
Bayesian Abductive Inference using Overlapping
Swarm Intelligence

Nathan Fortier
Department of Computer Science

Montana State University

Bozeman MT, 59717-3880

Email: nathan.fortier@msu.montana.edu

John Sheppard
Department of Computer Science

Montana State University

Bozeman MT, 59717-3880

Email: john.sheppard@cs.montana.edu

Karthik Ganesan Pillai
Department of Computer Science

Montana State University

Bozeman MT, 59717-3880

Email: k.ganesanpillai@cs.montana.edu

Abstract—Abductive inference in Bayesian networks, is the
problem of finding the most likely joint assignment to all non-
evidence variables in the network. Such an assignment is called
the most probable explanation (MPE). A novel swarm-based
algorithm is proposed that finds the k-MPE of a Bayesian
network. Our approach is an overlapping swarm intelligence
algorithm in which a particle swarm is assigned to each node
in the network. Each swarm searches for value assignments for
its node’s Markov blanket. Swarms that have overlapping value
assignments compete to determine which assignment will be used
in the final solution. In this paper we compare our algorithm to
several other local search algorithms and show that our approach
outperforms the competing methods in its ability to find the k-
MPE.

I. INTRODUCTION

Bayesian networks are directed acyclic graphs in which

nodes represent random variables and edges represent con-

ditional dependencies. Each node in the network contains a

probability function that takes as input a set of values for the

node’s parent variables and returns the probability distribution

of the variable represented by the node.

While Bayesian networks are a useful model for probabilis-

tic reasoning under uncertainty, one of the important problems

in using Bayesian networks is finding the maximum a poste-
riori probability state of the network given the evidence. This

problem is known as abductive inference. If we let M = X\E,

the task of abductive inference is to find the most likely

assignment to the variables in M given the evidence E = e:

MPE(M, e) = argmax
m∈M

p(m|e)

In some cases, we may be interested in ranking the k
most probable assignments to be examined by some other

process. Thus the k-MPE task is to find and return these k
most probable assignments. In [1], it was shown that abductive

inference for Bayesian networks is NP-hard. Because of this,

much research has been done to explore the possibilities of

obtaining partial or approximate solutions to the problem.

However in [2] it was shown that even problem of finding

a constant factor approximation of the k-MPE is NP-hard.

In this paper, we introduce a swarm based approximation

algorithm to solve the abductive inference problem using

overlapping swarm intelligence (OSI), first introduced by

Haberman and Sheppard [3]. In our approach a particle swarm

is associated with each non-evidence node in the network.

Each swarm learns the value assignments for the variables

in the Markov blanket associated with that swarm’s node.

Swarms that learn value assignments for the same variable

are said to overlap. Such swarms will compete to determine

which value assignment should be used in the final solution.

Each swarm in our approach uses the discrete multi-valued

PSO algorithm proposed in [4] to search for partial solutions.

We will compare the results of our approach to several other

local search algorithms including the PSO-based algorithm

proposed by Ganesan Pillai and Sheppard in [5]. We hypothe-

size that our algorithm will outperform the algorithm proposed

in [5] in terms of the log likelihood of k-MPE found when used

to perform inference on complex networks. We also compare

our results to a hillclimbing-based algorithm [6] as a baseline

and further hypothesize we will outperform that algorithm on

the same measure.

This paper is organized as follows. In section II we provide

background on Bayesian belief networks and Particle Swarm

Optimization. Next, we provide a review of related literature.

In section IV we present our approach to solve the abductive

inference problem using OSI. We describe our experimental

design in section V. In section VI we present the results of

our experiments. Next, we discuss the implications of our

experimental results. We then present our conclusions and

discuss possible future work in section VII.

II. BACKGROUND

A. Bayesian Networks

A Bayesian network is a directed acyclic graph that rep-

resents a joint probability distribution in which the nodes

are a set of random variables which can assume an arbitrary

number of mutually exclusive values [7]. Edges between nodes

in the network represent a probabilistic relationships between

the nodes. Each root node contains a set of prior probabil-

ities while each non-root node contains a set of conditional

probabilities conditioned on the node’s parents. For any set of

random variables in the network, the probability of any entry

263978-1-4673-6004-3/13/$31.00 c©2013 IEEE

of the joint distribution can be computed using the chain rule.

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Xi+1, ..., Xn)

The structure of the network allows conditional independence

relationships to be described by the Bayesian network, thus

enabling the distribution to be represented as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pa(Xi)).

We say a variable Xi is conditionally independent of all

other variables in the network given its Markov blanket,

which consists of the a node’s parents, children, and childrens

parents.

{Xi ⊥ (X\({Xi} ∪MB(Xi))) |MB(Xi)}
An example illustrating the concept of a Markov blanket is

shown in Figure 1. Figure 1a shows the Markov blanket of

d3, Figure 1b shows the Markov blanket of d5, and Figure 1c

shows the Markov blankets of both d3 and d5. In the example,

nodes in the Markov blanket of d3 are shown with a horizontal

hash pattern and nodes in the Markov blanket of d5 are shown

with a vertical hash pattern. In Figure 1c nodes that are in the

Markov blankets of both d3 and d5 (namely c and d4) show

both horizontal and vertical hashes, thus indicating an overlap.

We will exploit these overlaps later.

There are several problems that can be solved with Bayesian

networks. One such problem is that of finding the posterior

probability of a random variable given a set of evidence E.

The abductive inference problem extends this idea to find the k
most probable variable assignments given the set of evidence

E = e. Both inference problems are known to be NP-hard

[8],[1] and, in fact, the abductive inference problem has been

shown to be NP-hard to approximate within a constant factor

[2].

B. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is a

search technique based on the social behavior of fish schools

and bird flocks first proposed by Eberhart and Kennedy [9].

PSO is a population-based search technique in which the

population is initialized with random solution vectors called

particles. During the search process the positions of each

particle are updated based on that particle’s corresponding

velocity vector. A particle’s velocity vector is updated based

on the fitness of the states visited by that particle. Through this

process the particles move closer to an optimum in the search

space. The pseudocode for the traditional PSO algorithm is

presented in Algorithm 1.

The algorithm begins by randomly initializing a swarm

of particles over the search space. At each iteration of the

algorithm the fitness of a particle, xi, is calculated using the

fitness function, f(xi). The personal best position for that

particle is stored in the vector pi. The global best position

found among all particles is stored in the vector pg . At the

(a) Markov blanket of d3

(b) Markov blanket of d5

(c) Overlap of d3 and d5

Fig. 1: Markov blanket example

end of each iteration a particle’s velocity, vi, is updated based

on pi and pg . The use of both personal best and global best

positions in the velocity equation ensures diverse responses

within the swarm. This is an important aspect of the algorithm

that provides a balance between exploration and exploitation.

In Algorithm 1, P is the particle swarm, U(0, φi) is a vector

of random numbers uniformly distributed in the interval [0, φi],
⊗ is component-wise multiplication, vi is the velocity of a

particle and xi is the position of a particle.

Three parameters need to be defined for the PSO algorithm:

• φ1 determines the maximum force with which a particle

is pulled toward pi;
• φ2 determines the maximum force with which a particle

is pulled toward pg;

• ω is the inertia weight.

The inertia weight ω is used to control the scope of the search

and eliminate the need for a maximum velocity. Even so, it is

customary to specify maximum velocity as well.

264 2013 IEEE Symposium on Swarm Intelligence (SIS)

Algorithm 1 Particle Swarm Optimization

repeat
for each particle position xi ∈ P do

Evaluate position fitness f(xi)

if f(xi) > f(pi) then
pi ← xi

end if
if f(xi) > f(pg) then

pg ← xi

end if
vi ← ωvi+U(0, φ1)⊗ (pi − xi)+U(0, φ2)⊗ (pg − xi)
xi ← xi + vi

end for
until termination criterion is met

C. Discrete Particle Swarm Optimization

Kennedy and Eberhart proposed a modification of the

traditional PSO algorithm for problems with binary-valued

solution elements [10]. In this algorithm, each particle’s posi-

tion is a vector from the d-dimensional binary solution space

xi ∈ {0, 1}d and each particle’s velocity is a vector from the

d-dimensional continuous space, vi ∈ Rd. Each velocity term

denotes the probability of a particle’s position term having a

value of 0 or 1 in the next iteration. Each particle’s velocity

is updated as described in [9] while each particle’s position is

updated using the following equation:

p(xi = 1) =
1

1 + exp(−vi)

While this algorithm has been shown to be effective, it

is limited to discrete problems with binary valued solution

elements.

To relax the binary state assumption Veeramachaneni et
al. propose a discrete multi-valued PSO (DMVPSO) algo-

rithm [4]. In this algorithm, each particle’s position is a d-

dimensional vector of discrete values in the range [0,M − 1]
where M is the cardinality of each state variable. Each

particle’s velocity is a d-dimensional vector of continuous

values. The velocity is transformed into a number between

[0,M] using the following equation:

Si =
M

1 + exp(−vi)

Then each particle’s position is updated by generating a

random number according to the Gaussian distribution, xi ∼
N(Si, σ × (M − 1)) and rounding the result. To ensure the

particle’s position remains in the range [0,M−1] the following

formula is applied:

xi =

⎧⎨
⎩

M − 1 xi > M − 1
0 xi < 0
xi otherwise

III. RELATED WORK

A. Traditional Approaches to the k-MPE Problem

Dechter et al. [11] proposed an exact algorithm to solve

the k-MPE problem called bucket elimination. The algo-

rithm uses a variable elimination process in which the node

with the fewest neighbors in eliminated at each iteration.

Bucket elimination uses max-marginalization instead of sum-

marginalization when eliminating a variable and the most

probable state assignment for the variable is stored. Like

variable elimination, this algorithm has exponential time com-

plexity.

Nilsson et al. [12] describes an divide and conquer algorithm

that provides an exact solution to the k-MPE problem. This

algorithm is based on Dawid’s flow propagation algorithm

[13] for calculating the k-MPE for junction trees. While

the algorithm is faster than other exact abductive inference

algorithms such as bucket elimination, it has exponential time

complexity and is unfeasible for large networks.

Kask and Dechter proposed a stochastic local search algo-

rithm for solving the MPE problem [6]. In their approach, a

hillclimbing algorithm was combined with Gibbs Sampling.

The results of the author’s experiments indicate that their

approach outperforms other techniques such as stochastic

simulation, simulated annealing, or hillclimbing alone.

In the Elvira [14] software environment a solution to the

k-MPE Problem is approximated using a junction tree based

algorithm. This algorithm is based on Nilssons algorithm but

approximate probability trees are used in place of the true

probability trees.

B. Soft Approaches to the k-MPE Problem

Several soft computing techniques have been used to to find

approximate solutions to the k-MPE problem. In [15] several

computational experiments are described that use genetic algo-

rithms for abductive inference in Bayesian networks. In their

approach, the states of the variables in the Bayesian network

are represented by a chromosome corresponding to a string

of integers between 0 and 1. Each value in the chromosome

corresponds to a state assignment for a node in the network.

Crossover and mutation are applied to the chromosomes to

generate offspring from parent chromosomes. To evaluate

chromosome fitness, the chain rule is applied. Thus, to calcu-

late a chromosome’s fitness, |M | multiplications are needed.

This fitness function is effective since p(M |e) ∝ p(M, e).
Rojas-Guzman et al. proposed a graph-based evolutionary

algorithm for performing approximate abductive inference on

Bayesian Networks[16]. Here the authors present a genetic

algorithm in which each chromosome is represented by a

graph. Each chromosome specifies a possible solution that is

a complete description of a state assignment for a Bayesian

network. Fitness of a chromosome is based on the absolute

probability of the chromosome’s set of assignments.

Partial abductive inference is the task of finding k-MPE

for a subset of the variables in the network. An approach for

performing approximate partial abductive inference using a

2013 IEEE Symposium on Swarm Intelligence (SIS) 265

genetic algorithm was proposed by Campos et al. [17]. In

this approach, the state assignments for the subset of variables

are represented as a chromosome consisting of integers. Each

position in the chromosome represents the state assignment

for the corresponding variable. To evaluate the fitness of each

chromosome, probabilistic propagation is used.

Sriwachirawat et al. proposed a niching genetic algorithm

(NGA) designed to utilize the “multifractal characteristic and

clustering property” of Bayesian networks to find k-MPE

[18]. This algorithm is based on a niching method and it

makes use of the observation that there are regions within

the joint probability distribution of the Bayesian Network

that are highly “self-similar.” Because of this self-similarity,

the authors chose to organize their GA using a probabilistic

crowding method that biases the crossover operator toward

self-similar individuals in the population. Chromosomes in this

approach were encoded as in [15].

In [5], a discrete multi-valued PSO (DMVPSO) approach

for finding k-MPE is proposed. This approach uses the algo-

rithm described in [4] to search for probable state assignments.

In this algorithm, each particle’s set of object parameters is

represented by a string of integers. Each integer corresponds

to a state assignment for a node in the network. The chain

rule is used to calculate the fitness of each particle. The

results of the authors’ experiments indicated they were able

to find competitive explanations much more efficiently than

the approaches used in [15] and [18].

C. Distributed Optimization

Much work has been done in the area of distributed opti-

mization. Patterson et al. [19] analyzed the convergence rate

of the distributed average consensus algorithm. This work

also includes an analysis of the relationship between the

convergence rate and the network topology.

Boyed et al. [20] discusses convex distributed optimization

in the context of statistics and machine learning. The authors

argue that the alternating direction method of multipliers

(ADMM) can be applied to such distributed optimization

algorithms. In ADMM a problem is divided into small local

subproblems which are solved and used to find a solution to

a large global problem. The authors show that this approach

can be applied to a wide variety of distributed optimization

problems.

Rabbat et al. [21] analyzed the convergence of distributed

optimization algorithms in sensor networks. The authors prove

that for a large set of problems such algorithms converge to a

solution within a certain distance of the global optimum.

D. Distributed Soft Computing

Several modifications to traditional soft computing methods

have been proposed in which the single large population is

replaced by smaller distributed subpopulations. We refer to

these methods as distributed soft computing algorithms.

Several authors have discussed distributed genetic algo-

rithms (GA) which are commonly reffered to as Island Models

[22], [23], [24], [25]. In these models several subpopulations

known as islands are maintained by the genetic algorithm

and members of the populations are exchanged through a

process called migration. These methods have been shown

to obtain better quality solutions than traditional GAs [23].

Because each of the islands maintain some independence, each

island can explore a different region of the search space while

sharing information with other islands through migration. This

improves genetic diversity and solution quality [25].

Bergh and Engelbrecht [26] proposed several distributed

PSO algorithms for the training of feedforward neural net-

works. These methods include NSPLIT in which there is a

single particle swarm for each neuron in the network and

LSPLIT in which there is a swarm assigned to each layer of

the network. The results obtained by Bergh and Engelbrecht

indicate that the distributed algorithm outperforms traditional

PSO methods.

Recently another distributed approach to improve the perfor-

mance of the PSO algorithm has been explored in which mul-

tiple swarms are assigned to overlapping subproblems. This

approach is called Overlapping Swarm Intelligence (OSI) [3],

[27], [28]. In OSI each swarm searches for a partial solution

to the problem and solutions found by the different swarms

are combined to form a complete solution once convergence

has been reached.

In 2010, Haberman and Sheppard [3] used the OSI method

to develop an energy-efficient routing protocol for sensor

networks that ensures reliable path selection while minimizing

the energy consumption for the route selection process. Their

algorithm was shown to be able to extend the life of the sensor

networks and to perform significantly better than current

energy-aware routing protocols.

Ganesan Pillai and Sheppard [27] developed an OSI al-

gorithm for training the weights of deep artificial neural

networks. In their approach, the structure of the network is

separated into paths where each path begins at an input node

and ends at an output node. Each of these paths is associated

with a swarm that learns the weights for that path of the

network. A common vector of weights is maintained across

all swarms which describes a global view of the network.

This vector is created by combining the weights of the best

particles in each of the swarms. This method was shown to

outperform the backpropagation algorithm and the traditional

PSO algorithm. A distributed version of this approach was

developed subsequently by Fortier, Sheppard, and Ganesan

Pillai [28].

IV. APPROACH

Here we describe an approach to approximate k-MPE

based on the PSO algorithm proposed in [5] but focusing on

learning sub-problems similar to the approaches in [3] and

[27]. In our approach we associate a swarm with each node in

the network. A node’s corresponding swarm learns the state

assignments associated with that node’s Markov blanket. This

representation is advantageous since every node in the network

is conditionally independent of a node X when conditioned

266 2013 IEEE Symposium on Swarm Intelligence (SIS)

on its Markov blanket. The pseudocode for our approach is

presented in Algorithm 2.

A set of global state assignments α is maintained across all

swarms and is used for inter-swarm communication. The set α
initially contains only one state assignment obtained through a

forward sampling process in which the nodes of the network

are assigned a state following a topological ordering of the

network. In forward sampling, the probability of picking a

given state is determined by the node’s distribution and the

sampled state of the node’s parents. Each particle’s set of

object parameters consists of a vector of integers. Then each

integer corresponds to the state of a variable in the swarm’s

Markov blanket. This means that each particle represents a

partial state assignment for the network. We determine the

quality of a complete state assignment as follows:

q(X) = log

(∏
Xi∈X

P (Xi|Pa(Xi))

)

=
∑

Xi∈X

logP (Xi|Pa(Xi)).

where X = {X1, X2...Xn} is a complete state assignment

and Pa(Xi) corresponds to the assignments for the parents of

Xi.

Given a partial state assignment xp represented by some

particle p in swarm s and the set of complete global state

assignments α = {A1, . . . , Ak} we can construct a new set

of state assignments βp = {B1, . . . , Bk} by inserting xp into

each state assignment Ai ∈ α as follows:

∀Bi ∈ βp Bi = xp ∪ {Ai\mbs}

where mbs consists of the state assignments for the Markov

blanket of swarm s within Ai. We use βp to calculate the

fitness of each particle,

f(p) =
∑

Bi∈βp

q(Bi)

This function defines the fitness of particle p as the sum of

the log likelihoods of the assignments in α when the value

assignments encoded in p are substituted into α.

At the end of each iteration of the algorithm, swarms that

share a node in the network (such as c and d4 in Figure 1) will

compete to determine which state is assigned to the node in

each assignment Am ∈ α. This competition is held between

the state assignments found by the personal best particles in

each swarm. The state that results in the highest log-likelihood

is the one selected for inclusion. This process is shown in

Algorithm 3. In the example presented in Figure 1, the swarms

associated with d3 and d5 would compete to determine which

state is assigned to the nodes c and d4.

Whenever a state assignment is constructed, that assignment

is stored in H . At each iteration the k most probable assign-

ments in H are added to α. Once the algorithm has terminated

α is returned.

Algorithm 2 Overlapping Swarm Intelligence

Initialize α using forward sampling

Initialize particles in each swarm

Create an empty list of assignments H

repeat
for each swarm s do

for each particle, p ∈ s do
Construct βp

Add βp to H
Calculate particle fitness f(p)
if f(p) > p’s personal best fitness then

Update p’s personal best position and fitness

end if
if f(p) > the global best fitness then

Update global best position and fitness for s
end if
Update p’s velocity and position

end for
end for

α ← k most probable assignments in H

for each state assignment A ∈ α do
for each node n in the network do

Let S be all swarms where n ∈ mbs
Let vn be the state of n in A
vn ← compete(S, n,A)

end for
end for
Add α to H

until termination criterion is met

return α

Algorithm 3 compete(S, n,A)

bestQ ← −∞
for each swarm s ∈ S do

Let pg be the most fit particle in s
Let vn be the state of n within pg
Insert vn into A
if q(A) > bestQ then

bestQ ← q(A)
bestV ← vn

end if
end for

V. EXPERIMENTAL DESIGN

We compare our algorithm to the methods proposed in

[5], [6], [15], and [18]. As discussed above, the algorithm

proposed in [5] is an adaption of the DMVPSO algorithm to

the problem of abductive inference. The algorithm proposed in

[6] is a greedy hillclimbing algorithm provided as a baseline

for comparison. Finally, the algorithms proposed in [15] and

2013 IEEE Symposium on Swarm Intelligence (SIS) 267

Fig. 2: Bipartite Bayesian networks used for experiments.

[18] are a standard adaptation of the genetic algorithm and

a probabilistic restricted mating genetic algorithm (PRMGA),

compared in [5]. The latter algorithm adapts a probabilistic

crowding procedure to encourage crossover between individ-

uals that belong to the same cluster that contains other high-

fitness individuals.

To compare these algorithm we used the bipartite networks

presented in Figure 2 along with four additional Bayesian

networks obtained from the “bnlearn” Bayesian Network

Repository [29]. The networks taken from the Bayesian Net-

work Repository are the Win95pts, Insurance, Hailfinder, and

Hepar2 networks. The networks shown in Figure 2 were taken

from [5]. For these networks, parameters for root nodes were

generated according to their priors while parameters for non-

root nodes were generated based on their parents. Each node

in the networks presented in Figure 2 has three states. The

properties for all networks are shown in Table I. For all

networks each leaf node in the network was set as evidence

with a 50% probability. The state of each evidence variable

was chosen uniformly at random.

For each network, four experiments were performed, based

on the number of k-MPE. We evaluated all algorithms with

k set to 2, 4, 6, and 8 respectively. For all of the algorithms,

initial populations were generated using forward sampling. In

every experiment, the number of particles in each swarm was

set to 20 and σ was set to 0.2. The value for σ was taken from

[5] to ensure consistency of results. For the genetic algorithms

TABLE I: Statistics of the various networks

Network Nodes Arcs Parameters Ave. MB Size
Network A 11 12 261 4
Network B 13 16 399 4.53
Network C 15 12 483 4.60
Win95pts 76 112 574 5.92
Insurance 27 52 984 5.19
Hailfinder 70 66 2656 3.54
Hepar2 56 1236 1453 3.51

the population size was set to 20. All algorithms were run until

convergence. The sums of the log likelihoods for the k most fit

solutions found in each run were averaged over the ten runs of

each algorithm and compared using a paired t-test to evaluate

significance. The confidence interval for the t-test is 95%. We

also measured the number of fitness evaluations performed by

each of the algorithms in order to compare the computational

complexity of each approach.

The k-MPE solutions for the algorithm proposed in [5] are

generated using the approach described. For each generation,

the k best solutions are stored in a queue. If an individual’s

solution is not in the queue and its fitness is higher than that

of the least-fit solution in the queue, the least-fit solution is

replaced by the new individual’s solution.

VI. RESULTS

In Table II we present the log likelihoods obtained from

our experiments. Here we show the average sum of the log

likelihoods for each algorithm and each value of k. Bold

values indicate that the corresponding algorithm’s performance

is statistically significantly better than the other algorithms for

the network given the corresponding value for k. Algorithms

that tie statistically for best are bolded.

For the networks Win95pts, Insurance, Hailfinder, and

Hepar2 we observe that, based on the paired t-tests on log

likelihood, the OSI algorithm has the best performance. For

Network A all algorithms tie statistically when k is set to 2,

NGA and OSI tie statistically for best when k is set equal to 6,

and GA and OSI tie statistically for best when k is set equal to

8. For Network B GA and OSI tie statistically for best when

k is set equal to 2, 6, and 8. For Network C DMVPSO and

OSI tie statistically for best when k is set equal to 2.

In Figure 3 we present a bar graph comparing the number

of fitness evaluations required by each of the algorithms with

respect to the number of nodes in the network.

VII. DISCUSSION

The paired t-tests on the sum of the log likelihoods indicate

that OSI performed either equal to or better than the other

methods for all values of k. While the OSI approach does not

appear to have an advantage when used on small networks

such as Network A and Network B, we can see that it

performed better than the other methods for all networks con-

taining more than 15 nodes. This indicates that our approach

268 2013 IEEE Symposium on Swarm Intelligence (SIS)

TABLE II: Average sum of log likelihoods for different values of k

Network k OSI Greedy NGA GA DMVPSO

Network A

2 -14.52 ± 0.00 -17.61 ± 6.19 -14.87 ± 0.56 -14.74 ± 0.59 -14.71 ± 0.34
4 -32.30 ± 0.00 -36.37 ± 3.96 -33.39 ± 1.86 -36.37 ± 1.34 -32.30 ± 0.95
6 -40.30 ± 0.00 -55.86 ± 7.38 -41.22 ± 1.49 -43.16 ± 2.71 -42.47 ± 1.37
8 -68.23 ± 0.00 -85.27 ± 6.88 -70.25 ± 2.27 -67.76 ± 3.51 -71.30 ± 1.62

Network B

2 -18.39 ± 0.21 -24.29 ± 5.08 -19.94 ± 1.27 -19.24 ± 1.18 -19.79 ± 0.64
4 -29.18 ± 0.00 -51.13 ± 8.00 -33.24 ± 2.16 -31.34 ± 1.61 -31.62 ± 1.56
6 -49.70 ± 0.00 -67.15 ± 6.34 -50.57 ± 2.49 -49.85 ± 3.06 -51.93 ± 2.36
8 -63.99 ± 0.00 -96.59 ± 9.58 -67.56 ± 2.64 -62.14 ± 4.88 -67.64 ± 2.97

Network C

2 -21.68 ± 0.00 -26.49 ± 3.90 -22.77 ± 0.93 -22.76 ± 0.92 -22.38 ± 1.04
4 -32.08 ± 0.55 -51.93 ± 7.13 -41.03 ± 2.41 -37.06 ± 3.34 -39.47 ± 2.35
6 -72.36 ± 0.23 -93.05 ± 8.02 -85.14 ± 4.80 -78.10 ± 5.54 -77.60 ± 2.98
8 -87.69 ± 0.19 -110.23 ± 9.65 -103.60 ± 4.98 -94.55 ± 4.66 -96.81 ± 5.97

Win95pts

2 -55.96 ± 8.79 -4222.17 ± 1005.94 -4209.67 ± 1832.02 -1678.42 ± 902.38 -1382.93 ± 465.56
4 -61.89 ± 21.14 -5697.90 ± 1325.49 -9202.50 ± 1737.65 -4080.83 ± 1036.82 -2667.19 ± 1314.90
6 -55.38 ± 13.66 -12620.99 ± 1520.22 -21224.53 ± 4607.58 -9052.84 ± 3938.58 -3453.83 ± 1829.18
8 -168.15 ± 17.45 -11231.50 ± 1670.98 -20313.26 ± 2997.75 -9260.05 ± 3438.89 -5492.45 ± 3658.35

Insurance

2 -25.86 ± 0.44 -1164.88 ± 516.83 -40.20 ± 6.16 -32.62 ± 5.92 -38.57 ± 6.73
4 -53.72 ± 1.22 -2243.02 ± 1028.09 -84.54 ± 8.04 -71.41 ± 10.06 -84.30 ± 8.75
6 -74.35 ± 3.99 -3043.59 ± 1869.63 -221.84 ± 42.35 -134.43 ± 14.37 -135.66 ± 21.98
8 -102.43 ± 11.05 -4575.26 ± 1773.28 -215.94 ± 28.86 -151.45 ± 19.72 -212.57 ± 45.98

Hailfinder

2 -72.26 ± 4.91 -2114.56 ± 862.63 -98.37 ± 2.29 -95.73 ± 5.22 -96.02 ± 2.19
4 -159.04 ± 12.43 -4087.08 ± 2267.90 -212.83 ± 8.75 -206.99 ± 4.21 -213.92 ± 10.55
6 -242.05 ± 18.18 -6795.57 ± 2304.71 -3297.89 ± 2712.97 -318.81 ± 17.89 -2027.16 ± 1159.21
8 -301.92 ± 7.11 -8087.45 ± 2835.30 -4284.77 ± 2012.99 -1744.57 ± 673.88 -3516.97 ± 1476.38

Hepar2

2 -69.21 ± 0.07 -95.25 ± 8.65 -82.35 ± 2.36 -79.12 ± 3.08 -74.64 ± 4.37
4 -138.29 ± 0.00 -173.10 ± 6.61 -155.38 ± 4.51 -156.43 ± 5.29 -144.97 ± 5.60
6 -278.00 ± 0.07 -312.63 ± 14.36 -314.49 ± 7.09 -306.27 ± 5.21 -289.60 ± 7.78
8 -312.14 ± 0.00 -385.30 ± 19.41 -367.64 ± 6.15 -361.39 ± 11.29 -316.89 ± 4.38

has an advantage when used to perform inference on more

complex networks.

We believe that this increased performance is due to the

representation of each swarm being based on the Markov

blankets and the corresponding competition between overlap-

ping swarms. Recall that each variable Xi is conditionally

independent of all other variables in the network given its

Markov blanket. By assigning each node’s swarm to a Markov

blanket we ensure that the swarm learns the state assignments

for all variables upon which that node may depend. Also,

since multiple swarms learn the state assignments for a single

variable, our approach ensures greater exploration of the

search space. Through competition, we ensure that the best

variable state assignments found by the swarms are used in

the final k explanations.

While the OSI method appears to outperform the other

methods in terms of the log likelihoods of solutions found,

it requires many more fitness evaluations than the other

approaches. Figure 3 indicates that, while the number of

nodes in the network has little effect on the number of fitness

evaluations required by the competing algorithms, the number

of fitness evaluations required by the OSI approach is higher

for networks with a large number of nodes. This is because

the OSI approach creates a separate swarm for each of the

nodes in the network, causing the number of swarms and the

number of fitness evaluations to increase with the number of

nodes.

VIII. CONCLUSIONS

We have presented an algorithm based on overlapping

swarm intelligence to approximate solutions to the k-MPE

problem. In our approach, a swarm is assigned to each node

in the Bayesian network, and that swarm learns the state

assignments for its node’s Markov blanket. We performed

a series of experiments to compare our approach to the

methods proposed in [5], [6], [15], and [18]. The results

of these experiments indicate that, while our approach is

more computationally expensive than competing methods, it

significantly outperforms the competing approaches in terms

of the log likelihoods of the solutions found when used to

perform inference on complex Bayesian networks.
For future work we will compare our approach to other tra-

ditional k-MPE algorithm such as the exact inference method

proposed in [12] and the approximate inference algorithm

described in [14]. We also plan to design a method to allow the

learning process to be more distributed by removing the need

for a global fitness evaluation and compare its performance to

that of the method presented here. This extension is similar to

the one developed in [28]. Also, because a swarm is associated

with each node, the number of swarms can be very large for

complex networks. We plan to explore alternative represen-

tations and competition strategies to reduce this complexity.

For example, we could assign swarms to only a subset of

the nodes in the network. Each swarm could learn the state

assignments for the Markov blanket of its assigned node for

some number of iterations t. After t iterations have elapsed the

swarm could be assigned to a new node. We will also begin

developing the theory of the general OSI framework. We will

show convergence of our approach and draw on the approaches

in [19] and [20] to analyze the relationship between OSI

convergence rate and the structure of the sub-swarms.

REFERENCES

[1] S. Shimony, “Finding MAPs for belief networks is NP-hard,” Artificial
Intelligence, vol. 68, pp. 399–410, 1994.

2013 IEEE Symposium on Swarm Intelligence (SIS) 269

Fig. 3: Number of Fitness Evaluations

[2] P. Dagum and M. Luby, “Approximating probabilistic inference in
Bayesian belief networks is NP-hard,” Artificial Intelligence, vol. 60,
no. 1, pp. 141–153, 1993.

[3] B. K. Haberman and J. W. Sheppard, “Overlapping particle swarms for
energy-efficient routing in sensor networks,” Wireless Networks, vol. 18,
no. 4, pp. 351–363, 2012.

[4] K. Veeramachaneni, L. Osadciw, and G. Kamath, “Probabilistically
driven particle swarms for optimization of multi-valued discrete prob-
lems: Design and analysis,” in Proceedings of the IEEE Swarm Intelli-
gence Symposium, 2007, pp. 141–149.

[5] K. G. Pillai and J. W. Sheppard, “Abductive inference in Bayesian belief
networks using swarm intelligence,” in Proceedings of SCIS-ISIS (to
appear), 2012.

[6] K. Kask and R. Dechter, “Stochastic local search for Bayesian net-
works,” in Workshop on AI and Statistics. Morgan Kaufman Publishers,
1999, pp. 113–122.

[7] D. Koller and N. Friedman, Probabilistic Graphical Models - Principles
and Techniques. MIT Press, 2009.

[8] G. F. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks,” Artificial Intelligence, vol. 42, no. 2–3,
pp. 393–405, 1990.

[9] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intelligence, vol. 1, pp. 33–57, 2007.

[10] J. Kennedy and R. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Systems, Man, and Cybernetics, 1997. Computa-
tional Cybernetics and Simulation., 1997 IEEE International Conference
on, vol. 5, oct 1997, pp. 4104–4108.

[11] R. Dechter, “Bucket elimination: A unifying framework for probabilistic
inference,” in Proceedings of the Twelfth international conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 1996, pp. 211–219.

[12] D. Nilsson, “An efficient algorithm for finding the m most probable
configurationsin probabilistic expert systems,” Statistics and Computing,
vol. 8, no. 2, pp. 159–173, 1998.

[13] A. Dawid, “Applications of a general propagation algorithm for prob-
abilistic expert systems,” Statistics and Computing, vol. 2, no. 1, pp.
25–36, 1992.

[14] E. Consortium et al., “Elvira: An environment for creating and using
probabilistic graphical models,” in Proceedings of the first European
workshop on probabilistic graphical models, 2002, pp. 222–230.

[15] E. Gelsema, “Abductive reasoning in Bayesian belief networks using a

genetic algorithm,” Pattern Recognition Letters, vol. 16, pp. 865–871,
1995.

[16] C. Rojas-Guzman and M. Kramer, “An evolutionary computing approach
to probabilistic reasoning in Bayesian networks,” Evolutionary Compu-
tation, vol. 4, pp. 57–85, 1996.

[17] L. de Campos, J. Gamez, and S.Moral, “Partial abductive inference in
Bayesian belief networks using a genetic algorithm,” Pattern Recognition
Letters, vol. 20, pp. 1211–1217, 1999.

[18] N. Sriwachirawat and S. Auwatanamongkol, “On approximating k-MPE
of Bayesian networks using genetic algorithm,” in In Cybernetics and
Intelligent Systems, 2006, pp. 1–6.

[19] S. Patterson, B. Bamieh, and A. El Abbadi, “Convergence rates of
distributed average consensus with stochastic link failures,” Automatic
Control, IEEE Transactions on, vol. 55, no. 4, pp. 880–892, 2010.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[21] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proceedings of the 3rd international symposium on Information
processing in sensor networks. ACM, 2004, pp. 20–27.

[22] R. Tanese, J. Co-Chairman-Holland, and Q. Co-Chairman-Stout, “Dis-
tributed genetic algorithms for function optimization,” 1989.

[23] D. Whitley and T. Starkweather, “Genitor ii: A distributed genetic al-
gorithm,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 2, no. 3, pp. 189–214, 1990.

[24] T. Belding, “The distributed genetic algorithm revisited,” arXiv preprint
adap-org/9504007, 1995.

[25] D. Whitley, S. Rana, and R. Heckendorn, “The island model genetic
algorithm: On separability, population size and convergence,” Journal
of Computing and Information Technology, vol. 7, pp. 33–48, 1999.

[26] F. van den Bergh and A. Engelbrecht, “Cooperative learning in neural
networks using particle swarm optimizers,” South African Computer
Journal, vol. 26, pp. 94–90, 2000.

[27] K. G. Pillai and J. W. Sheppard, “Overlapping swarm intelligence for
training artificial neural networks,” in Proceedings of the IEEE Swarm
Intelligence Symposium, April 2011, pp. 1–8.

[28] N. Fortier, J. W. Sheppard, and K. G. Pillai, “DOSI: Training artificial
neural networks using overlapping swarm intelligence with local credit
assignment,” in Proceedings of SCIS-ISIS (to appear), 2012.

[29] M. Scutari, “Bayesian network repository,” 2012. [Online]. Available:
http://www.bnlearn.com/bnrepository/

270 2013 IEEE Symposium on Swarm Intelligence (SIS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

