
Halstead’s measures with LOC and V(G) and to identify 

*It was expected that a high control density would indicate high complexity. According to the neural network, the opposite was true. 
Complex functions either had high LOC and low I/(G), or they had low LOC and high V(G). 
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pnttcrns in the data using a competitive learning neural net- 
work. The competitive learning paradigm was developed to 
itlcntify features (or patterns) in a set of input data without 
explicitly training the network to identify these features. Thus, 
competitive learning is said to use a form of “unsupervised” 
learning (i.e., the network learns without direct supervision by 
an external agent) [ 10, I I]. 

The object of competitive learning is for the network to develop 
a set of “feature detectors.” When data containing a learned 
feature are submitted to the network. then the activity of the 
network identifies which feature is present. To identify features, 
nodes within the network ‘compete” among themselves to 
respond to the stimulus pattern. The node that “wins” the com- 
petition has a feature associated with it. Consequently, when 
that node becomes active, the feature has been identified. 

Two excellent applications for competitive learning networks 
are factor analysis and classification. In factor analysis, the net- 
work tends to respond according to factors (or common 
elements)within the data. An examination of the weights associ- 
ated with the various nodes assists in identifying what these 
factors are. The classification problem, on the other hand, is 
more interested in the nodes that win the competition. Here the 
network attempts to classify the training data in such a way that, 
when similar or related data are presented, the network will cor- 
rectly classify the data. The Soffest application uses the classifi- 
cation aspect of competitive learning networks. 

Figure 1 shows an example of a competitive learning network. 
These networks usually consist of two layers of nodes with some 

restrictions on how the nodes communicate. These networks 
are referred to as “fecdforward” networks, which means that 
data enter at one level and are transferred to the second level for 
processing. Nodata are passed back to the input layer. One layer 
of the network (labeled layer 0) is used strictly for input. This 
layer is fully connected to the second layer and simply passes 
data to that layer. A second layer (labeled layer 1) is used strictly 
for output. 

When referring to the connections between the nodes of the 
network, note that the connections between layers are strictly 
excitatory, and the weights, corresponding to the connection 
strengths, are between 0 and 1. In addition, all weights associ- 
ated with connections to a single output node must sum to 1. 
These weights are examined when performing a factor analysis 
to determine what factors exist in the data. 

Although there are no connections between nodes at layer 0, 
intralayer connections do exist at layer 1. In fact, layer 1 nodes 
are completely interconnected, and these connections define 
the competitive aspect of the network. The difference in these 
connections is that they are inhibitory. The inhibitory nature of 
these intralayer connections is determined by a winner-take-all 
algorithm [ 111. Further, the connections are implied in the com- 
petition algorithm, so they do not appear in a weight matrix (i.e., 
inhibitory weights are not learned). In the competition process, 
the node that wins the competition inhibits all activity on the 
other nodes at layer 1. (See reference 11 for a detailed cliscus- 
sion of competitive learning.) 

Layer 1: 

Layer 0: 

69-265655-1 

Figure i. Competitive Learning Network 
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The SofTest Application 

The network used in Sofl’est is a two-layer unsupervised com- 
petitive learning network that uses the software metrics listed 
earlier as the input to the network. In training the classification 
network for Soffest, it was hoped that certain characteristics of 
software would be identified to indicate code blocks that were 
overly complex or poorly structured. More than 4,000 functions 
written in C from approximately 20 programs were analyzed by 
SotTest to generate the 12 measures discussed above. Each pro- 
gram analyzed was written by varying numbers of programmers 
(from two to five per program). 

The 12 measures were normalized with fiied maximum values 
by measure to the range of [O. 11. They were then submitted to a 
network with 12 input nodes and 12 output nodes. Following 
training, three output nodes were detected having activity. A 
network was then constructed with 12 input nodes and 3 output 

nodes. The results were the same. The network gcneratecl is 
shown in Figure 2. 

Following an examination of the source: code, the three nodes at 
level 1 were found to indicate three levels of concern. 
(Note: The three levels of concern were identified after an 
examination of the actual source code in light of the information 
provided by the network.) These three levels are: 

0 Standard Code-Code that was written according to 
accepted software engineering practices (95.1%) 

l Marginal Co&-Code that has some characteristics con- 
trary to accepted software engineering practices (4.75%) 

0 Nonstandard Co&-Code that blatantly violates accepted 
software engineering practices (0.15%) 

Marginal Code 

A 

Nonstandard Code 

LOC V(G) f-I1 n2 Nl N2 n N V L D E 

89-285655-2 

Figure 2. Neural Network for Classifying Software Complexity 
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Figure 2alsoshows which metricscorrespc)nd to the threeclassi- 
fications. The connections shown by dashed lines had almost no 
impact on the competition. In fact. all 12 metrics contribute to 
each classification (an important consideration in factor analy- 
sis), but certain metrics can be identified as the major contribu- 
tors to classifying the input. For our example, the metrics 
“owned” by the output nodes are as follows: 

SfandardCode-D: A high control density, when balanced 
by the other 11 metrics, appears to indicate well-structured 
code. 

Marginal Code---n 1 and II: The vocabulary is beginning to 
get excessive, especially in the use of language elements. 
This is balanced by the other 10 metrics, especially the 
effort, E, metric. 

Nunstcmiard Code-LOC and V(G): When the lines of 
code and control complexity become excessive, the code 
clearly has not been written within the bounds of standard 
software engineering practice. This class is balanced b2 
the other 10 metrics with a particular emphasis on level, L, 
and density, D. 

Following the training of the neural network, several software 
systems were analyzed by the network to lest the results. Part of 
a report generated by the network for a parser is shown in 
Figure 3. This report lists the complexity measures by function 
value and whether or not a standard has been violated or the 
network has identified a problem. 

CONCLUSION 

Neural networks are beginning to exhibit tremendous power 
and flexibility in interpreting large quantities of data. The com- 
petitive learning network is one example of a network paradigm 
that we applied to the software complexity analysis problem. 
The results of the research for this project show considerable 
promise for applying neural networks to the analysis of similar 
problems or expanding the capabilities of Soffest by incorpo- 
rating other network paradigms. 

Future work at ARINC Research in neural networks will 
include examining behavior patterns and symptoms of software 
anomalies. Using the ability of neural networks to generalize 
from a set a sample patterns, we hope to train the neural net- 
work to identify symptoms and to detect unusual patterns of 
activity on the basis of CPU utilization. memory utilization, or 
other performance measures. 

In conclusion, the Soffest software analysis program was devel- 
oped to identify portions of code that are potentially difficult to 
test and maintain. The neural network trained for Soffest 

provides an approach that extends beyondsimplycheckingstan- 
dards: it identifies functions with unusual or abnormal 
complexity characteristics. Such identification is expected to 
simplify the development and testing process for our major 
software efforts. 
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