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Abstract—The use of swarm robotics in search tasks is an
active area of research. A variety of algorithms have been
developed that effectively direct robots toward a desired target by
leveraging their collaborative sensing capabilities. Unfortunately,
these algorithms often neglect the task of communicating possible
task solutions outside of the swarm. Many scenarios require a
monitoring station that must receive updates from robots within
the swarm. This task is trivial in constrained locations, but
becomes difficult as the search area increases and communication
between nodes is not always possible. A second shortcoming of
existing algorithms is the inability to find and track mobile
targets. We propose an extension to the distributed Particle
Swarm Optimization algorithm that is both communication-
aware and capable of tracking mobile targets within a search
space. Simulated experiments show that our algorithm returns
more accurate solutions to a monitoring station than existing
algorithms, especially in scenarios, where the target value or
location changes over time.

I. INTRODUCTION

Many tasks are more suitable for robots than humans.
Search problems such as detection of explosives and radioac-
tive sources can be made safer by using robots operating
under a well-performing algorithm. Consider a scenario where
a radioactive object is lost or stolen and must be recovered
quickly to protect the health and safety of the public. Airborne
robots equipped with radiation sensors could be deployed to
search for the object. These robots must locate the object and
relay its location to a monitoring station. Search reporting
is difficult when the search area is much larger than the
communication range of the robots. Additionally, the target
may be mobile during the search process, which means that
robots must not only report the target’s position, but also track
it.

Emerging technology has revealed that swarms of small,
inexpensive robots may be more effective at performing search
tasks than their larger counterparts [1]. These swarms utilize
concepts from many different fields and may be applied to a
wide variety of applications [2]. Unfortunately, these robotic
swarms are only as effective as the distributed algorithms that
enable their emergent functionality. This dependency intro-
duces a need for practical algorithms capable of controlling
a swarm’s behavior to solve a variety of tasks. In regards to
the search problem, robots must effectively find a solution as
well as transmit this solution back to a monitoring station. The
communication component of the problem can be difficult in

large areas, especially when working with inexpensive, power
constrained robots that may have a relatively short transmis-
sion range. When the target solution is mobile throughout
the search process, the problem of tracking becomes more
difficult still. Finding a target and transmitting the solution to
a server are distinct goals that may have conflicting optimal
solutions, and effective distributed algorithms must balance
both objectives.

An existing algorithm called distributed Particle Swarm
Optimization (dPSO) has been shown to perform reasonably
well in simulated environments [3–7]. However, previous work
does not address the problem of communicating a solution
back to a central server. Once a swarm of autonomous robots
has found a solution to a problem, that solution must be
relayed back to a monitoring node that is capable of processing
the information or initiating an external action.

Another potential shortcoming of the current dPSO algo-
rithm is the inability to track mobile targets. The original PSO
algorithm cannot be applied directly to mobile target search,
as this typically requires reevaluation of a particular location’s
fitness at a later timestep, or posting sentinels dedicated to
detecting change [8]. Existing studies have focused strictly
on static targets within a search space. This is acceptable for
scenarios where optima are static, but may not be sufficient
for robotic search, where a target may move during the search
process.

The combination of search and connectivity objectives is
a novel problem addressed by this paper. We propose an
improved dPSO algorithm capable of tracking mobile tar-
gets as well as transmitting solutions to a server throughout
the course of the search process. This new communication-
oriented dPSO algorithm (C-dPSO) uses a modified velocity
update equation to maintain consistent communication with
the server. We also propose decaying fitness values to track
targets whose location, or emitted fitness value changes over
time. The result is a distributed algorithm for robotic swarms
that maintains communication with a central server, while
solving the problem of search with dynamic optima. The
computation placed on each robot is relatively lightweight
and well-suited to inexpensive, power constrained robots. The
contributions made in this paper provide the means for such
robots to solve difficult search problems over large areas.

The remainder of this paper is organized as follows. In



Section II, we discuss related work and identify areas for
improvement within the swarm robotic literature. In Section III
we introduce our C-dPSO and in Section IV we discuss
the concept of decaying target values. Section V states the
hypotheses of this study. Our experiments are described in
Section VI and the results are presented in Section VII. Finally,
we discuss the implication of these findings in Section VIII
and conclude with future work in Section IX.

II. RELATED WORK

The related work for this research can be separated into
three main groups. The first, described in Section II-A, deals
with PSO distributed across a swarm of robots. In this case, the
algorithms view each robot as a separate particle in the PSO
algorithm. Our C-dPSO algorithm behaves in this fashion, and
therefore is most closely related to these works. Section II-B
discusses several algorithms that use PSO to perform particular
tasks for robots but do not necessarily distribute the algorithm
onto individual robots. Although somewhat different from our
approach, these algorithms solve related problems. Finally,
Section II-C discusses some of the methods being used to
perform message routing that were influential to our work.

A. Distributed PSO

This work focuses primarily on an extension of Kennedy
and Eberhart’s PSO algorithm into a physical environment [9].
Rather than using virtual particles that model physical move-
ment, dPSO attempts to perform the same tasks using swarms
of robots with actual parameters. The principles are similar
to the original algorithm, but the replacement of particles
with robots introduces a new set of problems Although dPSO
still uses the same velocity update equation, the performance
of such an update may be unreliable given a noisy or vari-
able performance of hardware components. Communication
between agents in a robotic swarm is also not guaranteed as
they are in PSO, which makes it difficult to transmit the global
best position to other agents or a central monitoring node. A
relatively recent study provides an excellent review of PSO
applications, and shows that publications involving robotics
account for approximately 3.4% of the literature [10]. Many
of these works deal with robotic control, and only a small
subset are dedicated to the search problem.

Several studies have been conducted that focus on applying
PSO to the robot search problem. Hereford first proposed the
concept of dPSO as a solution to the robotic search prob-
lem [3]. The primary contribution was the notion that robots
can represent particles when working in a physical search
space.1 The proposed algorithm is decentralized by pushing
computation from a supervising node onto the individual
robots. These robots calculate new target locations and update
personal best values without any interaction with an outside
controller/coordinator. A broadcast of position and value are
sent only when a robot finds a new global best, which reduces
the number of transmissions sent among nodes. Experiments

1Throughout the course of this paper, we use the terms robot and particle
interchangeably.

with simulated robots were used within a 2D space to track
10 different static targets that each produced a detectable
emission. An extension of Hereford’s work implements this
algorithm on three physical robots that attempted to find light
sources within a room [4]. In both the simulated and physical
environment, robots were able to locate targets by working
cooperatively.

Another study was conducted in parallel to, but independent
from Hereford. Here, the authors developed a PSO inspired
robotic olfactory search algorithm [5]. This study focused
mainly on the specific case of odor detection and search.
Although their algorithm was proposed for use with existing
hardware, all experiments were conducted using simulations.
Odor sources remained stationary throughout the numerous
experiments.

A paper by Pugh and Martinoli [7] extended their previous
work [6] and introduces another implementation of dPSO.
Similar to Hereford’s work, this study also focused on the
problem of finding multiple static targets within a search space.
The algorithm was implemented on a simulated environment
using e-puck robots [11]. Unlike Hereford’s work, this im-
plementation had robots communicate with one another at
every timestep. This paper is related to their previous work, in
which the authors use PSO as a noise resistant robot learning
algorithm [12]. While similar to our own work, this paper did
not deal with robotic search and did not distribute the PSO
algorithm among the various nodes.

Our implementation of dPSO differs from all previous work
in that it incorporates a communication scheme that will
allow transmission of a solution back to a monitoring node.
Although some of these studies assumed a limited transmission
range between robots themselves, all experiments extracted the
final solution by using an oracle that only existed within the
simulation. In addition, previous studies attempted to solve
problems where the target solution was static. Scenarios exist
in which robots are required to track mobile targets. The
original dPSO algorithm [3] cannot be modified trivially to
perform mobile target search. It does seem possible to adapt
Pugh and Martinoli’s algorithm [7] to work with dynamic
targets, but the reporting problem would remain unaddressed.

B. PSO for Robotic Control

A related paper [13] uses PSO to learn optimal parameters
for the search problem, but not as a solution to the search
problem itself. Other biologically inspired models include
Digital Hormone Models [14], Pheromone Models [15], [16],
and Stochastic Cellular Automata (SCA) [17]. These models,
while similar, use different communication mechanisms for
cooperation and in most cases have not been applied to the
problem of search. A number of statistical models have also
been developed [18–21] for use in robotic swarms. These
probabilistic models are different from biologically inspired
models (including PSO) in that they are used to plan robot
behavior in an offline setting prior to runtime. Behavior for
each robot is planned according to rules discovered prior



to the search itself, and communication between robots is
unnecessary during the modeling process.

Several papers have been published focusing on the robot
path planning problem using PSO [22–25]. This is a different
problem than dPSO. In path planning, a PSO algorithm is
used to determine the optimal next location for a robot at
any given timestep. The PSO algorithm itself still uses virtual
particles to accomplish this, and the result is simply passed
to a single robot as a plan of action. Distributed PSO aims
to use robots as a replacement for particles with the logic of
the PSO algorithm itself being distributed among them. Work
by Nasrollahy and Javadi is relevant to robotic search because
it addresses mobile targets [22]. Their approach, however, is
different from our problem in that PSO is run at each iteration.
Although the target may move over time, the PSO algorithm
is solving for a static target at each timestep. We seek to deal
with instances where a target may move during the course of
the PSO algorithm.

C. Routing Protocols

Our work uses concepts likes opportunistic forwarding and
delay tolerant networking to achieve communication within
the network. These notions are prominent in wireless sensor
networks (WSNs), and we adopt some of the techniques
described in this literature for communication between robots.
PSO has been used in WSNs for positioning mobile nodes for
optimal coverage and quality of service [26]. Two publications
use WSNs to find and track a moving target but use WSNs that
have been previously deployed with a known topology [27],
[28]. The communication model our system uses was inspired
by Boudriga et. al. [29]. Our system assumes that robots are
able to know their position accurately in physical space. The
problem of finding node locality in WSNs is challenging in
practice and much work has been done to attempt to solve
it [30].

Finally, Haberman and Sheppard introduced a routing pro-
tocol for power-constrained sensor networks [31]. This work
uses a distributed form of PSO that maintains a series of
overlapping swarms, one for each node in the network. This is
similar to our approach in that each node represents a single
particle and the final goal is to provide communication with
a data collection point. This algorithm was shown to reduce
the energy consumption in sensor networks. Our algorithm
differs from this research in that we use C-dPSO to direct the
movement of robots such that communication with a server is
available.

III. COMMUNICATION-ORIENTED DPSO

We propose a dPSO algorithm that incorporates a commu-
nication objective into the velocity update equation. Rather
than simply pursuing solutions to a specific problem, nodes
strive to remain in contact with the server. PSO traditionally
operates by moving particles using a velocity update equation.
The direction in which particles move corresponds to local
and global best solutions as determined by a fitness function,
which returns higher values for better solutions. In the case

of robotic search, we assume all nodes are equipped with a
sensor that detects the value of a position. A logical extension
for dPSO is to augment the velocity update equation with
information relating to server connection. This will have the
effect of pulling individuals toward either the target solution or
a location with server connection as necessary. Messages may
be passed from robot to robot in an ad-hoc fashion, so direct
connection to the server is not necessary to attain information
exchange. This is related to work in delay tolerant networks,
which attempt to maintain data flow even though a contiguous
path may not exist [32].

The original PSO algorithm operates by moving particles
based on a current velocity. Let pi be the local best position
seen by particle i and pg be the global best position seen
by any particle. The following is the velocity update rule for
particle i.

vi = ωvi + U(0, φ1)⊗ (pi − xi) + U(0, φ2)⊗ (pg − xi)

where ⊗ is a point-wise multiplication of elements. Here,
ω acts as inertia and φ1 and φ2 denote the amount of
influence the personal and global best positions have. Ran-
domly sampling from a uniform distribution U introduces
additional exploration that may otherwise be dominated by
the exploitation of a particular solution. The term that makes
use of the personal best location is often called the cognitive
component, while the term containing the global best position
is called the social component. For simplicity, we can rewrite
the velocity update equation as follows. We use Φ to represent
the random variables for readability.

vi = ωvi + Φ1Cognitive() + Φ2Social()

This update occurs during each iteration of the algorithm
prior to a particle’s movement. In the context of distributed
PSO, time is discretized into slices with each timestep serving
as an iteration of the algorithm.

Ideally we would like communication with the server at all
timesteps, but this is unrealistic for problems where the search
space is larger than the communication range of a robot. As
an alternative, we set a target number c of maximum timesteps
before communication with the server is restored, thereby lim-
iting the amount of time where no communication is available.
To achieve this additional goal, some of the searching power
of the system needs to be diverted to the task of restoring
connection. This means that c is a tunable parameter, where
lower values allow for more frequent communication with the
server and higher values correspond to a more robust search
of the available space.

Better performance can be achieved by varying the target
number of timesteps for each particle. We can achieve this
by adding a unique offset θi to each c that is different for
each particle so that robots attempt to communicate with the
server at different times. By introducing unique offsets, robots
will travel back to the server one after another. Ideally this
maximizes the effectiveness of the adhoc communication by



creating a chain of robots back to the server. Assuming that
the size of the swarm is known to be N , and each robot is
assigned a unique identifier Rid that ranges from 0 to N − 1,
we can determine the timestep offset for each robot i as θi =
Rid×c/N . By using this offset, each robot will start searching
for the server at evenly spaced intervals at the beginning of
the algorithm. As time continues, particles switch to searching
for the server based on when communication with the server
was last established.

This communication-oriented behavior can be achieved by
modifying the velocity update equation to include a commu-
nication component.

vi = ωvi +

(
1−min

(
1,
⌊ t− tc
c+ θi

⌋))
Φ1Cognitive()

+

(
1−min

(
1,
⌊ t− tc
c+ θi

⌋))
Φ2Social()

+ min

(
1,
⌊ t− tc
c+ θi

⌋)
Φ3Communication()

Both the cognitive and social components are pursuing a
solution within the space, and as such we may simplify the
equation even further by combining these terms into a Goal()
component.

vi = ωvi +

(
1−min

(
1,
⌊ t− tc
c+ θi

⌋))
ΦxGoal()

+ min

(
1,
⌊ t− tc
c+ θi

⌋)
Φ3Communication()

Here, t is the current timestep and tc is the last timestep
in which successful communication with the server occurred.
This new velocity update now relates the tradeoff between
search and communication objectives. When t − tc < c + θi
(communication with the server has been established within
the threshold number of timesteps), the velocity update re-
verts back to the original PSO version where only the goal
component is used. When t− tc ≥ c+ θi (the target number
of timesteps have occurred since the last successful communi-
cation with the server), the goal objective is entirely ignored
and the robot focuses all efforts on regaining communication
with the server.

The additional communication component requires a new
fitness function that denotes how good a location is in terms
of communication. A value of 0.0 is awarded to a position that
is unable to communicate with the server. If a robot is capable
of communicating with the server directly, it is given a value
of 1.0. It is possible to establish a connection with the server
via intermediary nodes, but each additional hop detracts from
the communication value. The fitness value reduction can be
represented using the following decay formula,

fitnessc =
e

eH

where e is the mathematical constant approximately equal to
2.718 and H denotes the number of hops required for commu-
nication with the server. When H = 1 (direct communication),

a value of 1.0 is received as expected. As H increases there
is an exponential drop-off such that as H approaches infinity
the value goes to zero. In reality, there are a finite number of
robots, meaning that a large enough increase in the number
of hops will eventually result in failed communication with
the server. This will also produce a zero value for the given
position. When any connection is made to the server, tc is set
to t. If the connection value is the best seen throughout the
course of the algorithm, the new communication best location
is stored as si. This tracking of the last known position where
communication was available is analogous to target tracking,
in that each robot has its own opinion of where it believes it
should go. For this reason, future work may investigate the
C-dPSO’s ability to track mobile servers as well as targets.
The final, un-simplified velocity update equation with the
incorporated communication component is as follows.

Vi = ωVi

+

(
1−min

(
1,
⌊ t− tc
c+ θi

⌋))
U(0, φ1)⊗ (pi − xi)

+

(
1−min

(
1,
⌊ t− tc
c+ θi

⌋))
U(0, φ2)⊗ (pg − xi)

+ min

(
1,
⌊ t− tc
c+ θi

⌋)
U(0, φ3)⊗ (si − xi)

It should be noted that communication to the server is only
necessary when a new global best is found. There is no need
to report back with no new information. This is accomplished
by setting tc to t for every timestep until a new best location
is found. Essentially this means the timestep count does not
begin until a valid solution is found. This allows a robot
c+ θi timesteps to exploit the new area in search of a better
solution before defaulting back to the communication goal.
Communication between nodes may void the need to connect
to the server if a path through other robots can reach the
server or if a better solution is found by another node prior
to making contact with the server. To accomplish this, robots
communicate their last known connection time with the server
as well as what fitness value the server had stored at that
point. Using this information, robots may determine if better
information has already been relayed to the server. If so, tc is
set to t and the robot resumes the task of searching.

When a new global best is found by a robot, the robot
broadcasts a message with the new global best value and its
position to all the peer robots within range. Upon receiving
a broadcast message that a new global best was found, the
robot will rebroadcast the message. All duplicate messages are
ignored. If the new global best message manages to propagate
to the server, an acknowledgment will be sent to the original
robot. Upon receiving the acknowledgment the robot resets tc
to the timestep when the new global best was discovered. Ties
for the best fitness value use the one most recently observed.
This is useful in dynamic scenarios, and is especially important
for the communication fitness value where frequent ties occur.



IV. EXTENSION TO DYNAMIC SEARCH

In addition to being communication aware, it is also desir-
able for dPSO to extend to problems with non-static targets. A
mobile target creates a dynamic search problem with respect to
position. It is also possible for targets to change their emitted
fitness throughout time, which introduces another dynamic
element to the task.

In traditional PSO, a best location (pi or pg) is stored
based on the highest fitness value experienced by a particle
(fi or fg respectively). If the target is in motion, the particles
may remain fixed on a worthless location believing it still to
have value. Typically this problem is solved by reevaluating
stored best positions to verify its fitness at later timesteps. This
solution applies to targets with changing fitness values as well.
Unfortunately this is not possible in a physical environment
because a particle is unable to evaluate the fitness of a location
it is not currently at.

To avoid this issue, we decay the fi and fg values through-
out the execution of the algorithm. Eventually, the worth of a
location dissipates over time and nodes become interested in
more valuable locations. If the target remains in the general
vicinity, additional best locations will be found in the area
and the values will be boosted back to their original starting
positions. This change to the fitness values does not affect the
velocity update equation directly and can be applied to either
the original dPSO or the communication-oriented version.
During each timestep, fitness values are decayed as follows,

fi ← β1fi

fg ← β2fg

fc ← β3fc

where βk ∈ (0, 1] is a decay factor. If the target solution
is known to be stationary, β1 = β2 = 1. Similarly if the
communication server is known to be stationary, β3 = 1.
By reducing as a percentage of the previous value at each
timestep, the fitness values are modeled by a nonlinear decay
function. The reduction in fitness can be thought of as a
reduction in the confidence we have about the original ob-
served value. As time continues, the information becomes less
“fresh”, and a more recently observed position may be more
valuable despite having a lower fitness. This desired effect is
achieved by decaying the values as described.

The values for βk become new hyperparameters for the
equation, and should be tuned based on how quickly the search
task is changing in the system. For systems where the target is
moving quickly, βk must be set to a low value for the robots to
value the freshness of information more. In situations where
the fitness value is decreasing, βk must be set so that the
perceived fitness decays at least as quickly as the true fitness’
rate of change. This is not an issue with increasing fitness
values, as the believed fitness would be lower than the true
fitness at a given point and the newer information would be
stored. If values are decayed too slowly, particles will still
face the issue of tracking outdated information. Alternatively,

if values are decayed too quickly, particles will lose possibly
valid information and essentially will be starting over with a
random search when it may not be necessary. As targets move
more quickly or their fitness values degrade at a higher rate,
the βk values must be set lower and lower, making it difficult
to reuse collected information.

V. HYPOTHESES

The purpose of our evaluation is to determine the effective-
ness of the proposed communication component and dPSO’s
ability to track mobile targets. A number of hypotheses have
been created to test these elements individually. Solutions for
all hypotheses are in reference to the robotic search problem.
Error is determined using the Euclidean distance between the
returned solution and actual target position.

First, we hypothesize that the addition of decay improves
the performance of dPSO for mobile problems. We predict
that dPSO with a tuned decay parameter will perform better
than dPSO with no decay when tracking a mobile target, a
target with a slowly decreasing fitness value, a target with
a quickly decreasing fitness value, and a mobile target with
a quickly decreasing fitness value. These problems represent
a wide range of possible dynamic search problems, and the
results form the foundation for our claims.

Next, we hypothesize that dPSO with a communication
mechanism will perform better than dPSO without one. Per-
formance is measured in terms of the server’s knowledge of
the target location, so communication is a valid concern. Five
tests are run on the same scenarios as before, plus an additional
static scenario where the target is stationary with a fixed fitness
value.

VI. EXPERIMENTAL APPROACH

Experiments are conducted in a simulated environment.
Rather than targeting a specific robot, additional constraints
have been added to the classic PSO algorithm to which real-
world robots must adhere. Specifically, only particles within
a specified range of each other are allowed to exchange
information, and the notion of a global best must be prop-
agated through the network rather than being immediately
available to all nodes. This simulates the potentially limited
communication range that robots must adhere to, but this local
best topology is often used in other PSO implementations
as well to improve performance. Communication between
nodes may fail with some small random chance, but message
transfers are assumed to be successful after the start of the
transmission. Also, the velocity for each particle is clamped
to simulate a top speed for the robot. An additional node
is constructed that acts as the server. The simulator does
not consider movement constraints that may be imposed by
specific robots (such as turn radius), and ignores the problem
of collision as this can typically be handled by dedicated
collision detection algorithms.

For all experiments, the robots operate in a two-dimensional
space in search of a single target. Future work may investigate
an extension into a three-dimensional space or problems



with multiple targets or servers. Swarms are composed of
a fixed number of eight robots. These robots, along with
the server, have a communication range that is 25% of the
total width/height of the search space. For each experiment,
the search problem is solved 1000 times, where the target is
randomly assigned to a new location for each iteration. These
targets have a fixed fitness value that degrades non-linearly
with distance from the source. In addition to these targets,
noise is added to the search space by assigning a large number
of randomly placed nodes that produce a small fitness value.

We seed the random placement of these nodes such that
each experiment will be solving the same 1000 problems each
time. We record several measurements during the course of
the experiments, including solution error in terms of Euclidean
distance between the correct target location and the server’s
belief of the solution location. For fairness, we allot 2000
timesteps to every algorithm, which should be sufficient for
convergence in all cases. This is because there is a tradeoff
between the quality of the solution and the time available, and
we opt to provide sufficient time to better study the quality of
the solution. To properly evaluate the dynamic scenarios, the
error is measured during every timestep from timestep 1800
to 2000 and then averaged. This allows us to determine how
well each algorithm is tracking a mobile target after an initial
search period. A Student’s t-test was used to test statistical
significance in all cases.

Four experiments were conducted to test claims about the
decay component. Each experiment uses the newly proposed
communication-aware dPSO. The performance of C-dPSO
with a tuned decay parameter is compared to C-dPSO without
any decay when solving dynamic problems. βk parameters
were tuned by starting with a value of 1.0 (no decay), and
decreased by 0.05 until performance on a training set of
simulations achieved the highest value. We note that similar
improvements are seen with any value smaller than 1.0, and
that these hyperparameters are relatively insensitive to change.
Experiment Dynamic 1 attempts to find a mobile target whose
top velocity is 20% of the top speed of the robots. Experiment
Dynamic 2 attempts to track a target whose fitness value is
degrading linearly with time. In this case, the fitness value
will be 1

3 of the original value at the end of the 2000
timsteps. Similarly, experiment Dynamic 3 will also have a
linearly degrading fitness value. In this case however, the
fitness value will reach zero by the time 1500 timesteps
have occurred. Finally, experiment Dynamic 4 combines the
difficulties introduced by Dynamic 1 and Dynamic 3. This
will attempt to track a target moving at 20% of the speed
of the robots whose fitness value is degrading and will have
completely depleted by 1500 timesteps.

Additionally, five experiments were performed to test the
claims about the communication component. Each experiment
compares dPSO with the new communication-aware velocity
update equation with the existing standard dPSO algorithm.
Each algorithm uses the same optimally tuned decay param-
eters to observe the effects of the communication component
on its own. Experiment Comm 0 deals with a static problem

TABLE I: Summary of Experiment Attributes

Experiment Communication Dynamic Target
Dynamic 1 7 3 Mobile
Dynamic 2 7 3 Decay
Dynamic 3 7 3 Fast Decay
Dynamic 4 7 3 Mobile Fast Decay
Comm 0 3 7 Static
Comm 1 3 7 Mobile
Comm 2 3 7 Decay
Comm 3 3 7 Fast Decay
Comm 4 3 7 Mobile Fast Decay

where the target is stationary and has a fixed fitness value.
Experiments Comm 1, Comm 2, Comm 3 and Comm 4 operate
on identical problems as Dynamic 1, Dynamic 2, Dynamic 3,
and Dynamic 4 respectively. The difference is that instead of
analyzing the effects of decay, the communication aspect of
the algorithm is now being tested. These nine experiments
are summarized in Table I, where the Communication column
indicates that the communication mechanism is being varied
and Dynamic indicates that the decay component is being
tested. The last column describes the behavior of the target
during the search process.

VII. EXPERIMENTAL RESULTS

Results for the dynamic experiments are shown in Table II.
Recall that each experiment tests the performance of the
C-dPSO algorithm with and without decaying the fitness
values. At a significance level of 0.05, C-dPSO using decay
outperformed (by reporting a more accurate solution) the ver-
sion that did not for the mobile target experiment (Dynamic 1),
the fast decay experiment (Dynamic 3) and the mobile fast
decay experiment (Dynamic 4). In the slow decay experiment
(Dynamic 2), C-dPSO still produces a smaller mean error,
although this value is not significant until we consider a
0.1 significance level. Recall that experiment Dynamic 2 was
the case where the target’s fitness value degrades slowly. It
is likely the difference between the algorithms was smaller
in this case, because the problem was close enough to the
static case. This observation is supported by the fact that
the fast decay experiment (Dynamic 3) did achieve statistical
significance, which is simply the case where the target’s fitness
value degrades faster. These results show that decayed fitness
is especially important when the target is in motion.

Table III shows the communication results for the static tar-
get (Comm 0), mobile target (Comm 1), slow decay (Comm 2),
fast decay (Comm 3) and mobile fast decay (Comm 4) experi-
ments. In this case, dPSO augmented with the communication
mechanism (C-dPSO) performed better than the original dPSO
algorithm for all experiments at a 0.05 significance level. This
is not surprising, as the error is measured with respect to the
server’s belief of the target position. Without the communi-
cation component in the dPSO velocity update equation, the
server is only notified if a robot enters communication range
by chance. This means that the original dPSO algorithm may



TABLE II: Dynamic Results in Euclidean Distance

Experiment C-dPSO C-dPSO Decayed p-value
Dynamic 1 53.435 1.263 < 2.2e-16
Dynamic 2 8.823 6.879 0.09863
Dynamic 3 12.071 9.419 0.04702
Dynamic 4 53.586 27.936 < 2.2e-16

TABLE III: Communication Results in Euclidean Distance

Experiment dPSO C-dPSO p-value
Comm 0 8.308 4.338 8.591e-05
Comm 1 5.351 1.263 7.562e-12
Comm 2 10.159 6.879 4.994e-03
Comm 3 15.160 9.419 5.012e-05
Comm 4 30.072 27.936 3.093e-03

Fig. 1: Time series graph for mobile target search problem.

be capable of finding a solution but has no effective method
of relaying this information to a useful location.

Figure 1 is a time series graph for a single simulation run on
the mobile target experiment with decay. This figure illustrates
the original dPSO algorithm’s inability to communicate con-
sistently with the server, as depicted by the spikes in solution
error over time. While C-dPSO is required to report back to
the server at routine intervals, standard dPSO focuses solely
on finding the target. When measuring error from the server’s
point-of-view, this results in a consistently low error for C-
dPSO and peculiar spikes in error for dPSO. These spikes
occur as the target moves away from the location the server
had stored previously. On occasion, a particle coincidentally
comes in contact with the server and is able to communicate
an updated position. Although this reduces the error to a near-
zero value, it begins to rise again immediately once the particle
moves away from the server. This behavior is consistent with
other runs for all experiments. For this reason, Figure 1 serves
as a representative for all other runs in this scenario.

The results shown in both tables strongly support the
hypotheses presented in section V. Specifally, the addition
of decay improves the performance of C-dPSO when faced
with sufficiently dynamic search problems. Also, C-dPSO
outperforms standard dPSO, when algorithm error is measured
based on a servers’ belief of the target location, or value.

VIII. DISCUSSION

The proposed communication scheme will be useful if im-
plemented on smart robotic swarms where the solution space
is larger than the connection range to the server. The proposed
approach for relaying information is distributed among the
robots and dynamically adapts to changing conditions. In
particular, this algorithm is agnostic with respect to the number
of robots, servers, and targets. The fitness evaluation for the
target can also be modified easily without changing any other
parts of the algorithm. The coupling between solution and
communication goals will direct robots toward necessary loca-
tions in the search space at all times. The distributed nature of
the algorithm indicates that it should function despite a varying
number of robots. In addition, the design of the algorithm does
not place any restrictions on the size of the search space and
will even allow for moving optima. Assuming the number of
available robots is sufficient to provide reasonable coverage,
the algorithm will be able to function in increasingly large
search spaces.

Unattended search drones are a particularly useful applica-
tion for robots capable of these tasks [33–35]. These drones
are intended for use over a wide area and are often assigned to
the task of finding a mobile target. This introduces situations
where communication range is limited [36] and will neces-
sarily require the continual tracking of a target. A specific,
applicable event occured on March 3, 2014 when Malaysia
Airlines Flight 370 went missing [37]. The aircraft presumably
went down in the Indian Ocean, but no crash site was found.
Automated underwater vehicles (AUVs) were used to scan
the ocean floor for the signal emitted by the blackbox, but
unfortunately the batteries powering the blackbox eventually
depleted. In a scenario such as this, a form of dPSO with
decaying fitness values may be an effective method of directing
these autonomous vehicles to find the black box and export
its location to a search ship.

IX. CONCLUSION

In this paper, we presented a version of distributed particle
swarm optimization that incorporates a communication com-
ponent into the velocity update equation. This additional term
uses a separate fitness evaluation that promotes communication
with the server. Experiments showed that for a variety of prob-
lems, our method provided a superior server-stored solution to
that of standard dPSO.

We also introduced the concept of decaying fitness values to
adapt dPSO to track moving targets. In this case, we found that
decay is necessary to track effectively mobile targets or targets
whose fitness is degrading over time. In scenarios where a
solution is located outside of the communication range of a
monitoring server, the discovered solutions are only as good as
the ability to relay this information back to the server. This is
particularly true of mobile tracking problems, where the server
will ideally receive consistent updates on the whereabouts of
the target.

In future work, we will investigate problems involving
one or several mobile communication servers. Our algorithm



currently supports the tracking of a server in the same way
target tracking is accomplished. This may be useful in situ-
ations where a piloted vehicle is attempting to find a target
with the assistance of several autonomous vehicles. Another
interesting extension is to examine the effect of increased
communication range for the server alone. It is feasible that
the server node may have a larger communication range than
the robots themselves, which would allow server information
to be propagated more easily through the swarm.

Finally, we plan to extend these tests into 3-dimensional
search problems. This extension is trivial as it simply requires
an additional term in each particle’s position and velocity
vectors. Identical experiments would then be run to verify the
usefulness of our algorithm for applications involving flight.
We also hope to implement this algorithm on a set of real
robots to eliminate any bias introduced by the simulator itself.
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