Overlapping Swarm Intelligence for Training
Artificial Neural Networks

Karthik Ganesan Pillai
Department of Computer Science
Montana State University
EPS 357, PO Box 173880
Bozeman, MT 59717-3880
k.ganesanpillai @cs.montana.edu

Abstract—A novel overlapping swarm intelligence algorithm is
introduced to train the weights of an artificial neural network.
Training a neural network is a difficult task that requires an
effective search methodology to compute the weights along the
edges of a network. The backpropagation algorithm, a gradient
based method, is frequently used to train multilayer feed-forward
networks. Gradient based methods might not always lead to a
globally optimal solution of the network. On the other hand,
training algorithms based on evolutionary computation have been
used to train multilayer feed-forward networks in an attempt to
overcome the limitations of gradient based algorithms with mixed
results. This paper introduces an overlapping swarm intelligence
technique to train multilayer feedforward networks. The results
show that OSI method performs either on par with or better
than the other methods tested.

Index Terms—Backpropagation, machine learning, neural net-
works, particle swarm optimization, swarm intelligence

I. INTRODUCTION

The backpropagation algorithm has been demonstrated to be
an effective strategy for training feedforward neural networks.
However as a gradient based method, it is known to suffer
from local minima [1]. Additionally, the convergence rate of
backpropagation is typically slow even if the learning goal
can be achieved [2]. In recent years artificial neural networks
have been trained using evolutionary computation methods.
Evolutionary approaches such as genetic algorithms, particle
swarm optimization, and hybrid approaches, which use both
evolutionary and gradient based methods, have become popu-
lar to overcome the limitations of backpropagation algorithm
(2], [3].

This paper introduces a novel overlapping swarm intelli-
gence algorithm to train multilayer feedforward networks. In
our approach, the structure of a neural network is decomposed
into individual paths, and we exploit situations where the paths
overlap. We seek to train this decomposed network focusing on
learning subproblems using individual swarms for each path
with inter-swarm communication.

Jing-Ru et al. [2] combined particle swarm optimization
(PSO) and the backpropagation algorithm to train feedfor-
ward neural networks. In their work, the combined PSO and
backpropagation methods result in better performance when
compared with the Adaptive Particle Swarm Optimization

978-1-61284-052-9/11/$26.00 ©2011 IEEE

John W. Sheppard
Department of Computer Science
Montana State University
EPS 357, PO Box 173880
Bozeman, MT 59717-3880
john.sheppard @cs.montana.edu

algorithm (APSOA) and the backpropagation algorithm in
both convergence speed and generalization performance [2].
The APSO algorithm differs from traditional PSO in that the
inertial weight w is reduced based upon the amount of time the
algorithm has been searching. A feedforward neural network
is trained with PSO until either the maximum number of
generations is reached or the global best has not changed for
ten generations. At that point, the neural network is trained
with backpropagation. If backpropagation does not find a
better solution than the global best from PSO then it is deemed
to be an optimal solution.

Xindi et al. [3] proposed a hybrid PSO-EA algorithm to train
recurrent neural networks to predict time series data. In their
work, an initial population is created and evaluated. Winners
are selected based on the fitness value and these winners are
enhanced by PSO. Using these enhanced winners, offspring
are generated using evolutionary operators, and these offspring
replace less fit members of the population.

Potter [4] introduced cooperative coevolution learning in
genetic algorithms in which several populations of function
approximators such as neural networks are considered simul-
taneously. Initially, a separate population of individuals is
generated randomly, and the initial fitness of each population
member is computed by combining it with a random individual
from each of the other populations. After initialization, each
individual population is coevolved in a round-robin fashion
using a traditional genetic algorithm. The fitness of a popu-
lation member is obtained by combining it with the current
best subcomponent of the remaining populations which are
temporarily frozen.

Van den Bergh and Engelbrecht [5], [6] also introduced
cooperative learning in PSO to train feedforward neural net-
works, but their results indicate that performance is sensitive
to the degree of interdependence between the variables. In
their work [6], they explain that certain deceptive functions
could stagnate the evolution of particles when cooperative
learning is used in PSO. The authors show that an algorithm
that interleaves regular PSO and cooperative PSO performs
well on rotated multimodal problems that have a high degree
of interdependence [6] .

Haberman and Sheppard [7] proposed overlapping particle

swarms for energy-efficient routing in sensor networks. The
focus of this work is to find optimal routing strategies to
maximize the availability of the overal network. In their work,
each particle is both the centroid of swarm and a member of
each of its neighboring swarms, and local best is defined as the
best state the particle has seen in all of its swarms (i.e., the best
of the best). Their approach increases the lifetime of the sensor
network by almost a factor of two. Furthermore, their approach
was demonstrated to perform significantly better than state-of-
the-art energy-aware routing methods. Their work forms the
motivation for our work reported here.

II. BACKGROUND
A. Artificial Neural Networks:

Artificial neural networks are connectionist models that
attempt to solve computational tasks based on a network of
simple computational units (i.e., neurons). Neurons are basic
computational units that when combined with appropriate
weights between neurons have been shown to solve a variety of
problems ranging from classification and pattern recognition
to function approximation. Neural network architectures can
be feedforward or recurrent.

Single layer feedforward neural networks have an input
layer that is connected to an output layer. Only the output layer
has computational units (neurons). Multilayer feedforward
networks have one or more layers of hidden units between
the input and output layer. The hidden units enable the
network to extract higher-order properties from the input. A
neural network is said to be fully connected if every node is
connected to all the nodes in the adjacent forward layer, and
if some connections between some neurons are missing it is
called a partially connected neural network. Each neuron of
the network includes a non-linear activation function that is
continuously differentiable. One of the most commonly used
activation functions is the logistic function which is given as

y=1/(1+exp(-v)), (1)

where "
v = Z w;x; + b, 2)

i=1

m is the number of inputs, w; is a weight, and b is a bias

A recurrent network has at least one feedback loop in the
network. One common architecture is the simple recurrent
network (Elman Network), which has a hidden layer whose
output feeds back to the input of the hidden layer with unit
time delays [8].

B. Particle Swarm Optimization:

Particle Swarm Optimization (PSO) proposed by Eberhart
and Kennedy [9], is a technique inspired by the social behavior
of flocking birds. It is a population based approach where the
system is initialized with random solutions (called particles),
and search applies an update process where the velocity
vectors applied to the particles are determined based on the
fitness of states visited by the particles. Eventually, all the

Algorithm 1 Particle Swarm Optimization

Create and initialize particles
repeat
for all x; ¢ P do
Calculate fitness of particle f(x;)

if f(2;) < [(p) then

if f(2)) < f(p,) then
DPg = T4
end if
v; =wv; +U(0,01) ® (p; — ;) + U(0, 92) @ (pg — ;)
T, =x; +vU;
end for
until termination criterion is met

particles in a swarm will move closer to an optimum of the
fitness function.

The PSO algorithm first initializes a swarm of particles
randomly over a search space. These particles “fly” with a
certain velocity and find a position in the search space after
each iteration. On every iteration of the algorithm, the current
position of a particle is evaluated against the fitness function.
The best position is stored in a vector called p; (personal best).
Also, the position of the particle with the best global fitness
is stored in a vector called p, (global best). At each iteration,
the particle’s velocity is updated based on the influence of the
local best position (p;) and on the influence of the global best
particle (py). Then each particle’s position is updated by this
newly calculated velocity.

The PSO update procedure is described in Algorithm 1.
Here P is a swarm of particles, U(0, ¢;) is a vector of random
numbers uniformly distributed in [0, ¢;] which is generated
for each iteration and for each particle, ® is component-wise
multiplication, v; is the velocity of a particle, x; is the current
position of a particle in a search space, and p;, p, are the
particle’s personal best position and the global best neighbor of
a particle respectively. The termination criterion in Algorithm
1 is problem dependent. For our problem, it will be based on
convergence in mean squared error over a separate validation
data set.

There are a few parameters that need to be chosen for
Algorithm 1. The population size is chosen depending on the
problem. The parameters ¢ and ¢o determine the force of the
direction in which the particle is pulled between personal best
and global best of the particles. These parameters need to be
tuned properly for the PSO to converge. Also, the velocity of
the particle is set to a minimum and maximum limit for the
particle to control stability. To control the scope of the search,
and also to control and perhaps eliminate the limit on velocity,
an inertia weight w is used.

III. OVERLAPPING SWARM INTELLIGENCE

We propose an approach to training feedforward neural net-
works inpired by the PSO approach but focusing on learning

Fig. 1.

XOR Neural Network

Fig. 2. Swarm S7

subproblems as in [7]. With our approach, the structure of
a neural network is decomposed into paths, where each path
originates at an input node and terminates at an output node.
Each path corresponds to the set of weights between the nodes
that are connected in this path. A segment of weights in a
path (i.e., connection between some nodes in the path) overlap
with other paths that pass through the same segment. It is this
overlap that is exploited in our approach. Each path in the
network has a swarm, and inter-swarm communication occurs
via the shared segments in the network. Specifically, a common
vector of weights gun (this plays a role similar to swarm
global best), is maintained across all swarms that represents
a global view of the whole neural network. It is constructed
in a given generation by using the best particles from each
of the swarms. The resulting inter-swarm communication then
facilitates global learning of the weights in the neural network.

The procedure for Overlapping Swarm Intelligence (OSI)
is described in Algorithm 2. As mentioned above, each path
in the neural network includes a swarm that will have many
particles. Each particle in a swarm is a vector of weights
between the nodes in that path. Let S be a swarm of swarms, s;
be the ith swarm, x; ; be the current particle state for particle
J in swarm ¢, and p; ; be the personal best state for particle j
in swarm 4.

To enable the inter-swarm communication, we define gun
be the complete vector of weights that represents the whole
neural network constructed from the best particles in each of

Fig. 3.

Swarm So

’ _ 1
W'y y=argmax . (w, ,E€x,;,w, ,EX,]|

pnn

B,

®

wX‘_HIleJ wXleExz’j

X, X, B,
Fig. 4. Overlap of swarm S and S2

the swarms. More formally, given a neural network represented
as graph G = (V, E) where a directed edge is represented
as a pair of vertices (V,,,V,), then gun = E’ where each
(V'm,V'y) € E' = argmax{p; ; }. In other words, the global
network gun is constructed from the edges corresponding to
the personal best particles in each of the swarms. Next, each
particle must be evaluated within the context of some neural
network. To do this, we define pnn; ; to be the “personal
neural network” constructed using the weights of particle x; ;
in addition to the remaining weights from gvn. More formally,

pnn, j = x; ; U {gun \ sharedgun; ;}, 3)

where sharedguvn; ; consists of those edges in gvn corre-
sponding to the edges in the particle x; ;.

As an example, Figure 1 shows a neural network archi-
tecture that can be used to solve the exclusive-OR (XOR)
problem. For this network, the path for swarm S; is shown
in Figure 2 and the path for swarm Sy is shown in Figure
3. Figure 4, shows the overlap of paths between swarm S
and Ss. For this network, seven paths can be generated, and
swarms would be created for each path. Specifically, we would
have the following:

. Sll X1 — H1 -Y

. SQI X1 — H2 -Y

. 532 XQ — H1 -Y

. S4Z X2 - H2 -Y

] S5I Bl — H1 -Y

Algorithm 2 Overlapping Swarm Intelligence

Create and initialize gvn
Create and initialize particles in each swarms
repeat
for all s; € S do
for all Tij € S do
Construct pnn; ;
Evaluate particle fitness f(pnn; ;)
Assign particle x; ; fitness, f(z; ;) = f(pnn, ;)
if f(2i;) < f(pi;) then
Dij = Ti,j5
end if
Evaluate global fitness f (gun)
if f(x;;) < f(gvn) then
Update sharedguvn; ;
end if
Update velocity using equation (6)
Tij = Ti5 + Vi
end for
end for
until termination criterion is met

. 56: Bl — H 2 — Y

. 571 B2 -Y
Thus the path X; — H; —Y represents the connection between
input X, hidden node H;, and output node Y.

If we were to apply Algorithm 2 to this network, then gun
would be

{(X1Hy), (H1Y), (X1Hz), (H2Y), (X2Hy),
(X2H3), (B1H),(B1Hz), (B2Y)}, “4)

gun =

pnny o for the second particle in swarm S; would be
{(X1H1)1,2,(H1Y)12,

(X1Hy), (H2Y'), (X2Hy),

(X2Hy), (B1Hy), (B1Hs), (B2Y)}, (5)

pnni2 =

and sharedgun, o = (X1Hy), (H:1Y'). Finally, v; j, the ve-
locity of particle j in swarm ¢, would be updated as follows:
woij +U(0,¢1) ® (pij — i) +

U(0, ¢2) ® (sharedgun; ; — x; ;). (6)

Vij =

The actual inter-swarm communication process occurs via the
construction and use of gun as described in the next section.

IV. CREDIT ASSIGNMENT

For our overlapping swarm-based method of training neural
networks to be effective, we need an approach for evaluating
the fitness of the individual particles in each swarm. Further-
more, since we are claiming that inter-swarm communication
will help in training the neural networks, our fitness evaluation
method must also support sharing fitness information between
swarms. The approach we have taken is inspired by the work
in [4] and [5] where a global network is used as the basis for

Fig. 5. Part of gun used for evaluation of swarm Sq

credit assignment. We implemented this approach through the
gun mechanism described above.

Recall that z;; denotes the jth particle (consisting of a
vector of weights) in the ith swarm. When a particle is
evaluated, it is done so as a part of a whole neural net. To
instantiate the network to be evaluated, the topology is pre-
specified, and the weights are taken as the union of the weights
in x; ; and the weights from gvn on edges other than those in
x;,;. For example, when a particle in swarm .S; is evaluated,
the weights from the particle as in Figure 2 are combined
with the weights from the global network as in Figure 5.
The resulting network is then used for the fitness calculation.
Mathematically, this evaluation network corresponds to pnn; ;
as defined in (3) with the specific example being given in (5).

The fitness of the network constructed for each particle is
compared to the fitness of the global network that uses all of
the weights in gun. Each particle in a swarm keeps track of the
best set of weights found so far with respect to that part of gun
that does not include the evaluated particle’s weights. Hence,
when a particle is evaluated, the part of gun that does not
include the evaluated particle’s weights is treated as constant.
Credit is assigned to the individual particle in each swarm
based on its performance using the rest of gun. This greatly
simplifies the credit assignment problem.

More specifically, at each generation of the OSI algorithm,
the global neural network, guvn, is extracted from the individ-
ual particles where each edge weight in the network corre-
sponds to the edge weight in the best particle of each swarm.
When an edge is shared between swarms, a competition is
held between the edges from the respective personal bests in
the global network. That edge yielding better performance on
the training data is the one selected for inclusion in guvn.

Each particle is then evaluated on the training set when
inserted into the local version of the neural network, pnn, ;.
Thus the individual particles are evaluated based on their own
representation of the current neural network, but the results
of their localized search are communicated to overlapping
swarms via the edge competition used to define gun.

V. EXPERIMENTAL SETUP

To test the effectiveness of our OSI algorithm, several
experiments were performed on 2-layered and 4-layered feed-
forward neural networks. A 2-layered network architecture was
chosen based on the experimental setup from [5], and a 4-
layered network architecture was chosen to run experiments

Window Size
Method | Swarm Size 3 5 7 10 12 15 17 20
2 0.1858 | 0.1714 | 0.1714 | 0.1590 | 0.1587 | 0.1583 | 0.1583 | 0.1583
3 0.1272 | 0.1201 | 0.1201 | 0.1134 | 0.1130 | 0.1128 | 0.1128 | 0.1128
5 0.1880 | 0.1342 | 0.1342 | 0.1323 | 0.1313 | 0.1314 | 0.1314 | 0.1314
7 0.1296 | 0.1149 | 0.1149 | 0.1143 | 0.1143 | 0.1143 | 0.1143 | 0.1143
OSI 10 0.1246 | 0.1182 | 0.1182 | 0.1182 | 0.1182 | 0.1182 | 0.1182 | 0.1182
13 0.1170 | 0.1128 | 0.1128 | 0.1128 | 0.1128 | 0.1128 | 0.1128 | 0.1128
15 0.1181 | 0.1169 | 0.1169 | 0.1169 | 0.1169 | 0.1169 | 0.1169 | 0.1169
17 0.1103 | 0.1083 | 0.1083 | 0.1083 | 0.1083 | 0.1083 | 0.1083 | 0.1083
20 0.1110 | 0.1110 | 0.1110 | 0.1110 | 0.1110 | 0.1110 | 0.1110 | 0.1110
2 0.8159 | 0.8159 | 0.8159 | 0.7608 | 0.7608 | 0.7608 | 0.7608 | 0.7608
3 0.6737 | 0.6737 | 0.6737 | 0.6737 | 0.6664 | 0.6664 | 0.6664 | 0.6664
5 0.7350 | 0.7350 | 0.7350 | 0.4618 | 0.4348 | 0.3935 | 0.3906 | 0.1314
7 0.6757 | 0.6757 | 0.6757 | 0.4314 | 0.4242 | 0.2916 | 0.2854 | 0.2854
PSO 10 0.7088 | 0.4185 | 0.4185 | 0.3710 | 0.3661 | 0.3637 | 0.3637 | 0.3637
13 0.4105 | 0.3419 | 0.3419 | 0.3348 | 0.3345 | 0.3363 | 0.3332 | 0.3332
15 0.3928 | 0.3731 | 0.3731 | 0.3381 | 0.3381 | 0.3079 | 0.3079 | 0.3079
17 0.3923 | 0.3717 | 0.3717 | 0.2707 | 0.2549 | 0.1913 | 0.1872 | 0.1872
20 0.3269 | 0.2730 | 0.2730 | 0.1846 | 0.1846 | 0.1694 | 0.1641 | 0.1641
BP 0.0918 | 0.0920 | 0.0921 | 0.0923 | 0.0924 | 0.0925 | 0.0645 | 0.0646
TABLE I
IRIS MEAN SQUARED ERROR FOR DIFFERENT SWARM AND WINDOW SIZES
Window Size
Method | Swarm Size 3 5 7 10 12 15 17 20
2 0.2507 | 0.2464 | 0.2464 | 0.2445 | 0.2392 | 0.2447 | 0.2458 | 0.2458
3 0.2415 | 0.2449 | 0.2449 | 0.2519 | 0.2552 | 0.2510 | 0.2492 | 0.2492
5 0.2700 | 0.2783 | 0.2783 | 0.2813 | 0.2834 | 0.2876 | 0.2782 | 0.2782
7 0.2270 | 0.2198 | 0.2198 | 0.2240 | 0.2298 | 0.2273 | 0.2318 | 0.2318
OSI 10 0.2403 | 0.2423 | 0.2423 | 0.2424 | 0.2407 | 0.2503 | 0.2580 | 0.2580
13 0.2381 | 0.2483 | 0.2483 | 0.2448 | 0.2422 | 0.2390 | 0.2386 | 0.2386
15 0.2390 | 0.2432 | 0.2432 | 0.2534 | 0.2575 | 0.2531 | 0.2648 | 0.2648
17 0.2399 | 0.2382 | 0.2382 | 0.2325 | 0.2364 | 0.2356 | 0.2342 | 0.2342
20 0.2339 | 0.2462 | 0.2462 | 0.2535 | 0.2627 | 0.2649 | 0.2713 | 0.2713
2 0.5241 | 0.5103 | 0.5103 | 0.4838 | 0.4928 | 0.4805 | 0.4848 | 0.4848
3 0.5241 | 0.4256 | 0.4256 | 0.4041 | 0.3951 | 0.3844 | 0.3836 | 0.3836
5 0.5241 | 0.5118 | 0.5118 | 0.4671 | 0.4655 | 0.4558 | 0.4205 | 0.4205
7 0.4161 | 0.4020 | 0.4020 | 0.3664 | 0.3540 | 0.3519 | 0.3382 | 0.3382
PSO 10 0.4596 | 0.3871 | 0.3871 | 0.3138 | 0.3105 | 0.2968 | 0.2932 | 0.2932
13 0.4638 | 0.4059 | 0.4059 | 0.3180 | 0.3239 | 0.3110 | 0.3081 | 0.3081
15 0.4276 | 0.3202 | 0.3202 | 0.2589 | 0.2549 | 0.2327 | 0.2310 | 0.2310
17 0.4568 | 0.4276 | 0.4276 | 0.3520 | 0.3585 | 0.2863 | 0.2592 | 0.2592
20 0.4297 | 0.3745 | 0.3745 | 0.3166 | 0.2554 | 0.3084 | 0.3090 | 0.3090
BP 0.2143 | 0.2144 | 0.2145 | 0.2144 | 0.2143 | 0.2153 | 0.2068 | 0.2075
TABLE II

IONOSPHERE MEAN SQUARED ERROR FOR DIFFERENT SWARM AND WINDOW SIZES

on a “deep” network. Neural networks that have greater than
two layers are called deep neural networks. These experiments
focused on comparing the OSI methodology with a full PSO
training approach, and the standard backpropagation (BP)
algorithm using different data sets. For the full PSO approach
the weights from different layers were taken and serialized into
a single weight vector and optimized using a single swarm [5].

In all the experiments, the initial weights were set randomly
in the range of [—3, 3], and the velocity for each particle was
set randomly in the range of [—2, 2]. The inertia weight w was
set to 0.729, and acceleration coefficients ¢; and ¢ were set
to 1.49445. These values were chosen based on the results of
[10]. To evaluate the performance of algorithms, 33.3% of the
data was set aside to test for overfitting. The remaining data
set was then divided into training and testing data sets using

a 5 X 2 cross validation procedure.

All the experiments were on classification problems, and
four different data sets were used. For the first three, the IRIS,
IONOSPHERE, and GLASS data sets were obtained from
the UCI machine learning repository [11], and each of these
classification problems were solved using 2-layer networks.
The IRIS data set contains three classes with a total of 150
instances. One class is linearly separable from the other two;
the latter are not linearly separable from each other [11].
For this data set, a 4-input, 3-hidden, and 3-output network
architecture was used in the experiments. The IONOSPHERE
data set has two classes but has higher input dimension. In
total it has 351 instances with 34 inputs [11]. In this case,
a 34-input, 5-hidden, and 2-output network architecture was
used. The GLASS data set has six classes with a total of 214

4BIT MEAN SQUARED ERROR FOR DIFFERENT SWARM AND WINDOW SIZES

Window Size
Method | Swarm Size 3 5 7 10 12 15 17 20
2 0.6054 | 0.6060 | 0.6060 | 0.6060 | 0.6060 | 0.6060 | 0.6060 | 0.6060
3 0.6181 | 0.6181 | 0.6181 | 0.6182 | 0.6182 | 0.6182 | 0.6182 | 0.6182
5 0.6032 | 0.6024 | 0.6024 | 0.6026 | 0.6026 | 0.6026 | 0.6026 | 0.6026
7 0.5977 | 0.5987 | 0.5987 | 0.5988 | 0.5988 | 0.6005 | 0.6005 | 0.6005
OSI 10 0.5960 | 0.5956 | 0.5956 | 0.5970 | 0.5970 | 0.5970 | 0.5970 | 0.5970
13 0.5973 | 0.5960 | 0.5960 | 0.5973 | 0.5980 | 0.5978 | 0.5978 | 0.5978
15 0.5901 | 0.5904 | 0.5904 | 0.5885 | 0.5885 | 0.5885 | 0.5885 | 0.5885
17 0.5780 | 0.5774 | 0.5774 | 0.5784 | 0.5784 | 0.5803 | 0.5803 | 0.5803
20 0.5938 | 0.5952 | 0.5952 | 0.5959 | 0.5959 | 0.5959 | 0.5951 | 0.5951
2 1.9497 | 1.1257 | 1.1257 | 1.0575 | 1.0570 | 1.0568 | 1.0563 | 1.0563
3 1.9497 | 0.8122 | 0.8122 | 0.7805 | 0.7619 | 0.7513 | 0.7488 | 0.7488
5 0.8526 | 0.8187 | 0.8187 | 0.7296 | 0.7273 | 0.7064 | 0.7076 | 0.7076
7 0.8024 | 0.7214 | 0.7214 | 0.6849 | 0.6657 | 0.6471 | 0.6438 | 0.6438
PSO 10 0.8321 | 0.7718 | 0.7718 | 0.6926 | 0.6560 | 0.6562 | 0.6476 | 0.6476
13 0.8174 | 0.7686 | 0.7686 | 0.7006 | 0.6977 | 0.6776 | 0.6768 | 0.6768
15 0.7926 | 0.7421 | 0.7421 | 0.7134 | 0.7126 | 0.7123 | 0.7037 | 0.7037
17 0.7893 | 0.7292 | 0.7292 | 0.6793 | 0.6631 | 0.6498 | 0.6457 | 0.6457
20 0.7951 | 0.7640 | 0.7640 | 0.7033 | 0.7003 | 0.6812 | 0.6834 | 0.6834
BP 0.5826 | 0.5826 | 0.5826 | 0.5826 | 0.5826 | 0.5825 | 0.5825 | 0.5825
TABLE III
GLASS MEAN SQUARED ERROR FOR DIFFERENT SWARM AND WINDOW SIZES
Window Size
Method | Swarm Size 3 5 7 10 12 15 17 20
2 0.2327 | 0.2162 | 0.2162 | 0.2090 | 0.2014 | 0.2013 | 0.2015 | 0.2015
3 0.2133 | 0.2068 | 0.2068 | 0.1916 | 0.1915 | 0.1917 | 0.1917 | 0.1917
5 0.2316 | 0.2084 | 0.2084 | 0.2043 | 0.2038 | 0.2039 | 0.2039 | 0.2039
7 0.2081 | 0.2076 | 0.2076 | 0.1991 | 0.1991 | 0.1990 | 0.1979 | 0.1979
OSI 10 0.2187 | 0.1944 | 0.1944 | 0.1916 | 0.1913 | 0.1910 | 0.1911 | 0.1911
13 0.1866 | 0.1846 | 0.1846 | 0.1791 | 0.1791 | 0.1791 | 0.1791 | 0.1791
15 0.2043 | 0.1870 | 0.1870 | 0.1862 | 0.1862 | 0.1864 | 0.1864 | 0.1864
17 0.2100 | 0.1947 | 0.1947 | 0.1894 | 0.1894 | 0.1894 | 0.1894 | 0.1894
20 0.1978 | 0.1913 | 0.1913 | 0.1887 | 0.1889 | 0.1867 | 0.1867 | 0.1867
2 0.2492 | 0.2489 | 0.2489 | 0.2489 | 0.2489 | 0.2481 | 0.2481 | 0.2481
3 0.2492 | 0.2489 | 0.2489 | 0.2468 | 0.2467 | 0.2467 | 0.2465 | 0.2465
5 0.2499 | 0.2495 | 0.2495 | 0.2492 | 0.2490 | 0.2287 | 0.2458 | 0.2458
7 0.2490 | 0.2490 | 0.2490 | 0.2489 | 0.2486 | 0.2467 | 0.2467 | 0.2467
PSO 10 0.2495 | 0.2491 | 0.2491 | 0.2489 | 0.2488 | 0.2487 | 0.2478 | 0.2478
13 0.2495 | 0.2498 | 0.2498 | 0.2495 | 0.2497 | 0.2497 | 0.2486 | 0.2486
15 0.2490 | 0.2490 | 0.2490 | 0.2448 | 0.2393 | 0.2385 | 0.2387 | 0.2387
17 0.2490 | 0.2490 | 0.2490 | 0.2485 | 0.2483 | 0.2475 | 0.2477 | 0.2477
18 0.2495 | 0.2498 | 0.2498 | 0.2496 | 0.2475 | 0.2466 | 0.2466 | 0.2466
BP 0.3134 | 0.3134 | 0.3134 | 0.3134 | 0.3134 | 0.3134 | 0.3134 | 0.3135
TABLE IV

instances with 9 inputs. Also, it has a highly skewed class
distribution [5], that makes it difficult to learn. Here a 9-input,
6-hidden and 6-output network architecture was used. For each
of these three data sets, the network architectures were chosen
based on the experiments discussed in [5]. For GLASS we
note that [5] used an 8-input, 6-hidden and 6- output network
architecture, but the actual data set has 9-inputs. Hence it was
decided to use 9 inputs for this data set.

The fourth experiment used data generated for a 4-bit parity
problem (which we label 4BIT). For this experiment, the data
set was produced by randomly generating 1000 data points.
Each data point had four inputs (corresponding to the four
bits), each of which were generated randomly over the interval
[0,1]. From these data points an input was interpreted as if had
value “1” if it’s generated value was greater than “0.5” and

zero otherwise. For this problem when the number of “1”’s in
all the inputs was even, then the output value was set to “17,
and when the number of “1”s in all the inputs was odd, then
the the output value was set to “0”.

For this experiment, a 4-layered “deep” network with 4-
inputs, 4 hidden units in layer 1, 3 hidden units in layer 2, 2
hidden units in layer 3, and 1-output was used. Deep networks
trained using gradient-based methods have generally been
found to be significantly more difficult to train than neural
networks with one or two hidden layers [12]. Gradient descent
methods that are frequently used to train neural networks
can easily get caught in local minima or on plateaus of the
non-convex training criterion. Furthermore, error propagation
methods are found to have the significance of the error
correction diffused when propagating through several layers.

[[OSI [PSO [BP |
IRIS 0.1083 £ 0.01 0.1641 £ 0.02 0.0645 + 0.02
IONOSPHERE | 0.2198 +0.03 | 0.2310 £ 0.04 | 0.2068 + 0.02
GLASS 0.5774 +0.01 0.6438 £+ 0.01 0.5825 + 0.04
4BIT 0.1791 £ 0.01 0.2385 £ 0.01 0.3134 £+ 0.001
TABLE V

MEAN SQUARED ERROR WITH 95% CONFIDENCE INTERVAL

| [OsI [PSO [BP]
IRIS 0.0235 + 0.01 0.0549 £+ 0.01 0.0333 4+ 0.0227
IONOSPHERE | 0.1364 + 0.02 | 0.1491 + 0.03 0.1255 + 0.02
GLASS 0.4557 + 0.02 0.5337 £ 0.03 0.4048 + 0.04
4BIT 0.2376 + 0.02 0.4262 £+ 0.05 0.5335 £ 0.001
TABLE VI

CLASSIFICATION ERROR WITH 95% CONFIDENCE INTERVAL

Because our method does not propagate error corrections, we
expect our OSI approach will be more effective when training
deep neural networks.

Experiments were conducted on all data sets with different
swarm sizes. The number of particles used in the experiments
are {2,3,5,7,10,13,15,17,20}. In our experiments, we at-
tempted to prevent over-fitting using the following approach.
Error on the test data was calculated for each swarm size using
linear regression with different window sizes (sliding on the
number of epochs) and mean squared error on the validation
data at that epoch. For each swarm, the following window
sizes were used: {3,5,7,10,12,15,17,20}. For each window
size, if linear regression on the validation data resulted in a
non-negative slope then training was stopped, and the mean
squared error on the test data at the starting point of window
(epoch number) was calculated. Tables I, II, III, and IV show
mean squared error on the test data set at the starting point
of each window for different swarm sizes. In these tables,
column “Window Size” represents the starting point of the
window where mean squared error on test data was calculated.
“Swarm Size” represents the number of particles used in each
swarm. The minimum mean squared error for each data set
across all particle and window sizes was calculated for each
of the various configurations.

VI. EXPERIMENTAL RESULTS

The results of our experiments are summarized in Table
V and in Table VI. In Table V, the columns correspond to
the methods tested, and the rows correspond to the minumum
mean squared error on the test data. Ninety five percent
confidence intervals are also shown. This mean squared error
is derived from Tables I, II, III, and IV for each data set. A
paired t-test is performed on all methods and data sets using
the mean squared error from Table V. Also in Table V, values
that in bold indicate the algorithm that performs best on the
corresponding data set. If algorithms tie statistically for the
best, then each of their values are bolded.

In Table VI, the columns represent methods and rows repre-
sent classification error on the test data with 95% confidence

intervals. The classification error for each data set is calculated
from the particle and window sizes, that were selected for
Table V. The bolded values in Table VI also indicate the best
performers on each of the data sets.

With the IRIS data set, based on the paired ¢-test performed
on mean squared error, we observed that the OSI method
performed better than PSO. Also BP performs better than OSI
on this data set. Table I shows mean squared error for each
particle size and window size for OSI, PSO, and for each
window size for BP algorithm, for the IRIS data set. Based on
the paired ¢-test performed on classification error, we observed
that the OSI method performed better than PSO, and BP did
not perform significantly different from OSI as seen in Table
VL

On IONOSPHERE, based on the paired t-test performed
on mean squared error, we observed that the OSI method per-
formed statistically equivalent to PSO and BP. Table II shows
mean squared error for each particle size and window size for
OSI, PSO, and for each window size for BP algorithm, for
the IONOSPHERE dataset. Based on paired ¢- test performed
on mean squared error, we observed that the OSI method
performed statistically equivalent to PSO and BP as seen in
Table VI

Examining a paired ¢-test performed on mean squared error
for GLASS, we found that OSI method performs significantly
better than PSO but it is not significantly different from the BP
algorithm. Table III shows mean squared error for each particle
size and window size for OSI, PSO, and for each window
size for BP algorithm, for the GLASS dataset. Based on the
paired t-test performed on classification error, we observed
that the OSI method performed better than PSO and BP does
not perform significantly different from OSI as seen in Table
VL

The 4BIT experiment used a four-layered feedforward neu-
ral network with the 4-bit even parity problem. Based on the
paired t-test applied to mean squared error, we observed that
the OSI method performed better than BP and PSO. Table
IV shows the mean squared error for each particle size and
window size for OSI, PSO, and for each window size for BP

algorithm, when run on the 4BIT dataset. From Tables IV, V,
and VI, we see that our technique performed significantly bet-
ter than the BP algorithm, and we can confirm our hypothesis
that the OSI technique provides good generalization on this
deep network.

VII. DISCUSSION

The paired t-test on mean squared error shows that the
OSI method performed either better than or equal to the other
methods on all data sets studied, except BP beats OSI on IRIS.
In addition, the paired ¢-test on classification error shows that
the OSI method performed either better or equal to the other
methods on all data sets studied including BP on IRIS. We
speculate that the OSI method performs as well as it does
because of the inter-swarm communication on the overlapping
paths in the decomposed network and splitting the neural
network into multiple swarms. Inter-swarm communication
helps to share information between swarms while each swarm
works to optimize an individual path in the network that
has connections that overlap with other swarms. Thus, this
combination helps the global emergent behavior among all the
swarms to yield the strong performance. We note that it was
also shown in [5] that various split approaches using the same
strategy for credit assignment performed better than regular
PSO.

One important property that we noticed from the experi-
ments for the OSI method is that regardless of swarm sizes, the
credit assignment strategy using the global view of the neural
network across all swarms dominates the results. Because of
global credit assignment, there is no significant difference due
to swarm size. This can be observed from the Tables I, II,
III, and IV that when the particle size increases, the positive
change in the mean squared error on the test data was not
significant. We believe that even better performance can be
achieved by applying a local credit assignment strategy in
combination with the inter-swarm communication procedure.
This will be tested in future experiments using several local
credit assignment strategies combined with a variety of com-
munication mechanisms between the swarms. Specifically, the
global network will be eliminated in favor of communicating
local views of performance. This would also have the advan-
tage of supporting neural net training in a highly distributed
but low communication overhead environment.

VIII. CONCLUSIONS AND FUTURE WORK

Splitting the neural network into multiple paths and training
the network with localized swarms has been demonstrated to
improve accuracy on certain data sets and on certain network
architectures. Indeed, in none of our experiments did this
approach degrade classification accuracy. Moreover the OSI
methodology performs better than other methods on the tested
deep network in terms of accuracy and generalization. For
future work, we plan to compare the OSI methodology against
the LSPLIT and NSPLIT methods described in [5]. Also, as
described above, several alternative local credit assignment
strategies will be explored. For example, one such strategy

would associate an individual evaluation network with each
swarm. In this case, each swarm will continue to optimize
only its path weight vectors, and its performance on the local
evaluation network will then be shared through inter-swarm
communication via the overlapping segments. In addition, dif-
ferent overlapping approaches among swarms will be studied
using the OSI method such as node overlap. We also note the
results from [5] showing that functions with a high degree
of interdependency among its variables will tend to degrade
performance with localized methods. We will evaluate the
extent to which inter-swarm communication with the OSI
method mitigates this problem. Next, generalized function
approximation networks as well as recurrent networks will be
studied using the OSI method. Finally, since our results are
positive for the 4BIT even parity problem with 3-hidden layers,
the OSI method will be studied as a strategy for training deep
neural network architectures as well.

ACKNOWLEDGMENTS

We would like to thank several members of the Numerical
Intelligent Systems Laboratory at Montana State University for
their comments on early versions of this paper. Specifically,
we thank Scott Wahl, Shane Strasser, and Patrick Donnelly.
We also thank Brian Haberman from the sister Numerical
Intelligent Systems Laboratory at Johns Hopkins University
for his comments.

REFERENCES

[1] M. Gori and A.Tesi, “On the problem of local minima in backpropaga-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 1, pp. 76-86,
1992.

[2] J.-R. Zhang, J. Zhang, T.-M. Lok, and M. R. Lyu, “A hybrid particle
swarm optimization-back-propogation algorithm for feedforward neural
network training,” Applied Mathematics and Computation, vol. 185, pp.
1026-1037, 2007.

[3] X. Cai, N. Zhang, G. K. Venayagamoorthy, and D. C. Wunsch, “Time
series prediction with recurrent neural networks trained by a hybrid pso-
ea algorithm,” Neurocomputing, vol. 70, pp. 2342-2353, 2007.

[4] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach
to function optimization,” Parallel Problem Solving From Nature, vol.
866, pp. 249-257, 1994.

[5] F. van den Bergh and A. Engelbrecht, “Cooperative learning in neural
networks using particle swarm optimizers,” South African Computer
Journal, vol. 26, pp. 84-90, 2000.

[6] F.van den Bergh and A. P. Engelbrecht, “A cooperative approach to par-
ticle swarm optimization,” IEEE Trans. on Evolutionary Computation,
vol. &, no. 3, pp. 225-239, 2004.

[71 B. K. Haberman and J. W. Sheppard, “Overlapping particle swarms
for energy-efficient routing in sensor networks,” submitted to Wireless
Networking, Spring 2010.

[8] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179-211, 1990.

[9] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proceed-

ings of IEEE International Conference on Neural Networks, vol. IV, pp.

19421948, 1995.

R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction

factors in particle swarm optimization,” In Proceedings of the 2000

Congress on Evolutionary Computing, vol. 1, pp. 84-88, 2000.

C. Blake and C.Merz, “UCI repository of machine learning databases,”

1998.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring

strategies for training deep neural networks,” Journal of Machine Learn-

ing Research, vol. 10, pp. 1-40, 2009.

[10]

[11]

[12]

